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Abstract

In this paper, we establish a novel connection between the metric entropy growth and the embeddability of function spaces into reproducing
kernel Hilbert/Banach spaces. Metric entropy characterizes the information complexity of function spaces and has implications for their
approximability and learnability. Classical results show that embedding a function space into a reproducing kernel Hilbert space (RKHS)
implies a bound on its metric entropy growth. Surprisingly, we prove a converse: a bound on the metric entropy growth of a function
space allows its embedding to a ℒ𝑝−type Reproducing Kernel Banach Space (RKBS). This shows that the ℒ𝑝−type RKBS provides a
broad modeling framework for learnable function classes with controlled metric entropies.Our results shed new light on the power and
limitations of kernel methods for learning complex function spaces.
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1. Introduction1

L earning a function from its finite samples is a fundamen-2

tal science problem. A recent emerging trend in machine3

learning is to use Reproducing Kernel Hilbrt/Banach Spaces4

(RKHSs/RKBSs) [41, 51, 29, 53, 21] as a powerful framework5

for studying the theoretical properties of neural networks[5, 48,6

42, 40, 6] and other machine learning models. The RKBS frame-7

work offers a principled approach to numerical implementable8

parametric representation via the representer theorem[46, 47,9

33], characterizing the hypothesis spaces induced by neural10

networks[14, 24, 36] and study the generalization properties11

[1, 3, 8]. The Reproducing Kernel Banach Space (RKBS) frame-12

work offers a flexible and general approach to characterize com-13

plex machine learning estimators. However, most of the construc-14

tion and statistical analysis in the literature focuses on and is15

based on the structure of ℒ𝑝-type RKBS, i.e., the feature space16

is specifically embedded into an ℒ𝑝 space. In this paper, we aim17

to answer the following questions for general machine learning18

problems:19

Can ℒ𝑝−type Reproducing Kernel Banach Spaces offer a general20

enough framework for machine learning studies? Which spaces21

can be embedded into a ℒ𝑝−type ?22

Surprisingly, we provide an affirmative answer to the previous23

questions. We demonstrate that every function class learnable24

with a polynomial number of data pointswith respect to the excess25

risk can be embedded into aℒ𝑝-type Reproducing Kernel Banach26

space. This result indicates that ℒ𝑝-type Reproducing Kernel27

Banach spaces constitute a powerful and expressive model class28

for machine learning tasks.29

To show this, we link the learnability and metric entropy [27]30

with the embedding to the reproducing Kernel Banach Space.31

Metric entropy quantifies the number of balls of a certain radius32

required to cover the hypothesis class. A smaller number of balls33

implies a simpler hypothesis class, which in turn suggests better34

generalization performance. Conversely, a larger number of balls35

indicates a more complex hypothesis class, potentially leading36

to over-fitting or poor generalization. Classical results show that37

embedding a function space into a reproducing kernel Hilbert38

space implies a polynomial bound on its metric entropy growth39

[43, 45].40

Our main result demonstrates that if the growth rate of a Ba- 41

nach hypothesis space’s metric entropy can be bounded by a 42

polynomial function of the radius of the balls, then the hypoth- 43

esis space can be embedded into a ℒ𝑝-type Reproducing Kernel 44

Banach space for some 1 ≤ 𝑝 ≤ 2. This result indicates that if a 45

function space can be learned with a polynomially large dataset 46

with respect to the learning error, then it can be embedded into a 47

p-norm Reproducing Kernel Banach Space. Thus, Reproducing 48

Kernel Banach Spaces provide a powerful theoretical model for 49

studying learnable datasets. 50

1.1. Related Works 51

Reproducing Kernel Hilbert Space and Reproducing Kernel Ba- 52

nach Space A Reproducing kernel Banach space (RKBS) is a 53

space of functions on a given set Ω on which point evaluations 54

are continuous linear functionals. For example, the space of ℝ- 55

valued, bounded continuous functions 𝐶0(Ω) on some metric 56

space Ω is also a Reproducing Kernel Banach Space. Finally, the 57

space 𝓁∞(Ω) of all bounded functions 𝑓 ∶ Ω → ℝ equipped with 58

the supremum norm is also a Reproducing Kernel Banach Space. 59

A formal definition is given below. 60

Definition 1. A reproducing kernel Banach space ℬ on a pre- 61

scribed nonempty set 𝑋 is a Banach space of certain functions on 62

𝑋 such that every point evaluation functional 𝛿𝑥 , 𝑥 ∈ 𝑋 on 𝐵 is 63

continuous, that is, there exists a positive constant 𝐶𝑥 such that 64

|||𝛿𝑥(𝑓)||| = |||𝑓(𝑥)||| ≤ 𝐶𝑥‖𝑓‖ℬ for all 𝑓 ∈ 𝐵.

Note that in all RKBSℬ onΩ norm-convergence implies point- 65

wise convergence, that is, if (𝑓𝑛) ⊂ ℬ is a sequence converging to 66

some 𝑓 ∈ ℬ in the sense of ‖𝑓𝑛−𝑓‖ℬ → 0, then 𝑓𝑛(𝑥) → 𝑓(𝑥) for 67

all 𝑥 ∈ Ω. Note that in the special case with the norm ‖ ⋅ ‖ℬ being 68

induced by an inner product, the space is called a Reproducing 69

Kernel Hilbert Space (RKHS). 70

Compared to Hilbert spaces, Banach spaces possess much 71

richer geometric structures, which are potentially useful for de- 72

veloping learning algorithms. For example, in some applications, 73

a norm from a Banach space is invoked without being induced 74

from an inner product. It is known that minimizing about the 𝓁𝑝 75

norm in ℝ𝑑 leads to sparsity of the minimizer when 𝑝 is close to 76

1. 77
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As in the case of RKHS, a feature map (which is the Reproduc-78

ing kernel in Hilbert space) can also be introduced as an appropri-79

ate measurement of similarities between elements in the domain80

of the function. To see this, [53, 29, 5] provides a way to construct81

the Reproducing Kernel Banach Spaces via feature map. In this82

construction, the reproducing kernels naturally represents the83

similarity of two elements in the feature space.84

Construction of a Reproducing Kernel Banach
Space

For a Banach space𝒲, let [⋅, ⋅]𝒲 ∶ 𝒲 ′ ×𝒲 → ℝ be its
duality pairing. Suppose there exist an nonempty set Ω
and a corresponding feature mappings Φ ∶ Ω → 𝒲 ′,.
We can construct a Reproducing Kernel Banach Space as

ℬ ∶= {𝑓𝑣(𝑥) ∶= [Φ(𝑥), 𝑣]𝒲 ∶ 𝑣 ∈ 𝒲, 𝑥 ∈ Ω}

with norm‖𝑓𝑣‖ℬ ∶= inf {‖𝑣‖𝒲 ∶ 𝑣 ∈ 𝑊 with 𝑓 =
[Φ(⋅), 𝑣]𝒲 }.

