-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathutils.py
59 lines (50 loc) · 1.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import torch.distributed as dist
import torch
class PerformanceMeter():
def __init__(self, benchmark_mode=True):
self.benchmark_mode = benchmark_mode
self.reset()
def reset(self):
if self.benchmark_mode:
torch.cuda.synchronize()
self.avg = 0
self.count = 0
self.total_time = 0
self.last_update_time = time.time()
self.intervals = []
def update(self, n, exclude_from_total=False):
if self.benchmark_mode:
torch.cuda.synchronize()
delta = time.time() - self.last_update_time
self.intervals.append(delta)
if not exclude_from_total:
self.total_time += delta
self.count += n
self.avg = self.count / self.total_time
self.last_update_time = time.time()
return n/delta
def reset_current_lap(self):
if self.benchmark_mode:
torch.cuda.synchronize()
self.last_update_time = time.time()
def p(self, i):
assert i <= 100
idx = int(len(self.intervals) * i / 100)
return sorted(self.intervals)[idx]
def print_once(*args, **kwargs):
if not dist.is_initialized() or dist.get_rank() == 0:
print(*args, **kwargs)