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Abstract

In this paper, we establish a novel connection between the metric entropy growth and the embeddability of function spaces into reproducing
kernel Hilbert/Banach spaces. Metric entropy characterizes the information complexity of function spaces and has implications for their
approximability and learnability. Classical results show that embedding a function space into a reproducing kernel Hilbert space (RKHS)
implies a bound on its metric entropy growth. Surprisingly, we prove a converse: a bound on the metric entropy growth of a function
space allows its embedding to a £ ,—type Reproducing Kernel Banach Space (RKBS). This shows that the £,—type RKBS provides a
broad modeling framework for learnable function classes with controlled metric entropies.Our results shed new light on the power and

limitations of kernel methods for learning complex function spaces.
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1. Introduction

earning a function from its finite samples is a fundamen-

tal science problem. A recent emerging trend in machine
learning is to use Reproducing Kernel Hilbrt/Banach Spaces
(RKHSs/RKBSs) [41, 51, 29, 53, 21] as a powerful framework
for studying the theoretical properties of neural networks[5, 48,
42, 40, 6] and other machine learning models. The RKBS frame-
work offers a principled approach to numerical implementable
parametric representation via the representer theorem([46, 47,
33], characterizing the hypothesis spaces induced by neural
networks[14, 24, 36] and study the generalization properties
[1, 3, 8]. The Reproducing Kernel Banach Space (RKBS) frame-
work offers a flexible and general approach to characterize com-
plex machine learning estimators. However, most of the construc-
tion and statistical analysis in the literature focuses on and is
based on the structure of £,-type RKBS, i.e., the feature space
is specifically embedded into an £, space. In this paper, we aim
to answer the following questions for general machine learning
problems:

Can £ ,—type Reproducing Kernel Banach Spaces offer a general
enough framework for machine learning studies? Which spaces
can be embedded into a £ ,—type ?

Surprisingly, we provide an affirmative answer to the previous
questions. We demonstrate that every function class learnable
with a polynomial number of data points with respect to the excess
risk can be embedded into a £ ,-type Reproducing Kernel Banach
space. This result indicates that £ ,-type Reproducing Kernel
Banach spaces constitute a powerful and expressive model class
for machine learning tasks.

To show this, we link the learnability and metric entropy [27]
with the embedding to the reproducing Kernel Banach Space.
Metric entropy quantifies the number of balls of a certain radius
required to cover the hypothesis class. A smaller number of balls
implies a simpler hypothesis class, which in turn suggests better
generalization performance. Conversely, a larger number of balls
indicates a more complex hypothesis class, potentially leading
to over-fitting or poor generalization. Classical results show that
embedding a function space into a reproducing kernel Hilbert
space implies a polynomial bound on its metric entropy growth
[43, 45].
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Our main result demonstrates that if the growth rate of a Ba-
nach hypothesis space’s metric entropy can be bounded by a
polynomial function of the radius of the balls, then the hypoth-
esis space can be embedded into a £ ,-type Reproducing Kernel
Banach space for some 1 < p < 2. This result indicates that ifa
function space can be learned with a polynomially large dataset
with respect to the learning error, then it can be embedded into a
p-norm Reproducing Kernel Banach Space. Thus, Reproducing
Kernel Banach Spaces provide a powerful theoretical model for
studying learnable datasets.

1.1. Related Works

Reproducing Kernel Hilbert Space and Reproducing Kernel Ba-
nach Space A Reproducing kernel Banach space (RKBS) is a
space of functions on a given set Q on which point evaluations
are continuous linear functionals. For example, the space of R-
valued, bounded continuous functions C°(Q) on some metric
space Q is also a Reproducing Kernel Banach Space. Finally, the
space ¢ .,(Q) of all bounded functions f : Q — R equipped with
the supremum norm is also a Reproducing Kernel Banach Space.
A formal definition is given below.

Definition 1. A reproducing kernel Banach space B on a pre-
scribed nonempty set X is a Banach space of certain functions on
X such that every point evaluation functional §,, x € X on B is
continuous, that is, there exists a positive constant C, such that

16(N)] = [f(0] < Cyllfll5 forall f € B.

Note that in all RKBS B on Q norm-convergence implies point-
wise convergence, that is, if (f,,) C B is a sequence converging to
some f € Binthesense of ||f,— f|ls — 0, then f,(x) — f(x)for
all x € Q. Note that in the special case with the norm || - || 3 being
induced by an inner product, the space is called a Reproducing
Kernel Hilbert Space (RKHS).

Compared to Hilbert spaces, Banach spaces possess much
richer geometric structures, which are potentially useful for de-
veloping learning algorithms. For example, in some applications,
a norm from a Banach space is invoked without being induced
from an inner product. It is known that minimizing about the ¢,
norm in R leads to sparsity of the minimizer when p is close to
1.