85

In [5], the relation between the feature map construction and86

the RKBS has been established in the following theorem.87

Theorem 1 (Proposition 3.3[5]). A spaceℬ of function onΩ is a88

RKBS if and only if there is a Banach space𝒲 and a feature map89

Φ ∶ Ω →𝒲 ′ such thatℬ is constructed by the method above.90

As discussed in [5], the feature maps are generally not unique,91

and the relation between the Banach space𝑊 and the RKBSℬ is92

presented in the following technique remark:93

Remark. The RKBSℬ is isometrically isomorphic to the quotient
space𝒲∕𝒩, where

𝒩 = {𝑣 ∈ 𝒲 ∶ 𝑓𝑣 = 0}

ℒ𝑝-typeReproducigKernel Banach Space For a probabilitymea-94

sure space (Ω,ℳ, 𝜇), the spaceℒ𝑝(𝜇) for 1 ≤ 𝑝 < ∞ is defined as95

ℒ𝑝(𝜇) = {𝑓 ∶ Ω → ℝ
|||||||
𝑓 is measurable and ∫𝑋 |𝑓|𝑝 𝑑𝜇 < ∞} . It96

is known that, under proper assumptions, the Reproducing Ker-97

nel Hilbert Space [45] can be characterized in two equivalent98

feature spaces: 𝓁2 and ℒ2(𝜇).99

In this paper, our focus lies in the generalization of the ℒ2100

characterization of the RKHS to the RKBS, i.e., the ℒ𝑝-type Re-101

producing Kernel Banach space, defined as follows:102

Definition 2 (ℒ𝑝−type Reproducing Kernel Banach Space). If103

the feature space𝒲 is given by𝒲 = ℒ𝑝(𝜇) for some measure 𝜇,104

then we call the constructed Reproducing Kernel Banach Space as105

ℒ𝑝−type.106

Example 1 (Reproducing Kernel Hilbert Space). ℒ2−type Re-107

producing Kernel Banach Space is a Reproducing Kernel Hilbert108

Space.109

Example 2 (Barron Space [26, 4, 36, 32, 50]). Barron space is110

used to characterize the approximation properties of shallow neural111

networks from the point of view of non-linear dictionary approxima-112

tion. Let𝒳 be a Banach space and 𝔻 ⊂ 𝒳 be a uniformly bounded113

dictionary, i.e. 𝔻 is a subset such that supℎ∈𝔻 ‖ℎ‖𝒳 = 𝐾𝔻 < ∞.114

Barron space is concerned with approximating a target function 𝑓115

by non-linear 𝑛-term dictionary expansions, i.e. by an element of116

the set Σ(𝔻) =
{∑𝑛

𝑗=1 𝑎𝑗ℎ𝑗 ∶ ℎ𝑗 ∈ 𝔻
}
. The approximation is non-117

linear since the elements ℎ𝑗 in the expansion will depend upon the118

target function 𝑓. It is often also important to have some control119

over the coefficients 𝑎𝑗 . For this purpose, we introduce the sets 120

Σ𝑝𝑀(𝔻) =
⎧
⎨
⎩

𝑛∑

𝑗=1
𝑎𝑗ℎ𝑗 ∶ ℎ𝑗 ∈ 𝔻, 𝑛 ∈ ℕ, (

𝑛∑

𝑖=1
|𝑎𝑖|𝑝)

1
𝑝

≤ 𝑀
⎫
⎬
⎭

[42] showed that the Barron space Σ1𝑀(𝔻) can be represented as 121

a ℒ1−type RKBS. Furthermore, we will show later on that Σ1𝑀(𝔻) 122

can be embeded into a Reproducing Kernel Hilbert Space with a 123

weak assumption on the dictionary. 124

Learnability andMetricEntropy Themetric entropy [27, 49, 23] 125

indicates how precisely we can specify elements in a function 126

class given a finite mount of bits information and it is closely 127

related to the approximation by stable non-linear methods [16]. 128

Metric entropy is quantified as the log of the covering number, 129

which counts the minimum number of balls of a certain radius 130

needed to cover the space. In information theory, metric entropy 131

is the natural characterization of the complexity of a function class. 132

[7, 19, 2] showed that a concept class is learnable with respect to 133

a fixed data distribution if and only if the concept class is finitely 134

coverable (i.e., there exists a finite 𝜖 cover for every 𝜖 > 0) with 135

respect to the distribution. In this paper, we extend this result 136

to concept classes that can be learned with a polynomially large 137

dataset with respect to the learning error. We demonstrate that 138

the growth speed of the metric entropy of such concept classes 139

can also be polynomially bounded. 140

1.2. Contribution 141

In this paper, we aim to establish connections between ℒ𝑝-type 142

RKBS and function classes that can be learned efficiently with 143

a polynomially large dataset with respect to the learning error. 144

Specifically, it is shown that such classes have metric entropies 145

enjoys a power law relationship with the covering radius and 146

can be embedded into an ℒ𝑝-type reproducing kernel Banach 147

space (RKBS). Classical results indicate that the ability to embed a 148

hypothesis space into a reproducing kernel Hilbert space (RKHS) 149

implies a metric entropy decay rate (Steinwart, 2000), which in 150

turn suggests learnability. Our novel contribution is establishing a 151

converse connection between the metric entropy and the type of a 152

Banach space. We demonstrate that concept classes whose metric 153

entropy can be polynomially bounded lead to the embedding 154

into ℒ𝑝-type RKBSs. These results highlight the generality of 155

using ℒ𝑝-type RKBSs as prototypes for learnable function classes 156

and are particularly useful because bounding the metric entropy 157

of a function class is often straightforward. Several illustrative 158

examples are provided in Section 4. 159

2. Preliminary 160

Type and Cotype of a Banach Space The type and cotype of 161

a Banach space are classification s of Banach spaces through 162

probability theory. They measure how far a Banach space is from 163

a Hilbert space. The idea of type and cotype emerged from the 164

work of J. Hoffmann-Jorgensen, S. Kwapien, B. Maurey and G. 165

Pisier in the early 1970’s. The type of a Banach space is defined 166

as follows 167

Definition 3 (Banach Space of Type-𝑝 ). A Banach spaceℬ is of 168

type 𝑝 for 𝑝 ∈ [1, 2] if there exist a finite constant 𝐶 ≥ 1 such that 169

for any integer 𝑛 and all finite sequences (𝑥𝑖)𝑛𝑖=1 ∈ ℬ𝑛 we have 170

⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜀𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖

𝑝

ℬ

⎞
⎟
⎠

1
𝑝

≤ 𝐶 (
𝑛∑

𝑖=1
‖𝑥𝑖‖𝑝ℬ)

1
𝑝

where 𝜀 is a sequence of independent Rademacher random vari- 171

ables, i.e., 𝑃(𝜀𝑖 = −1) = 𝑃(𝜀𝑖 = 1) = 1
2
and 𝔼[𝜀𝑖𝜀𝑚] = 0 for 𝑖 ≠ 𝑚 172
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and Var[𝜀𝑖] = 1. The sharpest constant 𝐶 is called type p constant173

and denoted as 𝑇𝑝(ℬ).174

Definition 4 (Banach Space of Cotype-𝑞). A Banach spaceℬ is175

of cotype 𝑞 for 𝑞 ∈ [2,∞] if there exist a finite constant 𝐶 ≥ 1 such176

that177

⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜀𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖

𝑞

ℬ

⎞
⎟
⎠

1
𝑞

≥ 1
𝐶 (

𝑛∑

𝑖=1
‖𝑥𝑖‖𝑞ℬ)

