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Abstract

Deep neural networks have become the state-
of-the-art models in numerous machine learning
tasks. However, general guidance to network ar-
chitecture design is still missing. In our work, we
bridge deep neural network design with numeri-
cal differential equations. We show that many ef-
fective networks, such as ResNet, PolyNet, Frac-
talNet and RevNet, can be interpreted as differ-
ent numerical discretizations of differential equa-
tions. This finding brings us a brand new per-
spective on the design of effective deep architec-
tures. We can take advantage of the rich knowl-
edge in numerical analysis to guide us in de-

s while maintaining a similar performance. This
can be explained mathematically using the con-
cept of modified equation from numerical analy-
sis. Last but not least, we also establish a con-
nection between stochastic control and noise in-
jection in the training process which helps to
improve generalization of the networks. Fur-
thermore, by relating stochastic training strat-
egy with stochastic dynamic system, we can
easily apply stochastic training to the networks
with the LM-architecture. As an example, we
introduced stochastic depth to LM-ResNet and
achieve significant improvement over the origi-
nal LM-ResNet on CIFAR10.
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Machine Learning For Elliptic PDEs:
Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality

Minimax Optimal Kernel Operator Learning via
Multilevel Training
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Abstract. In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial
differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-
Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: ;SChOOl of Mathemat.ical Sciences, Peking University, BeiJing, China
the Schrédinger equation on a hypercube with zero Dirichlet boundary condition, which is applied in 3ICME, Stanford University, CA, USA

] ) C oy . Management Science & Engineering, Stanford University, CA, USA
quantum-mechanical systems. We establish upper and lower bounds for both methods, which improve 4 f Mathemat; aford Universi ford
ly developed upper bounds for this problem via a fast rate generalization bound. We Department of Mathematics, Stanford University, Stanford, CA, USA » »
upon concurrently develop pp_ . p . g . . o *Corresponding author. Email: ikjin@pku.edu.cn; yplu@stanford.edu; jose.blanchet@stanford.edu; lexing@stanford.edu
discover that the current Deep Ritz Method is sub-optimal and propose a modified version of it. We o ' )
also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over
Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will
improve with growing training sets according to a power law, we supply computational experiments
to show similar-behavior of dimension dependent power law for deep PDE solvers.
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Do you trust your theorem?

Big Constant
THE INTERNATIONAL CONFRENCE ON

Theorem If you randomly collect R | SECCEIEARNING W |
data, then you can achieve ( ) ‘
accuracy with your Al

Relu network is optimal for function regression
PINN is optimal tfor ditferential equation solving
Diffusion Model is optimal for density estimation
Transtormer is optimal for in-context learning

Global optimization, the structure of target function,
The smoothness of RelLU, lower bound of p(x)...

Does Optimal results really

= _==

gives me guarantee?



Consider How you use ChatGPT...

~N
What is the most efficient route from Times Square

to Chelsea Market that minimizes walking?

J

-
Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the
Times Sq—42nd Street station.

2. Board the E Train: Catch an E train heading
downtown (toward World Trade Center).

3. Ride to 8th Avenue—14th Street Station: Get off at
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk
east on 14th Street for a few blocks until you reach
Chelsea Market at 75 9th Avenue.

\_

>©®

double-check

with a map

2 stops for A
3 stops for C/E

1. At Times Square: Enter the Times Square—42nd Stree?
station.

2. Board the 1 Train: Hop on a downtown 1 train (the
red line).

3. Ride to 14th Street: Stay on until you reach the 14th
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th
Avenue —this drop-off point is just a short walk from
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Inference Time Scaling Law

*No training”
e.g. answer question 10 times

TEST-TIME SCALING
“REASONING"

POST-TRAINING SCALING

Jensen Huang @CES 2025

Pre-training Post-training Inference
Most LLMs ‘“/

Pre-training Post-training Inference
ChatGPT 40

@OrJimFan

New scaling law: why OpenAl’s ol model matters

Belore OpenAl ol Alter OpenAl ol




How can we perform Inference-Time Scaling for
Scientific Machine Learning?




don’t fine-tune/retrain/add a new surrogate model
@%
How can we perform Inference-Time Scaling for

Scientific Machine Learning?
—

“Physics-informed”