Metric Entropy and £ ,-type Reproducing Kernel Banach Space ~ 1-9
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As in the case of RKHS, a feature map (which is the Reproduc-
ing kernel in Hilbert space) can also be introduced as an appropri-
ate measurement of similarities between elements in the domain
of the function. To see this, [53, 29, 5] provides a way to construct
the Reproducing Kernel Banach Spaces via feature map. In this
construction, the reproducing kernels naturally represents the
similarity of two elements in the feature space.

r

Construction of a Reproducing Kernel Banach
Space

For a Banach space W, let [+, -]y, : W X W — R be its
duality pairing. Suppose there exist an nonempty set Q
and a corresponding feature mappings @ : Q - W',.
‘We can construct a Reproducing Kernel Banach Space as

B :={f,(x) :=[D(x),v])y : vE W, x € Q}
with norm||f,||z := inf{||v|]lw : v € W with f =
[D(), ]y}

In [5], the relation between the feature map construction and
the RKBS has been established in the following theorem.

Theorem 1 (Proposition 3.3[5]). A space B of function on Q is a
RKBS if and only if there is a Banach space W and a feature map
® : Q - W such that B is constructed by the method above.

As discussed in [5], the feature maps are generally not unique,
and the relation between the Banach space W and the RKBS B is
presented in the following technique remark:

Remark. The RKBS B is isometrically isomorphic to the quotient
space W /N, where

N=ew: f,=0}

LP-type Reproducig Kernel Banach Space  For a probability mea-
sure space (Q, M, u), the space £,(u) for 1 < p < oo is defined as

L,(w) = {f Q- R‘fismeasurable and [ |f]Pdu < oo}.It

is known that, under proper assumptions, the Reproducing Ker-
nel Hilbert Space [45] can be characterized in two equivalent
feature spaces: ¢, and £,(u).

In this paper, our focus lies in the generalization of the £,
characterization of the RKHS to the RKBS, i.e., the £ ,-type Re-
producing Kernel Banach space, defined as follows:

Definition 2 (£ ,—type Reproducing Kernel Banach Space). If
the feature space W is given by W = L ,(u) for some measure y,
then we call the constructed Reproducing Kernel Banach Space as
L ,—type.

Example 1 (Reproducing Kernel Hilbert Space). £,—type Re-
producing Kernel Banach Space is a Reproducing Kernel Hilbert
Space.

Example 2 (Barron Space [26, 4, 36, 32, 50]). Barron space is
used to characterize the approximation properties of shallow neural
networks from the point of view of non-linear dictionary approxima-
tion. Let X be a Banach space and D C X be a uniformly bounded
dictionary, i.e. D is a subset such that sup, g, ||h||x = Kp < oo.
Barron space is concerned with approximating a target function f
by non-linear n-term dictionary expansions, i.e. by an element of

the set (D) = {Z;;l a;h; : h; € [D}. The approximation is non-

linear since the elements h; in the expansion will depend upon the

target function f. It is often also important to have some control
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over the coefficients a;. For this purpose, we introduce the sets

n n P
P (D) = Zajhj:hjenm,ner\l,(2|a,.|p> <M

Jj=1 i=1

[42] showed that the Barron space Z,,(D) can be represented as
a £,—type RKBS. Furthermore, we will show later on that Z,;,(D)
can be embeded into a Reproducing Kernel Hilbert Space with a
weak assumption on the dictionary.

Learnability and Metric Entropy  The metric entropy [27, 49, 23]
indicates how precisely we can specify elements in a function
class given a finite mount of bits information and it is closely
related to the approximation by stable non-linear methods [16].
Metric entropy is quantified as the log of the covering number,
which counts the minimum number of balls of a certain radius
needed to cover the space. In information theory, metric entropy
is the natural characterization of the complexity of a function class.
[7, 19, 2] showed that a concept class is learnable with respect to
a fixed data distribution if and only if the concept class is finitely
coverable (i.e., there exists a finite € cover for every € > 0) with
respect to the distribution. In this paper, we extend this result
to concept classes that can be learned with a polynomially large
dataset with respect to the learning error. We demonstrate that
the growth speed of the metric entropy of such concept classes
can also be polynomially bounded.