1
𝑞

,

if 2 ≤ 𝑞 < ∞ for any integer 𝑛 and all finite sequences (𝑥𝑖)𝑛𝑖=1 ∈ ℬ𝑛 .178

The sharpest constant 𝐶 is called cotype q constant and denoted as179

𝐶𝑞(ℬ).180

The previous work [37] utilizes the following Kwapien’s Theo-181

rem to charaterize whether there exists a RKHS𝐻 with a bounded182

kernel such that certain Banach space 𝐸 ⊂ 𝐻. As a result, it was183

shown that typical classes of function spaces described by the184

smoothness have a strong dependence on the underlying dimen-185

sion: the smoothness 𝑠 required for the space 𝐸 needs to grow186

proportionally to the underlying dimension in order to allow for187

the embedding to a RKHS𝐻.188

Theorem 2 (Kwapien’s Theorem [28, 52]). For a Banach space189

𝐸, 𝑖𝑑 ∶ 𝐸 → 𝐸 being Type 2 and Cotype 2 is equivalent to 𝐸 being190

isomorphic to a Hilbert Space191

The relation of the type of a Banach space and ℒ𝑝 can be char-192

acterized by the following Theorem:193

Theorem 3 (Lemma 11.18 in [17], corollary of Pietsch Domina-194

tion Theorem and Maurey-Pisier Theorem). Consider type−𝑝195

(1 < 𝑝 ≤ 2) Banach Space𝒳 which is a closed subspace of ℒ1(𝜇)196

for some measure 𝜇, then for any 1 < 𝑟 < 𝑝 there exists isomorphic197

embedding 𝑢 ∶ 𝒳 → 𝐿𝑟(𝜈) (isomorphic to a subspace of ℒ𝑟(𝜈)) for198

some probability 𝜈.199

Covering Number andMetric Entropy Covering number and200

metric entropymeasure the size of the hypotheses space onwhich201

we work. For many machine learning problems, a natural way202

to measure the size of the set is via the number of balls of a fixed203

radius 𝛿 > 0 required to cover the set.204

Definition 5 (𝛿−Covering Number for metric space (𝒳, 𝑑) [49]).205

Consider a metric space (𝒳, 𝑑) where 𝑑 is the metric for space 𝒳.206

Let 𝛿 ≥ 0. A 𝛿-covering or 𝛿-net of metric space (𝒳, 𝑑) is a set of207

elements of𝒳 given by {𝜃1, … , 𝜃𝑁} ⊆ 𝒳 where𝑁 = 𝑁(𝛿), such that208

for any 𝜃 ∈ 𝑋, there exists 𝑖 ∈ [𝑁] such that 𝑑(𝜃, 𝜃𝑖) ≤ 𝛿. The209

𝛿-covering number of (𝒳, 𝑑), denoted as𝑁(𝛿,𝒳, 𝑑), is the smallest210

cardinality of all 𝛿-covering.211

We can define a relatedmeasure—more useful for constructing212

our lower bounds—of size that is related to the number of disjoint213

balls of radius 𝛿 > 0 that can be placed into the set214

Definition 6 (𝛿-Packing numbers for metric space (𝒳, 𝑑)). A 𝛿-215

packing of (𝒳, 𝑑) is a set of elements of𝒳 given by {𝜃1, … , 𝜃𝑀} ⊆ 𝒳216

where 𝑀 = 𝑀(𝛿), such that for all 𝑖 ≠ 𝑗, 𝑑(𝜃𝑖 , 𝜃𝑗) > 𝛿. The217

𝛿-packing number of (𝒳, 𝑑), denoted as𝑀(𝛿,𝒳, 𝑑), is the largest218

cardinality of all 𝛿-packing set.219

The following lemma showed that the packing and covering220

numbers of a set are in fact closely related:221

Lemma 1 (Lemma 4.3.8 [18]). For any 𝛿 > 0, 𝑀(2𝛿,𝒳, 𝑑) ≤222

𝑁(𝛿,𝒳, 𝑑) ≤ 𝑀(𝛿,𝒳, 𝑑)223

The metric entropy, which is defined as log of the covering224

number, indicate how precisely we can specify elements in a225

function class given fixed bits of information.226

Definition 7. The metric entropy of (𝒳, 𝑑) is defined as227

log𝑁(𝛿,𝒳, 𝑑).228

3. Main Results 229

In recent literature, reproducing kernel Banach spaces (RKBS) 230

have been gaining interest for the analysis of neural networks. 231

Moreover, RKBS also offers a versatile and comprehensive frame- 232

work for characterizing complex machine learning estimators. 233

However, themajority of the constructions and statistical analyses 234

in the literature are concentrated on and based on the structure of 235

ℒ𝑝-type RKBS, specifically embedding the feature space into an 236

ℒ𝑝 space. However,we still do not knowwhetherℒ𝑝-type RKBS is a 237

flexible enough modeling. In this paper, we consider the following 238

questions: 239

Question. Given a RKBS 𝐸 of functions from Ω → ℝ,
does there exist an ℒ𝑝−type RKBS ℬ𝑝 on 𝑋 with the
embeddings 𝐸 ↪ ℬ𝑝 ↪ 𝐹 = ℒ∞(Ω), where ℒ∞(Ω)
denotes the space of all the pointwise bounded function
on Ω.

240

Recently, the question was studied in [37] for the case 𝑝 = 2. 241

The authors showed that there exists no Reproducing Kernel 242

Hilbert Spaceℋ with a bounded kernel such that the space of all 243

bounded, continuous functions from Ω to ℝ satisfies 𝐶(Ω) ⊂ ℋ. 244

At the same time, the smoothness required for the space 𝐸 needs 245

to grow proportionally to the underlying dimension in order to 246

allow for embedding into an intermediate RKHSℋ. 247

In the literature, one way to describe the “size” of a RKBS is 248

by means of denseness in a surrounding space 𝐹 and universal 249

consistency can be established for kernel-based learning algo- 250

rithms if universal kernels are used, [44, 45]. However, universal 251

consistency does not mean that the problem can be efficiently 252

learned. To precisely approximate arbitrary continuous functions, 253

having a large RKHS norm is sufficient but may lead to a large 254

sample complexity requirement [9, 22]. 255

Surprisingly, we show the following connection between the 256

sample complexity and the embedding to ℒ𝑝−type RKBS : 257

All the polynomially learnable RKBS can be embeded to aℒ𝑝−type 258

RKBS. 259

We first demonstrate the relationship between metric entropy 260

and embedding in the following theorem, and subsequently estab- 261

lish the connection between metric entropy and sample complex- 262

ity in Section ??. The significance of this result lies in the fact that 263

estimating metric entropy is considerably more straightforward 264

in practice than finding the embedding. For instance, the metric 265

entropies of all classical Sobolev and Besov finite balls in ℒ𝑝 or 266

Sobolev spaces are well-known. 267

Theorem 4. Given a bounded domainΩ ∈ ℛ𝑑 , a RKBS
𝐸 of functions onΩ, and 𝐹 = 𝓁∞(Ω) onΩ , which means
the embedding 𝑖𝑑 ∶ 𝐸 → 𝐹 is a compact embedding. If the
growth of metric entropy can be bounded via

ℰ𝐹𝐸(𝛿) ∶= log𝑁(𝛿, {𝑥 ∈ 𝐸 ∶ ‖𝑥‖𝐸 ≤ 1}, ‖⋅‖𝐹) ≤ 𝛿−𝑝, 𝑝 ≥ 2.

Then for any 𝑠 > 𝑝, there exist a ℒ𝑠−type RKBSℬ𝑠 , such
that

𝐸 ↪ ℬ𝑠 ↪ 𝐹 .

268

RelatedWork A series of earlier works [10, 34, 11, 12, 13] pro- 269

videdthe metric entropy control of the convex hull in a type-𝑝 270

Banach space which showed that a type-𝑝 Banach space always 271

has metric entorpy control. [25] showed that a Banach space 272

is of weak type 𝑝 if and only if it is of entropy type 𝑝′ with 273
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1∕𝑝′ + 1∕𝑝 = 1. All type-𝑝 Banach space is weak type-𝑝 [35].274

Thus our work showed a stronger result than [25].275

3.1. Proof Sketch276

A sketch of the proof of metric entorpy bound to embedding is277

given below.278

1. We first bound the Rademacher norm 𝔼𝜖𝑖
1
𝑛
‖‖‖‖
∑𝑛

𝑖=1 𝜖𝑖𝑥𝑖
‖‖‖‖𝐹 of279

the Banach space 𝐸 via generalizations of the Massart’s280

lemma and Dudley’s chaining theorem to general Banach281

space.282

2. We provide a novel lemmawhich shows that type of a Banach283

space can be inferred from the estimation of Rademacher284

norm 𝔼𝜖𝑖
1
𝑛
‖‖‖‖
∑𝑛

𝑖=1 𝜖𝑖𝑥𝑖
‖‖‖‖𝐹285

3. Using the isomorphismbetween the Banach space 𝐸̂ = (𝐸, ‖⋅286

‖𝐹) and subspace of ℒ𝑠′ (𝜇) to construct the feature mapping287

of the ℒ𝑠−type RKBS.288

To be more specific,given 𝑝 > 2, for any 𝑠 > 𝑝, our proof takes on289

the following pathway:

Type 𝑠′ ℒ𝑠-type RKBSMetric entropy control 𝛿−𝑝

290

where 1 < 𝑠′, 𝑝′ < 2 such that 1∕𝑠 + 1∕𝑠′ = 1∕𝑝 + 1∕𝑝′ = 1.291

The detailed proof can be found in the appendix.292

Metric Entropy Bound leads to bound of the Rademacher norm293

We generalize the Dudley’s Chaining Theorem to abstract Banach294

space, so that we can show a 𝑛−
1
𝑝 decay of the Rademacher norm295

𝔼𝜖𝑖
1
𝑛
‖‖‖‖
∑𝑛

𝑖=1 𝜖𝑖𝑥𝑖
‖‖‖‖𝐹 based on the assumption that log ℰ

𝐹
𝐸(𝛿).296

Theorem 5 (Dudley’s Chaining for Abstract Banach Space).
Given two Banach Spaces (𝐸, ‖ ⋅ ‖𝐸) and (𝐹, ‖ ⋅ ‖𝐹), an upper bound
on the Rademacher norm can be showed by a Dudley’s chaining
argument as follows:

𝔼𝜖𝑖 sup
𝑥1 ,⋯,𝑥𝑛∈𝐸

‖𝑥1‖𝐸≤1,‖𝑥2‖𝐸≤1,
⋯,‖𝑥𝑛‖𝐸≤1

1
𝑛

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖𝐹
≤ 𝐶 inf

𝛼
{𝛼 + 6√

𝑛
∫

2

𝛼

√
ℰ𝐹𝐸(𝛿) 𝑑𝛿} ,

holds for all 0 < 𝛼 < 1, where: 𝜖𝑖 are independent Rademacher297

variables, taking values in {−1, +1} with equal probability.298

According to Theorem 5, if the entropy number ℰ𝐹𝐸(𝛿) ≤ 𝛿−𝑝299

for some 𝑝 > 2, we can have300

𝔼𝜖𝑖
1
𝑛

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖𝐹
≲ 𝑛−

1
𝑝 + 1√

𝑛
∫

1

𝑛
− 1
𝑝

√
𝛿−𝑝𝑑𝛿 (Take 𝛼 = 𝑛−

1
𝑝 )

≲ 𝑛−
1
𝑝 (The integral is of 𝑂(𝑛−

1
𝑝 ))

(1)
for all ‖𝑥𝑖‖𝐸 ≤ 1.301

Proof of Theorem 5. We first extend Massart’s lemma to Banach302

space.303

Lemma 2 (Generalized Massart’s Lemma in Banach Space). Let304

ℬ be banach space and𝐴 ⊂ ℬ be a finite set with 𝑟 = max𝑎∈𝐴 ‖𝑎‖ℬ ,305

then306

𝔼
⎡
⎢
⎣
sup
𝑎∈𝐴

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎤
⎥
⎦
≤ 𝑟

√
2 log |𝐴|

where |𝐴| denotes the cardinality of 𝐴, 𝜎𝑖 ’s are Rademacher ran-307

dom variables (which are independent and identically distributed308

random variables taking values {−1, 1} with equal probability) and309

𝑎𝑖 are components of vector 𝑎.310

Proof. Here’s a proof of the Massart’s Lemma. It basically follows 311

from Hoeffding’s Lemma. 312

exp
⎛
⎜
⎝
𝜆𝔼

⎡
⎢
⎣
sup
𝑎∈𝐴

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎤
⎥
⎦

⎞
⎟
⎠
≤ 𝔼 exp

⎛
⎜
⎝

⎡
⎢
⎣
sup
𝑎∈𝐴

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜆𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎤
⎥
⎦

⎞
⎟
⎠

(Jensen’s for 𝜆 > 0)

≤ 𝔼
⎡
⎢
⎣

∑

𝑎∈𝐴
exp

⎛
⎜
⎝

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜆𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎞
⎟
⎠

⎤
⎥
⎦

≤
∑

𝑎∈𝐴
𝔼
⎡
⎢
⎣
exp

⎛
⎜
⎝

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜆𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎞
⎟
⎠

⎤
⎥
⎦

(as 𝜎𝑖 ’s are i.i.d.)

≤
∑

𝑎∈𝐴

𝑚∏

𝑖=1
𝔼
[
exp

(
‖𝜆𝜎𝑖𝑎𝑖‖ℬ

)]

(by Traingular Inequality)

≤
∑

𝑎∈𝐴
exp (𝑚𝜆

2𝑟2
2 )

(Using Hoeffding’s Lemma)

= |𝐴| exp (𝑚𝜆
2𝑟2
2 )

Applying the logarithm operator to the inequality and multi- 313

plying by 1
𝜆

314

1
𝜆 log

⎛
⎜
⎝
exp

⎛
⎜
⎝
𝜆𝔼

⎡
⎢
⎣
sup
𝑎∈𝐴

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎤
⎥
⎦

⎞
⎟
⎠

⎞
⎟
⎠
≤ 1
𝜆 log (|𝐴| exp (

𝑚𝜆2𝑟2
2 ))

𝔼
⎡
⎢
⎣
sup
𝑎∈𝐴

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎤
⎥
⎦
≤ log |𝐴|

𝜆 + 𝑚𝜆𝑟2
2

Set value of 𝜆 =
√

2 log |𝐴|
𝑚𝑟2

above to obtain 315

𝔼
⎡
⎢
⎣
sup
𝑎∈𝐴

‖‖‖‖‖‖‖‖‖

𝑚∑

𝑖=1
𝜎𝑖𝑎𝑖

‖‖‖‖‖‖‖‖‖ℬ

⎤
⎥
⎦
≤ 𝑟

√
2 log |𝐴|

316

To prove the Dudley’s Chaining Theorem 5 for abstract Banach
spaces, we start by the most crude 𝜖-cover for our function class.
To simplify the notation we denote:

𝑁𝛿 ∶= 𝑁(𝛿, {𝑥 ∈ 𝐸 ∶ ‖𝑥‖𝐸 ≤ 1}, ‖ ⋅ ‖𝐹)

For any 0 < 𝛼 < 1, we can set 𝜖0 = 2𝑚𝛼, where𝑚 is choosed 317

properly such that 𝜖0 ≥ sup𝑖=1,⋯,𝑛 ‖𝑥𝑖‖𝐸 and note that we have 318

the covering net𝒩𝜖0 = {𝑔0} for 𝑔0 = 0 which implies 𝑁𝜖0 = 1. 319

Next , define the sequence of epsilon covers𝒩𝜖𝑗 by setting 𝜖𝑗 = 320

2−𝑗𝜖0 = 2𝑚−𝑗𝛼 for 𝑗 = 0, ..., 𝑚. By definition, ∀𝑥 ∈ 𝐸, ‖𝑥‖𝐸 ≤ 321

1, we can find 𝑔𝑗(𝑥) ∈ 𝒩𝜖𝑗 that such that ‖𝑥 − 𝑔𝑗(𝑥)‖𝐹 ≤ 𝜖. 322

Therefore we can write the telescopic sum 323

𝑥 = 𝑥 − 𝑔𝑚 +
𝑚∑

𝑗=1
𝑔𝑗(𝑥) − 𝑔𝑗−1(𝑥).