Tale 1: Debiasing

Hybrid Scientific Computing and Machine Learning



Physics-Informed Inference Time Scaling

—

Step 1: Machine learning model fit rough information

_

Step 2: Evaluating the error of the Machine Learning model
—

[ )

-

-

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

~

_




Physics-Informed Inference Time Scaling

. R . Evaluate the error R

Aeer—

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model
—

Step 2. Correct with a Trustworthy Solver

Step 1. Train a Surrogate (ML) Model

= GP (m=0.00)
MLP (m=-0.21)
- SCaSML (m=-0.17)

Finite Element
- Correction enables
) Inference Time Scaling

1 1 1 |
0 200 400 600 800
Evaluation Steps

| | |

Simulation




Our Framework

Step 1: Sceintific Computing as Machine Learning

Scientific Machine Learning
Example 1 0 = f, X,- — (X,-,f (Xi))

Function fitting

Example 2 0=A"", X =(x,f(x;) SolingAu=f
Solving PDE
Example 3 0=A, X =(x;,Ax)

Estimation A via Randomized SVD



Our Framework

Step 2: Consider a Downstream Application

Example 1 0=f X =(x,f(x)) D(0) = J f(x)dx
Example 2 0=A"" X =xfx) 0= (A7) ()

Example 3 0=A, X =(x,Ax) D(0) = tr(A), eigs(A)



Our Framework

Scientific Machine Learning

Downstream application




Our Framework

Scientific Machine Learning Downstream application

"

)
j Physics-Informed! (Structure of @)

How to estimate CD(@’) — OO)?

Why it is easier than directly estimate ®(0)? Variance Reduction



Our Framework

Qudrature Rule

AlM: PDE Solver

Eigenvalue Solver




Debiasing a Machine Learning Solution

-

J\—\/\f

Step 1: Machine learning model fit rough information

<>

~

%

N

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

~

J

Scientific Machine Learning

0=f X =uflx) DPO)= Jf (x)dx

Example 1

Downstream application

Temperature, overall

velocity...



Debiasing a Machine Learning Solution

(X, X} ~P,— 0 é')

Example 1 O=f X =(@x,fx)) PO = J f9(x)dx




Debiasing a Machine Learning Solution

\ Estimate Epf & [EP]?A

+Ep/ =1

An estimate to CD(@) — d(0)

Example 1 0=f X =x,flx)) PO = J f9(x)dx



Debiasing a Machine Learning Solution

Estimate Epf ~ Epf

Example 1 0=f X =x,flx)) PO = J f9(x)dx



The 101 Example

Example 0 =1, X; = (Xi,f (Xi))

\ 4

Machine Learning: é’ = f




The 101 Example

{Xla "'9Xn} ~ [FDH — é é)

Scientific Machine Learning Downstream application

Example 0 =f’\__3(l_=, xi’f(xi)) D(0) = [(f(x))dx

\ 4

Machine Learning: 0 = f EE— (D(é) — Jf (x)dx



The 101 Example

Scientific Machine Learning Downstream application

Example 0 =f’\__3(l_=, xi’f(xi)) D(0) = [(f(x))dx

v ..

Machine Learning: 0 = f EE— (D(é) — Jf (x)dx
_|_

D(A) — D(B) = J(f(x) — f(x))dx



Debiasing a Machine Learning Solution

Doubly Robust Estimator § Multi-fidelity monte carlo

- Investigated the of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, , Lexing Ying. When can Regression-Adjusted Control Variates Help”? Rare
Events, Sobolev Embedding and Minimax Optimality Neurips 2023

¥ Y
i @ Regression-adjusted Control Variates

- Extend to

Example 1 O=f X =(@x,fx)) PO = J f9(x)dx



Lower Bound



] Hardest Examples {® SCaSML

Smoothness s

®
®
®
@
®

. Random flip
®
@
®
®

o Magnitude of the bump
A sinal " ° - <1_s> s
single spike . R Gl Kty o

®
®
®
®
" " .
Minimax rate .