1.2. Contribution

In this paper, we aim to establish connections between £ ,-type
RKBS and function classes that can be learned efficiently with
a polynomially large dataset with respect to the learning error.
Specifically, it is shown that such classes have metric entropies
enjoys a power law relationship with the covering radius and
can be embedded into an £ ,-type reproducing kernel Banach
space (RKBS). Classical results indicate that the ability to embed a
hypothesis space into a reproducing kernel Hilbert space (RKHS)
implies a metric entropy decay rate (Steinwart, 2000), which in
turn suggests learnability. Our novel contribution is establishing a
converse connection between the metric entropy and the type of a
Banach space. We demonstrate that concept classes whose metric
entropy can be polynomially bounded lead to the embedding
into £,-type RKBSs. These results highlight the generality of
using £ ,-type RKBSs as prototypes for learnable function classes
and are particularly useful because bounding the metric entropy
of a function class is often straightforward. Several illustrative
examples are provided in Section 4.

2. Preliminary

Type and Cotype of a Banach Space The type and cotype of
a Banach space are classification s of Banach spaces through
probability theory. They measure how far a Banach space is from
a Hilbert space. The idea of type and cotype emerged from the
work of J. Hoffmann-Jorgensen, S. Kwapien, B. Maurey and G.
Pisier in the early 1970’s. The type of a Banach space is defined
as follows

Definition 3 (Banach Space of Type-p ). A Banach space B is of
type p for p € [1, 2] if there exist a finite constant C > 1 such that
for any integer n and all finite sequences (x;);_, € B" we have

E

n
2%
i=1

i=1

1 1
P\p n ?
< c(Z ||xi||1;>
B

where ¢ is a sequence of independent Rademacher random vari-
ables, i.e, P(g; = -1) =P(g; = 1) = i and E[ge, | = 0fori #m

120

121

122

123

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

1565

156

157

158

159

160

161
162
163
164
165
166

167

168

169

170

171

172



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200
201
202
203

204

205
206
207
208
209
210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Luetal.

and Varlg;| = 1. The sharpest constant C is called type p constant
and denoted as T ,(B).

Definition 4 (Banach Space of Cotype-q). A Banach space B is
of cotype q for q € [2, o] if there exist a finite constant C > 1 such
that !
q
E

n 1 n . é
Zfixi 2 C lexillg >
i=1 i=1

q
B

if2 < g < oo for any integer n and all finite sequences (x;);_, € B".
The sharpest constant C is called cotype q constant and denoted as
C,(B).

q

The previous work [37] utilizes the following Kwapien’s Theo-
rem to charaterize whether there exists a RKHS H with a bounded
kernel such that certain Banach space E C H. As a result, it was
shown that typical classes of function spaces described by the
smoothness have a strong dependence on the underlying dimen-
sion: the smoothness s required for the space E needs to grow
proportionally to the underlying dimension in order to allow for
the embedding to a RKHS H.

Theorem 2 (Kwapien’s Theorem [28, 52]). For a Banach space
E,id : E — E being Type 2 and Cotype 2 is equivalent to E being
isomorphic to a Hilbert Space

The relation of the type of a Banach space and £, can be char-
acterized by the following Theorem:

Theorem 3 (Lemma 11.18 in [17], corollary of Pietsch Domina-
tion Theorem and Maurey-Pisier Theorem). Consider type—p
(1 < p < 2) Banach Space X which is a closed subspace of £,(1)
for some measure u, then for any 1 < r < p there exists isomorphic
embedding u : XX — L.(v) (isomorphic to a subspace of £,(v)) for
some probability v.

Covering Number and Metric Entropy  Covering number and
metric entropy measure the size of the hypotheses space on which
we work. For many machine learning problems, a natural way
to measure the size of the set is via the number of balls of a fixed
radius § > 0 required to cover the set.

Definition 5 (§—Covering Number for metric space (X, d) [49]).
Consider a metric space (X, d) where d is the metric for space X.
Let § > 0. A §-covering or 5-net of metric space (X,d) is a set of
elements of X given by {6, ..., Oy} C X where N = N(8), such that
forany 6 € X, there existsi € [N] such that d(6,6;) < 8. The
&-covering number of (X, d), denoted as N(8, X, d), is the smallest
cardinality of all 5-covering.

We can define a related measure—more useful for constructing
our lower bounds—of size that is related to the number of disjoint
balls of radius 6 > 0 that can be placed into the set

Definition 6 (§-Packing numbers for metric space (XX, d)). A -
packing of (X, d) is a set of elements of X given by {6,, ...,6} C X
where M = M(S), such that for all i # j, d(6;,6;) > 6. The
&-packing number of (X, d), denoted as M(8, X, d), is the largest
cardinality of all 5-packing set.

The following lemma showed that the packing and covering
numbers of a set are in fact closely related:

Lemma 1 (Lemma 4.3.8 [18]). Forany § > 0, M(26,X,d) <
N(,X,d) < M(5,X,d)

The metric entropy, which is defined as log of the covering
number, indicate how precisely we can specify elements in a
function class given fixed bits of information.