By triangle inequality, for any 𝑥 we have ‖𝑔𝑗(𝑥) − 𝑔𝑗−1(𝑥)‖𝐹 ≤ 324

‖𝑔𝑗(𝑥) − 𝑥‖𝐹 + ‖𝑥 − 𝑔𝑗−1(𝑥)‖𝐹 ≤ 𝜖𝑗 + 𝜖𝑗−1 = 3𝜖𝑗 . Thus, 325

𝔼𝜖𝑖 sup
𝑥1 ,⋯,𝑥𝑛∈𝐸

‖𝑥1‖𝐸≤1,‖𝑥2‖𝐸≤1,
⋯,‖𝑥𝑛‖𝐸≤1

1
𝑛

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖𝐹
≤ 𝔼 1𝑛[ sup

𝑥1 ,⋯,𝑥𝑛∈𝐸
‖𝑥1‖𝐸≤1,‖𝑥2‖𝐸≤1,

⋯,‖𝑥𝑛‖𝐸≤1

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖(𝑥 − 𝑔𝑚(𝑥))

‖‖‖‖‖‖‖‖‖𝐹
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+
𝑚∑

𝑗=1

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖(𝑔𝑗(𝑥𝑖) − 𝑔𝑗−1(𝑥𝑖))

‖‖‖‖‖‖‖‖‖𝐹
]

≤ 1
𝑛 ⋅ 𝑛𝜖𝑚 + 𝔼 1𝑛

⎡
⎢
⎢
⎢
⎢
⎣

sup
𝑥1 ,⋯,𝑥𝑛∈𝐸

‖𝑥1‖𝐸≤1,‖𝑥2‖𝐸≤1,
⋯,‖𝑥𝑛‖𝐸≤1

𝑚∑

𝑗=1

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖(𝑔𝑗(𝑥𝑖) − 𝑔𝑗−1(𝑥𝑖))

‖‖‖‖‖‖‖‖‖𝐹

⎤
⎥
⎥
⎥
⎥
⎦

≤ 𝜖𝑚 + 𝔼 1𝑛

⎡
⎢
⎢
⎢
⎢
⎣

𝑚∑

𝑗=1
sup

𝑥1 ,⋯,𝑥𝑛∈𝐸
‖𝑥1‖𝐸≤1,‖𝑥2‖𝐸≤1,

⋯,‖𝑥𝑛‖𝐸≤1

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖(𝑔𝑗(𝑥𝑖) − 𝑔𝑗−1(𝑥𝑖))

‖‖‖‖‖‖‖‖‖𝐹

⎤
⎥
⎥
⎥
⎥
⎦

(by sup
∑

≤
∑

sup)

≤ 𝛼 + 𝔼 1𝑛

⎡
⎢
⎢
⎢
⎢
⎣

𝑚∑

𝑗=1
sup

𝑦1 ,⋯,𝑦𝑛∈𝐸
‖𝑦1‖𝐸≤3𝜖𝑗 ,‖𝑦2‖𝐸≤3𝜖𝑗 ,

⋯,‖𝑦𝑛‖𝐸≤3𝜖𝑗

‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑦𝑖

‖‖‖‖‖‖‖‖‖𝐹

⎤
⎥
⎥
⎥
⎥
⎦

≤ 𝛼 +
𝑚∑

𝑗=1

3𝜖𝑗
𝑛

√
2𝑛log |||||𝒩𝜖𝑗

|||||
2

(by Massart’s lemma)

≤ 𝛼 + 6√
𝑛

𝑚∑

𝑗=1

(
𝜖𝑗 − 𝜖𝑗+1

)√
log |||||𝒩𝜖𝑗

||||| ≤ 𝛼 + 6√
𝑛
∫

𝜖0

𝜖𝑚

√
log |||𝒩𝑡

|||𝑑𝑡.

≤ 𝛼 + 6√
𝑛
∫

𝐷

𝛼

√
log |||𝒩𝑡

|||𝑑𝑡.

where we take 𝐷 = 2 sup𝑖=1,⋯,𝑛 ‖𝑥𝑖‖𝐸 and therefore 𝐷 > 𝜖0.326

From the Bounded Rademacher norm to the Type of the Banach327

Space We now present a novel lemma which shows that the328

previous estimation of the Rademacher norm 𝔼𝜖𝑖
1
𝑛
‖‖‖‖
∑𝑛

𝑖=1 𝜖𝑖𝑥𝑖
‖‖‖‖𝐹329

can imply the type of the Banach space.330

Lemma 3 (Techinque Contribution: From bounded
Rademacher norm to type of the Banach space). Given
two Banach spaces (𝐸, ‖ ⋅ ‖𝐸) and (𝐹, ‖ ⋅ ‖𝐹) on𝑋 where we
have the embedding𝐸 ↪ 𝐹, if for 1 ≤ 𝑝′ ≤ 2, the following
inequality

𝔼𝜖𝑖
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖𝐹
≲ 𝑛

1
𝑝′

holds when ‖𝑥𝑖‖𝐸 ≤ 1, 𝑖 = 1,⋯ , 𝑛, ∀𝑛 ∈ ℕ, then 𝐸̂ =
(𝐸, ‖ ⋅ ‖𝐹) is of the type 𝑠′, for each 1 ≤ 𝑠′ < 𝑝′.

331

Proof.332

Lemma 4 (Kahane-Khintchine Inequality). If (𝐸, ‖ ⋅ ‖𝐸) is any
normed space and 𝑥1,⋯ , 𝑥𝑛 ∈ 𝐸, then

𝔼‖
𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖‖𝐸 ≤ (𝔼‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖‖𝑝𝐸)

1∕𝑝

≤ 𝐾𝑃𝔼‖
𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖‖𝐸

Using the previous lemma, we are ready to prove the Lemma 3333

We first prove for all ‖𝑥𝑖‖𝐸 ≤ 1, 𝑖 = 1,⋯ ,𝑁, ∀𝑁 ∈ ℕ, the334

inequality holds. By the embedding 𝐸 ↪ 𝐹, we have ‖𝑥𝑖‖𝐹 ≤335

𝑐‖𝑥𝑖‖𝐸 ≤ 𝑐 for some constant 𝑐 > 0, WLOG we can assume 𝑐 = 1.336

In the following proof, we will fix an𝑚 ∈ ℕ. For 𝑗, 𝑘 = 0, 1, 2, …337

define the two sets338

𝑈𝑗 = {𝑖 ∶ ‖𝑥𝑖‖𝐹 ∈ ( 1
2𝑗+1 ,

1
2𝑗 ]} and 𝑉𝑘 =

{
𝑗 ∶ |𝑈𝑗| ∈ (𝑚𝑘−1, 𝑚𝑘]

}
.

Fix a 𝑘 and a 𝑗 ∈ 𝑉𝑘 . We will perform a calculation as above, but339

now taking advantage of the assumption that 𝑠 < 𝑞, which buys us340

a bit of room that will come in handy later. Let 𝜏 = 𝑠−1 − 𝑞−1 > 0. 341

By the fact that |𝑈𝑗| ≤ 𝑚𝑘 , ‖2𝑘𝑥𝑖‖𝐹 ≤ 1 and using Lemma 4 342

⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖‖‖

∑

𝑖∈𝑈𝑗
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖‖‖

𝑠

𝐹

⎞
⎟
⎠

1
𝑠

≲ 𝔼
‖‖‖‖‖‖‖‖‖‖‖

∑

𝑖∈𝑈𝑗
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖‖‖𝐹
= 1
2𝑘 𝔼

‖‖‖‖‖‖‖‖‖‖‖

∑

𝑖∈𝑈𝑗
𝜖𝑖
(
2𝑘𝑥𝑖

)
‖‖‖‖‖‖‖‖‖‖‖𝐹

≤ 1
2𝑗𝑚

𝑘∕𝑞 = 1
2𝑗𝑚

𝑘∕𝑠𝑚−𝜏𝑘 .