CCCCCCCCCCCCCCCC

NOrthWQSte]_"n ‘ MENGINEERING Yiping Lu yiping.lu@northwestern.edu



] Hardest Examples {® SCaSML

Smoothness s

°
°
°
°
°
° Random flip
°
°
°
°
. Magnitude of the spike
°
A si le spike max 1—S>q—1_l_i
Singie sp X > d TS T
°
°
°
°
- °
Minimax rate .
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Optimal Algorithms




] Easiest Understanding {® SCaSML

Smoothness s

29

®
®
®
®
®
®
®
) {® SCaSML
Truncate Monte Carlo Regression-adjusted Control Variate
Minimax rate :
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Smoothness s

< |~
Q. | =
I
\ )
Q"—‘

] Easiest Understanding {® SCaSML

bias-variance
trade-off

(sobolev embedding)

|
e
S~
)
[ )
®

®
¢ ®
o | 1 s
© I | PSR R

° max{(p d>q =5 d}
®
¢ ®
X ® SGaSML

Truncate Monte Carlo Regression-adjusied Control Variate

Minimax rate . °

30 o
NOrthWQSte]_"n MET{I%TI&EE%ING Yiping Lu yiping.lu@northwestern.edu




Smoothness s

"'No rare event’

xy=xy+x(y—73)
xy =Xy + y(x —X)

] Easiest Understanding {® SCaSML

-:-i-}-z-’ ---------------------------- SR — a oy = j}x (y B j})(x B 55)
° e SCaSML Smaller error
o o Debiasing
. ¢ ax { <l _ i) g1 w —— >Function estimation
D d 7 g (T

. > Monte Carlo
® [
: {® SGaSIL

Truncate Monte Carlo Regression-adjusked Control Variate

Minimax rate . ¢

31 ®
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Smoothness s

< |~
Q. | =
I
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] Easiest Understanding {® SCaSML
. “no rare event”

bias-variance
trade-off

(sobolev embedding)

|
e
S~
)
[
@

o
® 9
® 1 S 1 )
e B — 1 ——= —

° max{(p d>q 73 d}
o
® 9
X {® SGaSVL

Truncate Monte Carlo Regression-adjusiéed Control Variate

Minimax rate : *

32 O
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{» SCaSML

® ®
. o Smoothness s
_1° o
=3 ° )
o uf' : :
inite variance:
. .« norareevent’
- Rare event
o Why there is a transition point
e S ———
® ¢
X {® SGaSML
Truncate Monte Carlo Regression-adjusiéed Control Variate
Minimax rate : °
33 o
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] Analysis of Error propagation {® SCaSML

{® SCaSML estimate of Epf7, f € WP ,{??
Using half of the data to estimate f &y

|E Pfq — [E P(fq) —|— [E P How does step?2 variance
Hardness = The variance of the debasing step

depend on estimation error?

CCCCCCCCCCCCCCCC

NOl"thWQSteI'n ‘ hIAENGINEERING Yiping Lu yiping.lu@northwestern.edu



] Analysis of Error propagation {® SCaSML

1

{® SCaSML estimate of Epf9, f € WP "

Using half of the data to estimate f
|E Pfq — [E P(]?q) -+ [E P (m How does step2 variance

depend on estimati ?
Low order term pend on estimation error

[N = DIHE =)

“influnce function” (gradient) Error propagation

CCCCCCCCCCCCCCCC

NOrthWQSteI'n ‘ hIAENGINEERING Yiping Lu yiping.lu@northwestern.edu



] Analysis of Error propagation {® SCaSML

{® SCaSML estimate of Epf?, f € W*?

Using half of the data to estimate f
Epf? = Ep(f7) + Epf? = /7

Low order term

—]
f= )t
“inﬂ/uu(e function” (gradieN‘or ¢ How to select the

A Sobolev emebedding?
Embed f7~! and f — f into “dual” space

2@ ?
’?.‘
&
OOOOOOOOOOOOOOOO

NOrthWEStern ‘ I\IIIENGINEERIN(;} Yiping Lu yiping.lu@northwestern.edu




] Selecting the Sobolev Embedding & SCasmL

Easiest Sobolev

: embedding for estimation Smoothness s
1 s 1 °® 1 s
N _ -
p d 2q o p d
: pd N i w 00 i
Ld s+ L2 Embed to L |
o EMDEA 1o ’ : : N Select Sobolev embedding
o« ovinLrem oL CvinL
°
°

..................................... ..] Choose an embedding both good for evaluating the | |
—1/2 semi-parametric hardness and function estimation