Definition 7. The metric entropy of (X,d) is defined as
log N(8, X, d).

3-9
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3. Main Results

In recent literature, reproducing kernel Banach spaces (RKBS)
have been gaining interest for the analysis of neural networks.
Moreover, RKBS also offers a versatile and comprehensive frame-
work for characterizing complex machine learning estimators.
However, the majority of the constructions and statistical analyses
in the literature are concentrated on and based on the structure of
£ ,-type RKBS, specifically embedding the feature space into an
£, space. However, we still do not know whether £ ,-type RKBS is a
flexible enough modeling. In this paper, we consider the following
questions:

Question. Given a RKBS E of functions from Q —» R,
does there exist an £,—type RKBS B, on X with the
embeddings E & B, & F = £.,(Q), where £.,(Q)
denotes the space of all the pointwise bounded function
on Q.

Recently, the question was studied in [37] for the case p = 2.
The authors showed that there exists no Reproducing Kernel
Hilbert Space J¢ with a bounded kernel such that the space of all
bounded, continuous functions from Q to R satisfies C(Q) C F.
At the same time, the smoothness required for the space E needs
to grow proportionally to the underlying dimension in order to
allow for embedding into an intermediate RKHS .

In the literature, one way to describe the “size” of a RKBS is
by means of denseness in a surrounding space F and universal
consistency can be established for kernel-based learning algo-
rithms if universal kernels are used, [44, 45]. However, universal
consistency does not mean that the problem can be efficiently
learned. To precisely approximate arbitrary continuous functions,
having a large RKHS norm is sufficient but may lead to a large
sample complexity requirement [9, 22].

Surprisingly, we show the following connection between the
sample complexity and the embedding to £,—type RKBS :

All the polynomially learnable RKBS can be embeded to a £ ,—type
RKBS.

We first demonstrate the relationship between metric entropy
and embedding in the following theorem, and subsequently estab-
lish the connection between metric entropy and sample complex-
ity in Section ??. The significance of this result lies in the fact that
estimating metric entropy is considerably more straightforward
in practice than finding the embedding. For instance, the metric
entropies of all classical Sobolev and Besov finite balls in £, or
Sobolev spaces are well-known.

e 1

Theorem 4. Given a bounded domain Q € R¢, a RKBS
E of functions on Q, and F = ¢ ,(Q) on Q, which means
the embedding id : E — F is a compact embedding. If the
growth of metric entropy can be bounded via

€p(6) :=10gN(@,{x €E : |Ix|ls <1} |Illr) <677, p 2 2.
Then for any s > p, there exist a £,—type RKBS B, such

that
Eo B, o F.

\. J

Related Work A series of earlier works [10, 34, 11, 12, 13] pro-
videdthe metric entropy control of the convex hull in a type-p
Banach space which showed that a type-p Banach space always
has metric entorpy control. [25] showed that a Banach space
is of weak type p if and only if it is of entropy type p’ with
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1/p’ +1/p = 1. All type-p Banach space is weak type-p [35].
Thus our work showed a stronger result than [25].

3.1. Proof Sketch

A sketch of the proof of metric entorpy bound to embedding is
given below.

1. We first bound the Rademacher norm E, L ”Zln:l eixi”F of
the Banach space E via generalizations of the Massart’s
lemma and Dudley’s chaining theorem to general Banach
space.

2. We provide a novel lemma which shows that type of a Banach
space can be inferred from the estimation of Rademacher
norm [EEL_% HZ; eixqu

3. Using the isomorphism between the Banach space £ = (E, ||-
||7) and subspace of £ (u) to construct the feature mapping
of the £,—type RKBS.

To be more specific,given p > 2, for any s > p, our proof takes on
the following pathway:

Metric entropy control 6 ? ———| Type s’ ——— £L,-type RKBS

where 1 < s’,p’ <2suchthatl/s+1/s =1/p+1/p' =1.
The detailed proof can be found in the appendix.

Metric Entropy Bound leads to bound of the Rademacher norm
We generalize the Dudley’s Chaining Theorem to abstract Banach
1

space, so that we can showan » decay of the Rademacher norm
: €:X; H based on the assumption that log ££(5).

€
ip i=1

Theorem 5 (Dudley’s Chaining for Abstract Banach Space).
Given two Banach Spaces (E, || - ||g) and (F, || - ||z), an upper bound
on the Rademacher norm can be showed by a Dudley’s chaining

argument as follows:
6 2
E, sup |l < Cinf oc+—f \/ EE(8)dét,
X1, Xp €E a \/z .
[ llE<Lllx2lle<1, F
ollnllE<1

holds for all 0 < a < 1, where: ¢; are independent Rademacher
variables, taking values in {—1, +1} with equal probability.