(2)
For each 𝑗 define 𝑓𝑗 ∶ {−1, 1}𝑛 → ℝ by 𝑓𝑗(𝜖) =

‖‖‖‖‖‖
∑

𝑖∈𝑈𝑗 𝜖𝑖𝑥𝑖
‖‖‖‖‖‖𝐹
. 343

Then we have 344

⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖

𝑠

𝐹

⎞
⎟
⎠

1
𝑠

=
⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖‖‖

∞∑

𝑗=0

∑

𝑖∈𝑈𝑗
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖‖‖

𝑠

𝐹

⎞
⎟
⎠

1
𝑠

≤
⎛
⎜
⎝
𝔼𝜖

∞∑

𝑗=0
𝑓𝑗(𝜖)𝑠

⎞
⎟
⎠

1
𝑠

(3)

≤
∞∑

𝑗=0

(
𝔼𝜖𝑓𝑗(𝜖)𝑠

) 1
𝑠 =

∞∑

𝑘=0

∑

𝑗∈𝑉𝑘

⎛
⎜
⎝
𝔼𝜖
‖‖‖‖‖‖‖‖‖‖‖

∑

𝑖∈𝑈𝑗
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖‖‖

𝑠

𝐹

⎞
⎟
⎠

1
𝑠

(4)

≤
∞∑

𝑘=0

∑

𝑗∈𝑉𝑘
𝑚−𝜏𝑘𝑚𝑘∕𝑠

2𝑗 ≤ (
∞∑

𝑘=0
𝑚−𝜏𝑘)max

𝑘

⎧
⎨
⎩
𝑚𝑘∕𝑠 ∑

𝑗∈𝑉𝑘

1
2𝑗
⎫
⎬
⎭

(5)

≤ 𝑚
1
𝑠 max

𝑘

⎧
⎨
⎩
|𝑈𝑗|

1
𝑠
∑

𝑗∈𝑉𝑘

1
2𝑗
⎫
⎬
⎭

(for |𝑈𝑗| ≥ 𝑚𝑘−1) (6)

≤ 2𝑚
1
𝑠 max

𝑘
max
𝑗∈𝑉𝑘

{|𝑈𝑗|
1
𝑠
1
2𝑗 ∶ 𝑗 ∈ 𝑉𝑘} (7)

⎛
⎜
⎝
for

∑

𝑗∈𝑉𝑘

1
2𝑗 ≤

∑

𝑗≥min(𝑉𝑘 )

1
2𝑗 ≤

2
2min(𝑉𝑘 )

⎞
⎟
⎠

(8)

≤ 2𝑚
1
𝑠 max

𝑗
{|𝑈𝑗|

1
𝑠
1
2𝑗 ∶ 𝑗 = 0, 1, 2, …} (9)

≤ 4𝑚
1
𝑠 max

𝑗

⎧
⎪
⎨
⎪
⎩

⎛
⎜
⎝

∑

𝑖∈𝑈𝑗
‖𝑥𝑖‖𝑠𝐹

⎞
⎟
⎠

1
𝑠

∶ 𝑗 = 0, 1, 2, …

⎫
⎪
⎬
⎪
⎭

(10)

(for 1
2𝑗+1 ≤ ‖𝑥𝑖‖ holds ∀𝑖 ∈ 𝑈𝑗) (11)

≤ 4𝑚
1
𝑠 (

𝑛∑

𝑖=1
‖𝑥𝑖‖𝑠𝐹)

1
𝑠

. (12)

Gathering up the implicit factors in the above inequalities and 345

noting that they all only depend on 𝑟 and 𝜏 gives the result. Now 346

we prove for all 𝑥𝑖 ∈ 𝐸, 𝑖 = 1,⋯ , 𝑛, ∀𝑛 ∈ 𝔼 and any 𝑠 < 𝑞, we 347

have 348

⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥𝑖

‖‖‖‖‖‖‖‖‖

𝑠

𝐹

⎞
⎟
⎠

1
𝑠

≲ (
𝑛∑

𝑖=1
‖𝑥𝑖‖𝑠𝐹)

1
𝑠

. (13)

Let 𝑥̃𝑖 =
𝑥𝑖

max𝑛𝑖=1{‖𝑥𝑖‖ℰ }
, then ‖𝑥𝑖‖𝐸 ≤ 1 holds for all 𝑖 = 1,⋯ , 𝑛.

From the previous proof we have

⎛
⎜
⎝
𝔼
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝜖𝑖𝑥̃𝑖

‖‖‖‖‖‖‖‖‖

𝑠

𝐹

⎞
⎟
⎠

1
𝑠

≲ (
𝑛∑

𝑖=1
‖𝑥̃𝑖‖𝑠𝐹)

1
𝑠

,

which will leads to the complete proof of (3). 349

Embedding to ℒ𝑠-type RKBS From the previous lemma, the
space 𝐸̂ = (𝐸, ‖ ⋅ ‖𝐹) is type 𝑠′ for all 1 ≤ 𝑠′ ≤ 𝑝′. By Theorem 3,
𝐸̂ is isometric to a closed subspace𝒲𝑠′ of ℒ𝑠′ (𝜇) for 1 ≤ 𝑠′ ≤ 𝑝′.
Now fixing an 1 ≤ 𝑠′ ≤ 𝑝′, we can construct the ℒ𝑠-type RKBS

5–9
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ℒ𝑠′ (𝜇)

𝑊𝑠′(𝐸, ‖ ⋅ ‖𝐸) (𝐸, ‖ ⋅ ‖𝐹)

(𝐸, ‖ ⋅ ‖𝐹) 𝐹

Φ

id𝐸→𝐹

id𝐸→𝐸̂ 𝑖
𝑖−1

Figure 1. In our paper , we first use the type of a RKBS to build an isomorphic mapping to a subspace of ℒ𝑝(𝜇) for some probability measure 𝜇. Then
we construct the ℒ𝑝-type RKBS via an extension maps from ℒ𝑝(𝜇) to 𝐹.

ℬ𝑠 using the mapping relation in Figure 1. We firstly use Hahn-
Banach continuous extension theorem to extend 𝑖𝑑𝐸̂→𝐹◦𝑖−1 to
a continuous linear functional Φ from ℒ𝑠′ (𝜇) → 𝐹 such that
Φ|𝒲𝑠′ = 𝑖−1◦𝑖𝑑𝐸̂→𝐹|𝒲𝑠′ . We define the feature map via 𝜙 ∶ Ω →
ℒ𝑠(𝜇) by 𝜙(𝑥) ∶= Φ∗𝛿𝐹𝑥
where 𝛿𝐹𝑥 ∈ 𝐹′ denotes the evaluation functional at 𝑥 acting on 𝐹
and Φ∗ ∶ 𝐹′ → ℒ𝑠′ (𝜇) is the adjoint of operator that is uniquely
determined by

[𝑓, Φℎ]𝐹 = [Φ∗𝑓, ℎ]ℒ𝑠(𝜇), for all 𝑓 ∈ 𝐹′, ℎ ∈ ℒ𝑠(𝜇).

Then we have for any 𝑒 ∈ 𝐸̂350

[𝜙(𝑥), 𝑖(𝑒)]ℒ𝑠(𝜇)=[Φ∗𝛿𝐹𝑥 , 𝑖(𝑒)]ℒ𝑠(𝜇) = [𝛿𝐹𝑥 , Φ𝑖(𝑒)]𝐹
(1)= [𝛿𝐹𝑥 , 𝑖𝑑𝐸̂→𝐹(𝑒)]𝐹 = 𝑖𝑑𝐸̂→𝐹(𝑒)(𝑥),

(14)

where (1) is based on the fact that Φ𝑖(𝑒) = (𝑖𝑑𝐸̂→𝐹◦𝑖−1)(𝑖(𝑒)) =
𝑖𝑑𝐸̂→𝐹(𝑒). Now we define the RKBS,

ℬ𝑠 ∶=
{
𝑓𝑣(𝑥) ∶= [𝜙(𝑥), 𝑣]ℒ𝑠′ ∶ 𝑣 ∈ 𝒲𝑠′ , 𝑥 ∈ Ω

}

then we can show that 𝐸 ↪ ℬ𝑠 ↪ 𝐹. The detailed proof is left to351

the Appendix A.352

4. Applications353

Spaces of (Generalized) Mixed Smoothness The Besov space is354

a considerably general function space including the Hölder space355

and Sobolev space, and especially can capture spatial inhomo-356

geneity of smoothness.357

Definition 8 (Besov Space [20], Definition 2.2.1). Let 0 ≤ 𝑠 < ∞,358

1 ≤ 𝑝 ≤ ∞, and 1 ≤ 𝑞 ≤ ∞, with 𝑞 = 1 in case 𝑠 = 0. For359

𝑓 ∈ 𝐿𝑝(ℝ𝑑, 𝜆) define360

‖𝑓‖𝑠,𝑝,𝑞 ∶= (
∞∑

𝑘=0
2𝑘𝑠𝑞‖ℱ−1(𝜙𝑘ℱ𝑓)‖𝑝)