®
®
®
* m (1_10 oLl
* "W\ )T Ty
®
®
X @ SCuSML
Truncate Monte Carlo , Regressron adjusted Control Variate
. ®
) Minimax rate . fq‘le—f) dominates
Northwestern EﬁR&TKﬁEEﬁNG Yiping Lu yiping.lu@northwestern.edu




] Selecting the Sobolev Embedding & SCasniL

Largest possible

® | Sobol beddi
o Smoothness s
1 s 1 ° 1 s
S -2
p d 2q p d
: _pd { M>:< 00 "
Ja-s o Lop2 Embed to L |
o EMbed 1o zp*p ] X R Select Sobolev embedding
o CovinLrieuw ;o IP CViin £
o
o

..................................... .| Choose an embedding both good for evaluating the | |
—1/2 semi-parametric hardness and function estimation

®
o
o
° ma (1_10 Lo
' N\ ) 2 d
o
° .
X . {® SCaShIL
Truncate Monte Carlo , Regressiron-adjusted Control Variate
Minimax rate Y f—_ £\4 A
§ { f— f)? dominates
NOrthWQSte]_"n ET{IREAEICIKI\SICE%%ING Yiping Lu yiping.lu@northwestern.edu




] Take Home Message on the Theory & SCaSNL

a) Statistical optimal regression is the optimal control variate
p) It helps only if there isn't a hard to simulate (infinite variance)
Rare and extreme event

/\/\X_'_—>

(a) (b)

g control the extremeness
Rare and extreme event

Y

CCCCCCCCCCCCCCCC
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When can Regression-Adjusted Control Variates Help?
Rare Events, Sobolev Embedding and Minimax Optimality

Jose Blanchet
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Yiping Lu
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New York University
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PDE Solver



Let’s consider Au = f

The PDE Example

Va\

{X19 "'9Xn} ~ |]:D6’ — H

Scientific Machine Learning

O=u, X, = (f(x)

\—

\ 4

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
0=1u




Let’s consider Au = f

The PDE Example

(X, X} ~P,— 0 é)

Scientific Machine Learning Downstream application
=u X = (x.f(x.
» K= Of) 0) = u),

\ 4

What is ®(0) — ®(0) = u(x) — i(x) ?

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
0=u - D(0) = ux)




Let’s consider Au = f

The PDE Example

(X, X} ~P,— 0 é)

Scientific Machine Learning Downstream application
— 0=u, X =(,f(x
Au =J » A= S ) = ww,

' \ 4

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
o= - D) = )

Au-iy=f-7 T gy - i) = | (- o

What is ®(0) — ®(0) = u(x) — i(x) ?




Works for Semi-linear PDE

oU Can .
you do simulation
a (.X t) +AU(X ....... t) +f( U(x t)) T ? for nonlinear equaﬂgn’?

Keeps the structure to enable brownian motion simulation

@

&0

----------------------------------------------------------------------------------
. 3
. 3

C *
.....
-------------------------------------------------------------------------------



Works for Semi-linear PDE

------------------------------------------------------
* 03

—(x, 1) + AU(x, 1) + (U(x, 1) =0

Keeps the structure to enable brownian motion simulation

ol @ P — | A
— (. ) HADO D) + A0, 1) = g0x, 1)



Works for Semi-linear PDE

------------------------------------------------------
K .

oU
a—(x 1)+ AU +AU(x, 1) =

Subtract two equations

Keeps the linear structure Closed with respect to U — U for we know U
a U _ U ..........................................................................
( - )0+ AU - D)(x, 1) + 6 000+ UG ) = 00e,0) = 6, 065 ) = 8650

(t, (U - U)x. r))



Numerical Results

Time (S) Relative L? Error L°° Error L' Error

SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML

10d | 2.64 11.24 23.75 5.24E-02 2.27E-01 2.73E-02 | 2.50E-01 9.06E-01 1.61E-01 | 343E-02 1.67E-01 1.78E-02

al | 20d | 1.14 7.35 17.59 9.09E-02 2.35E-01 4.73E-02 | 4.52E-01 1.35E+00 3.28E-01 | 947E-02 2.37E-01 4.52E-02
S 30d | 1.39 7.52 25.33 2.30E-01 2.38E-01 1.84E-01 | 4.73E+00 1.59E+00 1.49E+00 | 1.75E-01 2.84E-01 1.91E-01
60d | 1.13 7.76 35.58 3.07E-01 2.39E-01 1.32E-01 | 3.23E+00 2.05E+00 1.55E+00 | 5.24E-01 4.07E-01 2.06E-01