According to Theorem 5, if the entropy number EE(8) < 5P
for some p > 2, we can have

1
_1 1 L
Al Sn P+—v/‘i\/5—l’d5 (Takex =n »)
F AVnJdnr

1 1
<n e (The integral is of O(n” »))
ey

for all ||x;||z < 1.

Proof of Theorem 5. We first extend Massart’s lemma to Banach
space.

Lemma 2 (Generalized Massart’s Lemma in Banach Space). Let
B be banach spaceand A C B be a finite set with ¥ = max,c, ||a|s

then
Zaa l <ry2log|A|

where |A| denotes the cardinality of A, o;’s are Rademacher ran-
dom variables (which are independent and identically distributed
random variables taking values {—1, 1} with equal probability) and
a; are components of vector a.

E | sup

acA

Lu et al.

Proof. Here’s a proof of the Massart’s Lemma. It basically follows
from Hoeffding’s Lemma.

< Eexp]||sup

a€A ||j=1

exp| AE | sup Zaiai

a€A |[i=1

B
(Jensen’s for 1 > 0)

<E Z exp ‘leaiai
i=1

acA

SZ[E exp

aceA

m

Z Ao;a;
i=1

(as o;’s arei.i.d.)

S Z ﬂ E [exp (||/15iai||z)]

a€A i=1

(by Traingular Inequality)

<Zexp< mi’r 2)

aceA
(Using Hoeffding’s Lemma)

le 2)

|A|exp<

Applying the logarithm operator to the inequality and multi-

plying by -

m
Zgiai

llog exp| AE | sup

1 mA?r?
szlog<|A|eXp< > ))

7 e |,
log |A 2

sup Zaa < glAl mar

acA 3 /1 2

TTog /A
Ogl | above to obtain

<ry2log|A|

B

Set value of 1 =

m
201

i=1

E | sup

acA

O

To prove the Dudley’s Chaining Theorem 5 for abstract Banach

spaces, we start by the most crude e-cover for our function class.

To simplify the notation we denote:

lIxlle <1301 llr)

For any 0 < o < 1, we can set ¢, = 2"a, where m is choosed
properly such that €, > sup,_, . |Ix;||[z and note that we have
the covering net V| = {g} for g, = 0 which implies N, = 1.

Next , define the sequence of epsilon covers JV; g by setting ¢;
27Jgy = 2™Jq for j = 0,...,m. By definition, Vx € E, ||x||z
1, we can find g;(x) € N that such that ||x — g;(x)|[r <
Therefore we can write the telescopic sum

Ns :=N(@6,{x€E :

m
X=X—gn +Zgj(x) —gj-1(%).
=1

By triangle inequality, for any x we have ||g;(x) — g;_1(*)||r
llg;(x) = xllr + [|x — gj_1()||r < €; +€;_1 = 3¢;. Thus,

IN

1< 1 -
e, s, S| <] s [Sew-no)
X1, Xn€E n ) n X1,-,Xp €E 1
[IX1lE<LlIx2[E<1, F I\X1\|E<1 [IX2llg<1,
llXnllE<1 llxnllE<t

o A
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Deg(x) — g1 (x)

i=1

+3)

j=1

|

1 1 m n
< —-ne, +E~ Sup z z €(g;(x) — g1 (%)
n n X1, Xp €E j=1||i=1
HX1HE<1 lx2llz <1, F
llxnllE<1
1 m n
<e€n+E- z sup z €:(g;(x;) — gj1(x:))
n j=1 X1, Xp €E
HX1|\E<1 ”x2HE<1 F
lIxXnllE<1
(by supz < 2 sup)
1 m n
<a+E- sup €Y
n ZJI V1 Yn€E ; W
Iy ll<3ej. 1yl <3e;, F
= llynllE<3e;
o 3€;
<a+ Z 2nlog ‘N (by Massart’s lemma)
6 m
+—= (6 —¢€41) 10g|N€j < log |V |dt.
nj=1

D
6./ /
<a+— log |V, |dt.
\/ﬁ a | t|

where we take D = 2sup,_, ., [|X;[|r and therefore D > ¢,. O

From the Bounded Rademacher norm to the Type of the Banach
Space We now present a novel lemma which shows that the
1 n

Y

previous estimation of the Rademacher norm [,
can imply the type of the Banach space.

e p

Lemma 3 (Techinque Contribution: From bounded

Rademacher norm to type of the Banach space). Given
two Banach spaces (E, || - ||z) and (F, || - ||z) on X where we
have the embedding E < F, iffor1 < p’ < 2, the following

inequality ;
Z x|l <
i=1 i

S
ne'

€; ~

holds when ||x;||z < 1,i = 1,---,n,Yn € N, then E =
(E, || - ||r) is of the type s', foreach 1 < s' < p'.