1∕𝑞

where 𝜙0 is a complex-valued 𝐶∞-function onℝ𝑑 with 𝜙0(𝑥) = 1361

if ‖𝑥‖ ≤ 1 and 𝜙0(𝑥) = 0 if ‖𝑥‖ ≥ 3∕2. Define 𝜙1(𝑥) = 𝜙0(𝑥∕2) −362

𝜙0(𝑥) and 𝜙𝑘(𝑥) = 𝜙1(2−𝑘+1𝑥) for 𝑘 ∈ ℕ. (𝜙𝑘 form a dyadic363

resolution of unity) and ℱ denote the Fourier transform acting364

on this space (with scaling constant (2𝜋)−𝑑∕2). We further define365

𝐵𝑠𝑝𝑞
(
ℝ𝑑, ⟨𝑥⟩𝛽

)
∶= {𝑓 ∶ ‖‖‖‖‖𝑓 ⋅ ⟨𝑥⟩

𝛽‖‖‖‖‖𝑠,𝑝,𝑞 < ∞}

where ⟨𝑥⟩𝛽 = 1
(1+𝑥2)𝛽

is the polynomial weighting function parame-366

terized by 𝛽 ∈ ℝ+.367

Remark. Let 𝑆′(ℝ𝑑) denote the space of complex tempered dis-368

tributions on ℝ𝑑 . Since any 𝑓 ∈ 𝐿𝑝(ℝ𝑑) gives rise to an element369

of 𝑆′(ℝ𝑑), the quantity ℱ−1(𝜙𝑘ℱ𝑓) is well-defined (for any 𝑘) as370

an element of 𝑆′(ℝ𝑑). Moreover ℱ−1(𝜙𝑘ℱ𝑔) is an entire analytic371

function onℝ𝑑 for any 𝑔 ∈ 𝑆′(ℝ𝑑) and any 𝑘 by the Paley-Wiener-372

Schwartz theorem.373

Theorem 6 (Metric Entropy of Besov Space [31]). Let 1 ≤ 𝑝 ≤ ∞, 374

1 ≤ 𝑞 ≤ ∞, 𝛽 ∈ ℝ+, and 𝑠 −
𝑑
𝑝
> 0. Suppose 𝐸 is a (non-empty) 375

bounded subset of 𝐵𝑠𝑝𝑞(ℝ𝑑, {𝑥}𝛽). For 𝛽 > 𝑠 − 𝑑
𝑝
we have 376

log𝑁(𝛿, 𝐸, ‖ ⋅ ‖∞) ≤ 𝛿−𝑑∕𝑠.

Corollary 1. Let 𝑑
2
≤ 𝑝′ ≤ 𝑝 ≤ ∞, 1 ≤ 𝑞 ≤ ∞, 𝑑

𝑝′
< 𝑠

and 𝛽 > 𝑠− 𝑑
𝑝
. Then 𝐵𝑠𝑝𝑞

(
ℝ𝑑, ⟨𝑥⟩𝛽

)
can be embedded into

an ℒ 𝑝′
𝑝′−1

−-type RKBS.

377

Remark. Our Corollary 1 covers the results in [37, Section 4.2, 4.3 378

and 4.5] for embedding to Reproducing Kernel Hilbert Space by 379

taking 𝑝′ = 2. 380

Barron Space Barron space is used to characterize the function 381

space represented by two-layer neural networks and comment be- 382

lief is Barron space is larger than any Reproducing Kernel Hilbert 383

Space. For example, [32] has showed that Barron space is not 384

isometric to a Reproducing Kernel Hilbert Space because Barron 385

space violates the parallelogram law. However Barron space still 386

can be embeded into a Reproducing Kernel Hilbert Space using 387

our theory. [37, Section 4.4] showed similar property for a special 388

kind of dictionary. via the metric entropy estimation of convex 389

hull. To show this, we utilize the metric entropy of convex hull in 390

Banach space [13, 12], which is the technique used widely in esti- 391

mating the metric entropy of Barron space / Integral Reproducing 392

Kernel Banach Spaces [39, 38, 30]. 393

Theorem 7 (Convex Hull Metric Entropy [13, 12]). Let𝐴 ⊂ 𝑋 be 394

a precompact subset of the unit ball of a Banach space 𝑋 of type 𝑝, 395

𝑝 > 1, with the property that there are constants 𝜌, 𝛼 > 0 such that 396

𝒩(𝛿,𝐴, ‖ ⋅ ‖𝑋) ≤ 𝜌𝛿−𝛼

Then there exists a positive constant 𝑐𝑝,𝛼,𝜌 such that for the dyadic 397

entropy numbers of the convex hull we have the asymptotically 398

optimal estimate 399

log𝒩(𝛿, co(𝐴), ‖ ⋅ ‖𝑋) ≤ 𝑐𝑝,𝛼,𝜌𝛿−(1−(1∕𝑝))−𝛼 for 𝑛 = 1, 2, …

Since every Banach space is type-1 (from the triangular inequal- 400

ity), we can have the following coro llary. 401

Corollary 2. If the dictionary space𝒟 satisfies𝒩(𝛿,𝒟, ‖⋅
‖∞) ≤ 𝜌𝛿−𝑝+𝜖 for some constant 𝑝 > 2, 𝜖 > 0, 𝜌 > 0, then
Barron space Σ1𝑀(𝔻) can be embeded intoℒ 𝑝

𝑝−1
-type RKBS.

402

Remark. [37] showed that if the dictionary has a positive decom- 403

position then the Barron space can be embeded to a Reproducing 404

Kernel Hilbert space. Our condition provides a new class of condi- 405

tions which utilize the smoothness of the dictionary [38, 39]. 406

[15] provide the metric entropy estimate of 𝑞−hull in type-𝑝 407

Banach space, which help us to embed to Reproducing Kernel 408

Banach space. 409
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Lemma 5 (Metric Etnropy of 𝑞−hull in Type−𝑝 Banach410

Space[15]). Let 𝐾 ⊂ 𝒳 be a precompact subset of the unit ball of411

a Banach space𝒳 of type 𝑝 (𝑝 > 1), if𝑁(𝛿, 𝐾, ‖ ⋅ ‖𝒳) = 𝑂(𝛿−𝛼+𝜖)412

with 𝛼 > 0, 𝜖 > 0 and 𝛽 ∈ ℝ, then we have413

log𝑁(𝜖,𝐻𝑞(𝐾), ‖ ⋅ ‖𝒳) = 𝑂 (𝜖−
𝛼𝑝𝑞

𝑝𝑞+𝛼(𝑝−𝑞) ) .

where𝐻𝑞(𝐾) ∶=
{∑𝑛

𝑖=1 𝑐𝑖𝑥𝑖 ∣ 𝑥𝑖 ∈ 𝐾, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ∈ ℕ,∑𝑛
𝑖=1 |𝑐𝑖|𝑞 ≤ 1

}
.414

Based on the result in [15], we have the following corollary415

Corollary 3. If the dictionary space𝒟 satisfies𝒩(𝛿,𝒟, ‖⋅
‖∞) ≤ 𝜌𝛿−𝑝+𝜖 for some constant 𝑝 > 2, 𝜖 > 0, 𝜌 > 0, then
the Barron spaceΣ𝑞𝑀(𝔻) can be embeded intoℒ 𝑝𝑞

2𝑝𝑞−𝑞−𝑝
-type

RKBS.
416
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A. Proof of the Main Theorem591

In this section, we present the proof of our main theorem592

Given a bounded domainΩ ∈ ℛ𝑑, a RKBS 𝐸 of functions
onΩ, and𝐹 = 𝓁∞(Ω) onΩ , whichmeans the embedding
𝑖𝑑 ∶ 𝐸 → 𝐹 is a compact embedding. If the growth of
metric entropy can be bounded via

ℰ𝐹𝐸(𝛿) ∶= log𝑁(𝛿, {𝑥 ∈ 𝐸 ∶ ‖𝑥‖𝐸 ≤ 1}, ‖⋅‖𝐹) ≤ 𝛿−𝑝, 𝑝 ≥ 2.