- 20d | 1.15 7.05 13.82 1.17E-02 8.36E-02 3.97E-03 | 3.16E-02 2.96E-01 2.16E-02 | 5.37E-03 3.39E-02 1.29E-03
Z | 40d | 1.18 7.49 16.48 3.99E-02 1.04E-01 2.85E-02 | 8.16E-02 3.57E-01 7.16E-02 | 1.97E-02 4.36E-02 1.21E-02
g 60d | 1.19 7.57 19.83 3.97E-02 1.17E-01 2.90E-02 | 8.10E-02 3.93E-01 7.10E-02 | 1.95E-02 4.82E-02 1.24E-02
> 80d | 1.32 7.48 21.99 6.78E-02 1.19E-01 5.68E-02 | 1.89E-01 3.35E-01 1.79E-01 | 3.24E-02 4.73E-02 2.49E-02
20d | 1.97 10.66 65.46 1.47E-01 8.32E-02 5.52E-02 | 3.54E-01 2.22E-01 2.54E-01 | 7.01E-02 3.50E-02 1.91E-02

25 40d | 1.68 10.14 49.38 1.81E-01 1.05E-01 7.95E-02 | 4.01E-01 347E-01 3.01E-01 | 9.19E-02 4.25E-02 3.43E-02
§ 60d | 1.01 7.25 35.14 2.40E-01 2.57E-01 1.28E-01 | 3.84E-01 9.50E-01 7.10E-02 | 1.27E-01 9.99E-02 6.11E-02
80d | 1.00 7.00 38.26 2.66E-01 3.02E-01 1.52E-01 | 3.62E-01 1.91E+00 2.62E-01 | 1.45E-01 1.09E-01 7.59E-02

100d | 1.54 8.67 26.95 7.96E-02 5.63E+00 5.51E-02 | 7.78E-01 1.26E+01 6.78E-01 | 1.40E-01 1.21E+01 8.68E-02

Q| 120d | 1.25 8.17 27.46 9.37E-02 5.50E+00 6.64E-02 | 9.02E-01 1.27E+01 8.02E-01 | 1.73E-01 1.22E+01 1.05E-01
S 140d | 1.80 8.27 29.72 9.79E-02 5.37E+00 6.78E-02 | 1.00E+00 1.27E+01 9.00E-01 | 1.91E-01 1.23E+01 1.11E-01
160d | 1.74 9.07 32.08 1.11E-01 5.27E+00 9.92E-02 | 1.38E+00 1.28E+01 1.28E+00 | 2.15E-01 1.23E+01 1.79E-01

100d | 1.62 7.75 60.86 9.52E-03 8.99E-02 8.87E-03 | 7.51E-02 6.37E-01 6.51E-02 | 1.13E-02 9.74E-02 1.11E-02

| | 120d | 1.26 7.28 65.66 1.11E-02 9.13E-02 9.90E-03 | 7.10E-02 5.74E-01 6.10E-02 | 1.40E-02 997E-02 1.23E-02
= 140d | 2.38 7.82 76.90 3.17E-02 8.97E-02 2.94E-02 | 1.79E-01 8.56E-01 1.69E-01 | 3.96E-02 9.77E-02 3.67E-02
160d | 1.75 7.42 82.40 3.46E-02 9.00E-02 3.23E-02 | 2.08E-01 8.02E-01 1.98E-01 | 4.32E-02 9.75E-02 4.02E-02




Improvement (%)
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Evaluation Numbers
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Inference-Time Scaling

have closed-form solution g(x) =

-40.7%

MLP

SCaSML

exp(T+ ), x;

I +exp(T+ ), x)

Method Convergence Rate
PINN O(n=%
MLP O(n=1"
ScaSML O(n~4=s/dy




Bette

a)

Methods

r

Scaling Law

Surrogate Model

Feynman Path Simulation

Simulation-Calibrated Scientific Machine Learning

i

ou 0%u
E+¥+f(u)=0

du
= oz Hw=0

A|
A M :Residual of

-

Training time

Inference time

Scaling
Law

n collocation points at training time
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Our Aim Today : A Marriage