\. J

Proof.

Lemma 4 (Kahane-Khintchine Inequality). If(E,|| - ||g) is any
normed space and x,, -+, x, € E, then

n
SKP[EHZ"::')C;‘”E

i=1

n n 1/p
EJl Z €Xillp < ([EH Z EixiHZ)
in1 i=1

Using the previous lemma, we are ready to prove the Lemma 3
We first prove for all ||x;]|; < 1,i = 1,---,N,VN € N, the
inequality holds. By the embedding E < F, we have ||x;||r <

c||x;||z < c for some constant ¢ > 0, WLOG we can assume ¢ = 1.

In the following proof, we will fixan m € N. For j,k =0,1,2,...
define the two sets

U. =

Fixak and a j € V. We will perform a calculation as above, but
now taking advantage of the assumption that s < g, which buys us
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a bit of room that will come in handy later. Lett = s~ —g~! > 0.

By the fact that |U;| < m*, ||2x;||r < 1 and using Lemma 4
1

N
<E Z €;X;

ieU;
F J F

N

Z €iX;

ieU;

= —[E G (zkx)

iev;

For each j define f; : {~1,1}" — Rby f;(e) = "ZieU- eixi” .
J F

Then we have

=

E|X 2 eax| | <|[EXfE| @
Jj=0i€U; - j=0
1
s s
0 1 [
< Z ([Eefj(e)s)s = z Z z €iX; 4)
j=0 k=0 jEVy i€U; .
1
< Tk T k/s —
5 3 et (S e 3 L9
k=0 jeV JEVK
1 1 1 for o kel
Smsm}iix |U;|s Z > (for |U;| = m*™) (6)
JEVK
<2msmaxmax{|U|s— Jer} 7
f()r2—< Z l< 2 (8)
- 20 — 2min(Vy)
JEVK j>min(Vy)
1
<2mvmax{|U|v— j=0,1,2,.. } )
J
l 1
<4msmax | D x| :j=012,.. (10)
ieU;
1 3 s
for ST < ||x;]| holds Vi € U; (11)

1

1 n s
<4m> (Z ||in|;) : (12)
i=1

Gathering up the implicit factors in the above inequalities and
noting that they all only depend on r and t gives the result. Now
we prove for all x; € E,i = 1,---,n,Vn € E and any s < q, we

have
s\ 1
|| s (Z ||xl-||;) (13)
F i=1
Let X, = W then ||%;||; < 1 holds foralli = 1,-
From the prevfoils proof we have
L 1
il | = (ZIIJ@II}) ;
r i=1
which will leads to the complete proof of (3). O

. 1 1 . _ .
i {l Hlxille € (2JT 27]} and V, ={j : |U;| € (m*!, m"]}Embedding to £,-type RKBS From the previous lemma, the

space E = (E, || - ||p) is type s’ forall 1 < s’ < p’. By Theorem 3,
E is isometric to a closed subspace W, of £ (u) for1 <s' < p’.
Now fixing an 1 < s’ < p’, we can construct the £,-type RKBS

< l.mk
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0
B, llp) —E=E (B, || - |Ir)
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idg_,
E=F

Figure 1. In our paper , we first use the type of a RKBS to build an isomorphic mapping to a subspace of £ (1) for some probability measure u. Then
we construct the £ ,-type RKBS via an extension maps from £ ,(u) to F.

B, using the mapping relation in Figure 1. We firstly use Hahn-
Banach continuous extension theorem to extend idg_ oi~! to
a continuous linear functional ® from £y(u) — F such that
Dy, = i‘loidEA_,Flws,. We define the feature mapvia¢ : Q —

£,(1) by -

where 8§ € F’ denotes the evaluation functional at x acting on F
and ®* : F' —» Ly (u) is the adjoint of operator that is uniquely
determined by

Lf, ®hlp = [®*f, hl; 0> forall f € F',h € £ (W).

Then we have for any e € E

[¢(x), i(e)] 5, =[D*8%, ()], = [6%, Pi(e)]r
Q68 idy_p ()] = idy_p(e)(x),

where (1) is based on the fact that ®i(e) = (idg_poi t)(i(e)) =
idg_ p(e). Now we define the RKBS,

(14)

B, = {f,(0) 1= [$(x), ], 1 vE W, x € Q)

then we can show that E & B, & F. The detailed proof is left to
the Appendix A.

