-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathmain.py
executable file
·70 lines (54 loc) · 2.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Entry point of the application.
This file serves as entry point to the run of UNet for segmentation of neuronal processes.
Example:
Training can be adjusted by modifying the arguments specified below::
$ python main.py --exec_mode train --model_dir /dataset ...
"""
import horovod.tensorflow as hvd
from model.unet import Unet
from runtime.run import train, evaluate, predict
from runtime.setup import get_logger, set_flags, prepare_model_dir
from runtime.arguments import PARSER, parse_args
from data_loading.data_loader import Dataset
def main():
"""
Starting point of the application
"""
hvd.init()
params = parse_args(PARSER.parse_args())
set_flags(params)
model_dir = prepare_model_dir(params)
params.model_dir = model_dir
logger = get_logger(params)
model = Unet()
dataset = Dataset(data_dir=params.data_dir,
batch_size=params.batch_size,
fold=params.fold,
augment=params.augment,
gpu_id=hvd.rank(),
num_gpus=hvd.size(),
seed=params.seed,
amp=params.use_amp)
if 'train' in params.exec_mode:
train(params, model, dataset, logger)
if 'evaluate' in params.exec_mode:
if hvd.rank() == 0:
evaluate(params, model, dataset, logger)
if 'predict' in params.exec_mode:
if hvd.rank() == 0:
predict(params, model, dataset, logger)
if __name__ == '__main__':
main()