Then for any 𝑠 > 𝑝, there exist aℒ𝑠−type RKBSℬ𝑠, such
that

𝐸 ↪ ℬ𝑠 ↪ 𝐹 .
593

Proof. First of all, according to Theorem 5, if the entropy number594

log𝑁(𝛿, 𝐸, ‖ ⋅ ‖𝐹) ≤ 𝛿−𝑝 for some 𝑝 > 2, we can have595
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for all ‖𝑥𝑖‖𝐸 ≤ 1.596

Therefore by our technique Lemma 3, we can conclude that the597

space 𝐸̂ = (𝐸, ‖ ⋅ ‖𝐹) is of type 𝑠′ for any 1 < 𝑠′ < 𝑝′. Recall that 𝐸598

is an RKBS, so it is a closed subspace of 𝐹 = 𝓁∞(𝑋). Therefore 𝐸599

is a closed subspace of 𝐿1(𝑋) because 𝓁∞(𝑋) embeds continuously600

to 𝐿1, so is 𝐸̂. Consequently, 𝐸̂ is a closed subspace of 𝐿1(𝜈), where601

𝜈 is the uniform distribution on 𝑋. By Theorem 3, 𝐸̂ is isometric602

to a subspace of 𝐿𝑠′ (𝜇) for some measure 𝜇 for any 1 < 𝑠′ < 𝑝′.603

By the induction above the following embedding holds

𝐸 = (𝐸, ‖ ⋅ ‖𝐸)
𝑖𝑑𝐸→𝐸̂↪ 𝐸̂ = (𝐸, ‖ ⋅ ‖𝐹)

𝑖𝑑𝐸̂→𝐹↪ 𝐹 = (𝐹, ‖ ⋅ ‖𝐹)

Therefore,604

We have the following embedding

𝐸 = (𝐸, ‖ ⋅ ‖𝐸)
𝑖𝑑𝐸→𝐸̂↪ 𝐸̂ = (𝐸, ‖ ⋅ ‖𝐹)

𝑖𝑑𝐸̂→𝐹↪ 𝐹 = (𝐹, ‖ ⋅ ‖𝐹)

and 𝐸̂ is isometric to𝑊𝑠′ , a closed subspace of 𝐿𝑠′ (𝜇) by the iso-605

metric mapping 𝑖.606

First, for any 𝑥 ∈ Ω, we denote 𝛿𝐹𝑥 ∈ 𝐹′ as the evaluation
functional at 𝑥 acting on 𝐹. Then we consider the following
linear functional for any 𝑤 ∈ 𝑊𝑠′ :

[𝜙̂(𝑥), 𝑤]𝑊𝑠′ ∶= [𝛿𝐹𝑥 , (𝑖𝑑𝐸̂→𝐹◦𝑖−1)(𝑤)]𝐹
Since𝑊𝑠′ is a subspace of 𝐿𝑠′ (𝜇), by Hahn-Banach continuous
extension theorem, we can extend this mapping 𝜙̂(𝑥) ∶ 𝑊𝑠′ → ℝ
to a continuous linear functional 𝜙 ∶ 𝐿𝑠′ (𝜇) → ℝ. Then we have
for any 𝑒 ∈ 𝐸̂, 𝑖(𝑒) ∈ 𝑊𝑠′

[𝜙(𝑥), 𝑖(𝑒)]ℒ𝑠′ (𝜇)=[𝜙̂(𝑥), 𝑖(𝑒)]𝑊𝑠′ = [𝛿𝐹𝑥 , (𝑖𝑑𝐸̂→𝐹◦𝑖−1)(𝑖(𝑒))]𝐹=[𝛿𝐹𝑥 , 𝑖𝑑𝐸̂→𝐹(𝑒)]𝐹 = 𝑖𝑑𝐸̂→𝐹(𝑒)(𝑥),

where (1) is based on the fact that Φ𝑖(𝑒) = (𝑖𝑑𝐸̂→𝐹◦𝑖−1)(𝑖(𝑒)) =
𝑖𝑑𝐸̂→𝐹(𝑒). Now we define the ℒ𝑠-typ RKBS,

ℬ𝑠 ∶=
{
𝑓𝑣(𝑥) ∶= [𝜙(𝑥), 𝑣]ℒ𝑠′ ∶ 𝑣 ∈ 𝒲𝑠′ , 𝑥 ∈ Ω

}

with norm

‖𝑓𝑣‖ℬ𝑠 ∶= inf {‖𝑣‖𝒲 ∶ 𝑣 ∈ 𝒲𝑠′ with 𝑓𝑣 = [𝜙(⋅), 𝑣]ℒ𝑠′ }.

Next we show the embedding 𝐸 ↪ ℬ𝑠 ↪ 𝐹. Noticing thatℬ𝑠 is607

an RKBS, so ℬ𝑠 ↪ 𝐹, we only need to show the first embedding.608

Since 𝐸 ↪ 𝐸̂ and 𝐸̂ is isometric to 𝒲𝑠′ , we will prove this by 609

showing that ℬ𝑠 is the image of the mapping 𝑖𝑑𝐸̂→𝐹◦𝑖−1 on𝒲𝑠′ . 610

Noticing that for all 𝑣 ∈ 𝒲𝑠′ , 𝑓𝑣 = [𝜙(⋅), 𝑣]ℒ𝑠′ } = 𝑖𝑑𝐸̂→𝐹◦𝑖−1(𝑣) ∈ 611

ℬ𝑠. Conversely, for any 𝑓 ∈ ℬ𝑠, one can find a 𝑣 ∈ 𝒲𝑠′ such that 612

𝑓 = [𝜙(⋅), 𝑣]ℒ𝑠′ } by definition. Therefore ℬ𝑠 is the image of the 613

mapping 𝑖𝑑𝐸̂→𝐹◦𝑖−1 on𝒲𝑠′ . 614

Now, since 𝐸 =
(
𝑖𝑑𝐸̂→𝐹◦𝑖−1

)
◦𝑖◦𝑖𝑑𝐸→𝐸̂𝐸, therefore 𝐸 is a sub- 615

set of the image of the mapping 𝑖𝑑𝐸̂→𝐹◦𝑖−1 on𝒲𝑠′ , then we can 616

conclude that 𝐸 ↪ ℬ𝑠. 617

Upon further review, we recognize that our initial approach
contained some inaccuracies. We appreciate the opportunity to
clarify our position. What we intended to convey is that consider
the following linear functional for any 𝑤 ∈ 𝑊𝑠′ , where𝑊𝑠′ is a
closed subspace of 𝐿𝑠′ (𝜇):

[𝜙̂(𝑥), 𝑤]𝑊𝑠′ ∶= [𝛿𝐹𝑥 , (𝑖𝑑𝐸̂→𝐹◦𝑖−1)(𝑤)]𝐹
Since𝑊𝑠′ is a subspace of 𝐿𝑠′ (𝜇), by Hahn-Banach continuous
extension theorem, we can extend this mapping 𝜙̂(𝑥) ∶ 𝑊𝑠′ → ℝ
to a continuous linear functional 𝜙 ∶ 𝐿𝑠′ (𝜇) → ℝ. Noticing
that in this case we only apply Hahn-Banach Theorem on linear
functional and then we can proceed with our proof of the Main
result further since we have for any 𝑒 ∈ 𝐸̂, 𝑖(𝑒) ∈ 𝑊𝑠′

[𝜙(𝑥), 𝑖(𝑒)]ℒ𝑠′ (𝜇)=[𝜙̂(𝑥), 𝑖(𝑒)]𝑊𝑠′ = [𝛿𝐹𝑥 , (𝑖𝑑𝐸̂→𝐹◦𝑖−1)(𝑖(𝑒))]𝐹=[𝛿𝐹𝑥 , 𝑖𝑑𝐸̂→𝐹(𝑒)]𝐹 = 𝑖𝑑𝐸̂→𝐹(𝑒)(𝑥).

This refined statement more accurately reflects our stance on the 618

matter. We apologize for any confusion our previous communica- 619

tion may have caused and are committed to providing clear and 620

accurate information moving forward. 621
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