4. Applications

Spaces of (Generalized) Mixed Smoothness = The Besov space is
a considerably general function space including the Holder space
and Sobolev space, and especially can capture spatial inhomo-
geneity of smoothness.

Definition 8 (Besov Space [20], Definition 2.2.1). Let0 < s < oo,
1<p<oo,andl <q < oo, Withq = lincases = 0. For
f € LP(RY, 1) define

. 1/q
1 llspg := (Z ZkSqllf‘l(gbk?f)Ilp)
k=0

where ¢, is a complex-valued C®-function on R* with ¢o(x) = 1
if 1x]] < 1 and ¢o(x) = 0 if [x| > 3/2. Define ¢, (x) = ¢o(x/2) -
$o(x) and ¢ (x) = ¢, 27¥x) for k € N. (¢, form a dyadic
resolution of unity) and F denote the Fourier transform acting
on this space (with scaling constant (27r)~%/2). We further define

By, (R, (x)) 1= {f 3 REo% HW < 00}

1
1+x2)

terized by g € R,.

where (x)ﬁ = is the polynomial weighting function parame-

Remark. Let S'(R?) denote the space of complex tempered dis-
tributions on RY. Since any f € LP(R?) gives rise to an element
of S'(R%), the quantity F (¢ F f) is well-defined (for any k) as
an element of S'(R%). Moreover ¥ (¢, Fg) is an entire analytic
function on R¢ for any g € S'(R?) and any k by the Paley-Wiener-
Schwartz theorem.
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Theorem 6 (Metric Entropy of Besov Space [31]). Let1 < p < oo,
1<g<0,BeER,, ands— 50 Suppose E is a (non-empty)
p

bounded subset of B}, (R%, {x}#). For g > s — 2 we have
P

logN(8,E, || - [lo) < 674

Corollary 1. Let%gp’gpsoo,lsqu,i<s
p'

andf3 > s— C;l. Then By, (Rd, (x)ﬁ> can be embedded into
an L y —-type RKBS.

n!
p'-1

Remark. Our Corollary 1 covers the results in [37, Section 4.2, 4.3
and 4.5] for embedding to Reproducing Kernel Hilbert Space by
taking p’ = 2.

Barron Space  Barron space is used to characterize the function
space represented by two-layer neural networks and comment be-
lief is Barron space is larger than any Reproducing Kernel Hilbert
Space. For example, [32] has showed that Barron space is not
isometric to a Reproducing Kernel Hilbert Space because Barron
space violates the parallelogram law. However Barron space still
can be embeded into a Reproducing Kernel Hilbert Space using
our theory. [37, Section 4.4] showed similar property for a special
kind of dictionary. via the metric entropy estimation of convex
hull. To show this, we utilize the metric entropy of convex hull in
Banach space [13, 12], which is the technique used widely in esti-
mating the metric entropy of Barron space / Integral Reproducing
Kernel Banach Spaces [39, 38, 30].

Theorem 7 (Convex Hull Metric Entropy [13, 12]). Let A C X be
a precompact subset of the unit ball of a Banach space X of type p,
p > 1, with the property that there are constants p, & > 0 such that

NG, A |- llx) < ps™*

Then there exists a positive constant c, ., , such that for the dyadic
entropy numbers of the convex hull we have the asymptotically
optimal estimate

§-(-(/p)-=

log V(8,co(A), || - llx) <c

PP forn=1,2,..

Since every Banach space is type-1 (from the triangular inequal-
ity), we can have the following coro llary.

Corollary 2. Ifthe dictionary space D satisfies N'(, D, || -

lo) < PSP for some constant p > 2,¢ > 0,p > 0, then

Barron space %}, (D) can be embeded into £ »_-type RKBS.
p-1

Remark. [37]showed that if the dictionary has a positive decom-
position then the Barron space can be embeded to a Reproducing
Kernel Hilbert space. Our condition provides a new class of condi-
tions which utilize the smoothness of the dictionary [38, 39].

[15] provide the metric entropy estimate of g—hull in type-p
Banach space, which help us to embed to Reproducing Kernel
Banach space.
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Lemma 5 (Metric Etnropy of g—hull in Type—p Banach
Space[15]). Let K C X be a precompact subset of the unit ball of
a Banach space X of type p (p > 1), if N(8,K, || - ||) = O(6%*¢)
witha > 0,e > 0and 8 € R, then we have

where Hy(K) := {Z

_ apq
log N(e, Hy(K), ||  [lx) = O (e ParD ) ,

n
i=1

Based on the result in [15], we have the following corollary

Corollary 3. Ifthedictionary space D satisfies N'(8, D, || -
[leo) < p&~P*< for some constant p > 2,€ > 0,p > 0, then
the Barron space EL([D) can be embeded into £ -type

Pq

2pg—q—p

RKBS.
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A. Proof of the Main Theorem

In this section, we present the proof of our main theorem

g N

Given a bounded domain Q € R¢, a RKBS E of functions
onQ,and F = ¢, (Q) on Q, which means the embedding
id : E — F is a compact embedding. If the growth of
metric entropy can be bounded via

E;(8) :=10gN@G,{x €E : ||Ix|ls <1} |I]lr) < 6P, p > 2.