When Neural Network is good

No Simulation cost is needed

Machine
Learning

Simulation



Our Aim Today : A Marriage

When Neural Network is bad

Machine
Learning

Provide pure Simulation solution



Our AIM Today: A Marriage

Machine
Learning

Simulation

Using ©irmuiation to
—_



A multiscale view

Capture via surrogate model _/\ FuEr:t?on

Coarse Scale
- —
Capture via Monte-Carlo

Fine Scale



A Numerical Linear Algebra Example

(X, X,} ~Py— 0
Scientific Machine Learning

Example 0=A, X =(x,Ax;)

N —
Subspace methods

A4

Randomized SVD: é’ — A




A Numerical Linear Algebra Example

&

Scientific Machine Learning Downstream application
Example 0=A, X =(x,Ax;) D(0) = 1r(A)
N ——— ——

(Randomized) Subspace methods

A4

Application in graph theory, guantum ...

Randomized SVD: ) =A ——» CI)(@) = tr(A)




A Numerical Linear Algebra Example

&

Scientific Machine Learning Downstream application
Example 0=A, X =(x,Ax;) D(0) = 1r(A)
N ——— ——

(Randomized) Subspace methods

A4

Va\

Randomized SVD: 0 = A ———» CI)(@) = tr(A)
_|_

D(O) — D) = tr(A — A)

Estimate tr(A — A) via Hutchinson's estimator

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20



More Examples...

Scientific Machine Learning Downstream application
Example 1 0=1 X =(x,flx) DPO)= I F9(x)dx
Example 2 =AY X =(,flx) @O =0x
Example 3 0=A, X =(x,Ax) D(0) = tr(A)
Estimation A via Randomized SVD Estimate tr(A — A) via Hutchinson's estimator

Example 4 Siegel J W, Xu J. Sharp bounds on the approximation rates, metric entropy, and
n-widths of shallow neural networks.

Foundations of Computational Mathematics, 2024, 24(2): 481-537.




More Examples... (Uncertainty Quantification)

&

— ~ Confiednece Interval of
Example 5 0 = 6,’ Xl P‘9 Point Estimation

Quantile regression Conformal Prediction

Romano Y, Patterson E, Candes E. Conformalized quantile regression. Neurips 2019.

Influnce Function Bootstrap

Liu K, Blanchet J, Ying L, et al. Orthogonal bootstrap: efficient simulation of input uncertainty. ICML 2024.



More Examples... (Sampling)

&

Scientific Machine Learning Downstream application

Example6 6=V, X =(x,V(x),—VV(x)) PO = [e_v(x)dx

Holzmuller D, Bach F. Convergence rates for non-log-concave sampling and log-partition estimation.
arXiv preprint arXiv:2303.03237, 2023.



Tale 2: Pre-condition

with a surprising connection with



@ NUMERIGAL
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' LGEB D

e

WEdition

L LoypD N. TREFETHEN
Davip Bau, |l

Tale 2: Preconditioning

”In ending this book with the subject of preconditioners, we find ourselves at the

philosophical center of the scientiffc computing of the future.”

— L. N. Trefethen and D. Bau III, flumerical Linear Algebra |TB22

Nothing will be more central to computational
science in the next century than the art of
transforming a problem that appears intractable into
another whose solution can be approximated

rapidly.



What is precondition

lllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllll

hardness depend on k(A) hardness depend on

. |

Become easier when B ~ A



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

» Using the approximate solver to approximate x — x; via Bx, = b — Ax,

Easy to solve for b — Ax, is small




A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b terative Refinement Algorithm
....................................................................................................................... O
S 2 x; satisfies the equation A(x — Z x)=b—A Z X;
=1 =1 =1

[ f :
Using the approximate solver to approximate x — Z x;viaBx;,, =b—A Z X;
=l i=1 5

L4
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b lterative Refinement Algorithm

Preconditioned Jacobi lteration



A New Way to Implement Precondition
Via

 Step 1: Aim to solve (potentially nonlinear) equation A(u#) = b

use Machine Learning

 Step 2: Build an approximate solver A(if) ~ b Unrealiable approximate

solver as preconditioner

* Via machine learning/sketching/finite element....

» Step 3: Solve u — i

N

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!




Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

N \

---------------------------------------------------------------------------------------------
.

ST R A A—lb
X, = (x, Ax) A DA) =4
= —— — Elgenvalue of A

“Randomized Numerical Linear Algebra”/Sketching

-y

“Sketch-and-Solve”

It seems easier to train a bi-directional LSTM with attention }
than to compute the SVD of a large matrix. —Chris Re

NeurIPS 2017 Test-of-Time Award, Rahimi1 and Recht
(Rahimi and Recht, 2017). }



Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\ \

---------------------------------------------------------------------------------------------
.

T S A e ( A—lb
X' — (xa Ax) A (D(A)

b S B

L\Eigenvalue of A

Project to (Randomized) Subspace methods

\ 4

Esimtation of A: A = 00'A —_— CD(@) = svd(A)
“Randomized SVD”




Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\

(A

L\Eigenvalue of A

What is ®(0) — ®(0)?

\ 4

Esimtation of A: A = 00'A —_— CI>(6A’) = svd(A)

“Randomized SVD”



Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\ \

---------------------------------------------------------------------------------------------
.

ST S A 2t ( A—lb
X. = (x, Ax) A D(A) =

b S —

LEigenvaIue of A
Project to (Randomized) Subspace methods —

Using Taylor Expansion!
' D(0) — () — VDO)O — 6) = O(c?)

Esimtation of A: A = 00'A —_— CD(@) = svd(A)
“Randomized SVD”




Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\ \

---------------------------------------------------------------------------------------------
.

T S A e A—lb
X = (x, Ax) A DA) =)
= —— — Eigenvalue of A

!

Structure here: © is the solution of a fixed point equation
D(0) — D(0) — VOO)(@ — 0) = O(c?)

“A I\I?Mon Step\

Radomized estimation Exact estimation
(In)exact Sub-sample Newton Method/Sketch-and-Precondtion




Relationship with Inverse Power Methods

(Approximate)

Inverse Power Method Our Method

.....................................................................

X, =@ —-A)X, L= —ATA—A)X,

0 L 4
\d
SEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ‘lllllllllllllllllllllllllllllllll-l'

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

(Approximate)
Our Method
Inverse Power Method
T ............................
Xpp1 = U= X, =@ -A)]A = AKX,
pa e
Replage with an approXimate Ture eigenvector is the fix poinAt
solver A changes thefixed point or every approximate solver A

Take Hoem Message 1.
Power the Residual but not Power the vector

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

(Approximate)
Our Method
Inverse Power Method

T .............................
X1 = U= A) X X =@U-A)A-AX,

................................
Replaf:e with an approximate Ture eigenvector is the fix poinAt
solver A changes the fixed point for every approximate solver A

How do you Se|?\Ct the Nystrém approximation A = UAUT

preconditioner A? Using Woodbury to compute (I — A)™!

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition
Least Square £ 2 Sketch-and-precondition, Sketch-and-project,
a - lterataive Sketching, ....
Low rank Idea 1: plug in a SVD Solver: Random SVD } Our Work!
Approx ldea 2: plug in a inverse power method g }
Use sketched matrix A as Use sketched matrix A as
an approximation to A an precondition to the probelm

Sorry... but | can’t see the

relationship....

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition
Least Square TP Sketch-and-precondition, Sketch-and-project,
a - lterataive Sketching, ....
Low rank Idea 1: plug in a SVD Solver: Random SVD &) :
Approx ldea 2: plug in a inverse power method %’Q QOur Work!
Use sketched matrix A as Use sketched matrix A as

an approximation to A an precondition to therobelm

We only sketch
the Hessian

/@ Idea: using (approximate) Newton method to solve the Lagrange from

A
. minu ' Au — Ax'x — 1)
]

Thus Our convergence isilinear-quadratic:

* v
llllllllllllllllllllllllllllllllllllll

Contraction coefficient improves when sketching quality increases

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Eigenvalue Computation

Lazy-EPSI
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Runing Time

performance in 50 experiments

EPSI quantile
—EPSI mean

inexact RQI quantile
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(c) n = 4000,k = 10 °



What is a Sketch-and-Precondition Derivation for Low-Rank

Approximation? Inverse Power Error or Inverse Power Estimation?

Ruihan Xu * Yiping Lu !