Then for any s > p, there exist a £,—type RKBS B, such

that
Eo B, SF.

\. J

Proof. First of all, according to Theorem 5, if the entropy number
logN(8,E, || - ||z) < 8P for some p > 2, we can have

n 1 1 1
[Eei% Zeixi <nr+ L /_1 \8-pds (Takea =n »)

i=1 F \/E n P

1 1
<n e (The integral is of O(n” ?))

n 1
> E, Z exi|| Snv

i=1 F

1s)
for all ||x;||z < 1.

Therefore by our technique Lemma 3, we can conclude that the
space E = (E, || - ||r) is of type s’ for any 1 < s’ < p’. Recall that E
is an RKBS, so it is a closed subspace of F = ¢, (X). Therefore E
is a closed subspace of L, (X) because ¢ ., (X) embeds continuously
to L, so is E. Consequently, E is a closed subspace of L, (v), where
v is the uniform distribution on X. By Theorem 3, E is isometric
to a subspace of Ly () for some measure y forany 1 < s’ < p’.

By the induction above the following embedding holds

idg.p idg_p
E=E|-lp) = E=EIl-l) < F=E|-lF)

Therefore,

We have the following embedding

idg_p

idg_
E=El-llp) & E=Ell-lp) < F=EI-l

and E is isometric to W, a closed subspace of Ly (1) by the iso-
metric mapping i.

First, for any x € Q, we denote §f € F’ as the evaluation
functional at x acting on F. Then we consider the following
linear functional for any w € W:

[$0x), wlw,, := [6F, (idg_poiH(W)IF

Since Wy is a subspace of Ly (1), by Hahn-Banach continuous
extension theorem, we can extend this mapping #(x) : Wy — R
to a continuous linear functional ¢ : Ly(x) — R. Then we have
foranye € E, i(e) € Wy,

[$(x), i(@)]c, 4y =[$(x), i(&)]w,

where (1) is based on the fact that ®i(e) = (idz_roi )(i(e)) =
idp_,p(e). Now we define the £ -typ RKBS,

B, 1= {fv(x) = [¢(x), 0], tveEWy,x€ Q}
with norm
Ifolls, :=inf{jvlly : v e Wy with f, =[é(), 0]}

Next we show the embedding E & B, & F. Noticing that 3B is
an RKBS, so B; & F, we only need to show the first embedding.

Which Spaces can be Embedded in £ ,-type Reproducing Kernel Banach Space? A Characterization via Metric Entropy

Since E < E and F is isometric to Wy, we will prove this by
showing that B is the image of the mapping ids_zoi™! on W, .
Noticing that for allv € Wy, f, = [¢(-),v],} = idg_poi~'(v) €
B,. Conversely, for any f € By, one can find a v € W, such that
f =1[¢(),vl,} by definition. Therefore B; is the image of the
mapping idg_poi~! on Wy.

Now, since E = (id,;_,Foi‘l) oioidy_sE, therefore E is a sub-
set of the image of the mapping id_poi~! on Wy, then we can
conclude that E & B,. O

Upon further review, we recognize that our initial approach
contained some inaccuracies. We appreciate the opportunity to
clarify our position. What we intended to convey is that consider
the following linear functional for any w € W, where W isa
closed subspace of Ly (u):

[$(x), wly,, = [6%, (idp_poi ™ )(w)]F

Since Wy is a subspace of Ly (1), by Hahn-Banach continuous
extension theorem, we can extend this mapping #(x) : Wy — R
to a continuous linear functional ¢ : Ly(u) — R. Noticing
that in this case we only apply Hahn-Banach Theorem on linear
functional and then we can proceed with our proof of the Main
result further since we have for any e € E, i(e) € W,

[¢(x), i(O)]c, 0 =[$(x0), i(O)]w,, = [8%, (idp_poi ™ )i(e)]r=[8Y, idp_p(e)]r = 1

This refined statement more accurately reflects our stance on the
matter. We apologize for any confusion our previous communica-
tion may have caused and are committed to providing clear and
accurate information moving forward.

= (67, (idg_poi )(i())]p=[0%, idg_r()]r = ids_p(e)(x),
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