Abstract

Randomized sketching accelerates large-scale numerical linear algebra by reducing computa-
tional complexity. While the traditional sketch-and-solve approach reduces the problem size di-
rectly through sketching, the sketch-and-precondition method leverages sketching to construct a
computational friendly preconditioner. This preconditioner improves the convergence speed of

iterative solvers applied to the original problem, maintaining accuracy in the full space. Further-
more, the convergence rate of the solver improves at least linearly with the sketch size. Despite
its potential, developing a sketch-and-precondition framework for randomized algorithms in low-
rank matrix approximation remains an open challenge. We introduce the Error-Powered Sketched
Inverse Iteration (EPSI) Method via run sketched Newton iteration for the Lagrange form as a
sketch-and-precondition variant for randomized low-rank approximation. Our method achieves

theoretical guarantees, including a convergence rate that improves at least linearly with the sketch
size.



Another Supersing Fact...

lteration lies in the Krylov Subspace

- enable dynamic mode decomposition
- Online fast update
- Much better than DMD

Experiment Collect Data DMD

a) Diagnostics

+ past future

t s %
A=X'Xt ¢ =
) ; E
- =
> = =
Regression A -
1 m it

b) Future state prediction




DMD with First-Order Feedback

S
Dynamic modes

o~
N
=)
Dynamic modes

-

!
‘;;7‘ X
4 Project to the

Reconstruction

Span of modes




DMD with First-Order Feedback

Dynamic modes

Project to the
Span of modes

-

Error Feedback at 1 + 1

e —

b) Future state prediction

N )

S
Dynamic modes

Reconstruction

Dynamic modes

Update the projection space



DMD with First-Order Feedback

Dynamic modes

Project to the
Span of modes

-

-------------------------------------------------------------------------

Error Feedback at r + 1

e

: b) Future state prediction

\.

S
Dynamic modes

Reconstruction

No matrix inverse, No SVD computation
Only a n X r QR decomposition

Dynamic modes




Im

Faster than Recomputation!
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Grid index

Prediction of Tube Flow

Stable Flow

200
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100

10 20 30 40 50 60
Grid index

Grid index

FODMD Prediction

10 20 30 40 50 60
Grid index

DMD Prediction

Grid index
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-200
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One more thing...

lterative

Randomized Iterative Solver as Iterative Refinement
A Simple Fix Towards Backward Stability

debiasing

Easier for numerical stability computation

Algorithms can do online computation
Ruihan Xu Yiping Lu

University of Chicago Northwestern University

I Abstract tive tools for developing approximate matrix factor-

Iterative  sketching and  sketch-and- izations. These methods are remarkable for their sim-

V precondition are well-established ran- plicity and efficiency, often producing surprisingly ac-
domized algorithms for solving large-scale curate results.
over-determined linear least-squares prob- In this paper, we consider randomized algorithms to

lems. In this paper, we introduce a new solve the overdetermined linear least-squares problem

NeWtOn perspective that interprets Iterative Sketch-

ing and Sketching-and-Precondition as forms

M et h Od S of Iterative Refinement. We also examine the

numerical stability of two distinct refinement T = arg neli{,lz [b— Ayl (A€R™™",beR™)
strategies: iterative refinement and recursive Y (1)
refinement, which progressively improve

Easier for convergence analysis 3 c 1




More Examples... (Uncertainty Quantification)

&

— ~ Confiednece Interval of
Example 5 0 = 6,’ Xl P‘9 Point Estimation

Quantile regression Conformal Prediction

Romano Y, Patterson E, Candes E. Conformalized quantile regression. Neurips 2019.

Influnce Function Bootstrap

Liu K, Blanchet J, Ying L, et al. Orthogonal bootstrap: efficient simulation of input uncertainty. ICML 2024.

Angelopoulos A N, Bates S, Fannjiang C, et al. Prediction-powered inference. Science, 2023




| What is about?
(X, . X,} ~Py— 00— DO

Step 1: Using Machine Learning to fit the rough function/environment

{» SCaSML

Step 2: Using validation dataset to know how much mistake machine
learning algorithm has made

-----------------------------------------------------------------

-----------------------------------------------------------------

Using ML surrogate during inference time to improve ML solution

McCORMICK SCHOOL OF

ENGINEERING Yiping Lu yiping.lu@northwestern.edu

Northwestern



