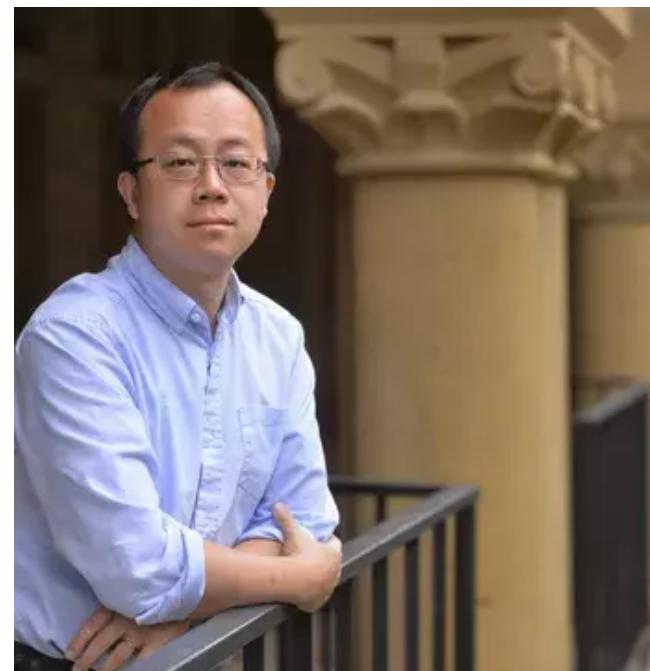


Two Tales, One Resolution for Physics-Informed Inference-time Scaling

Debiasing and Precondition

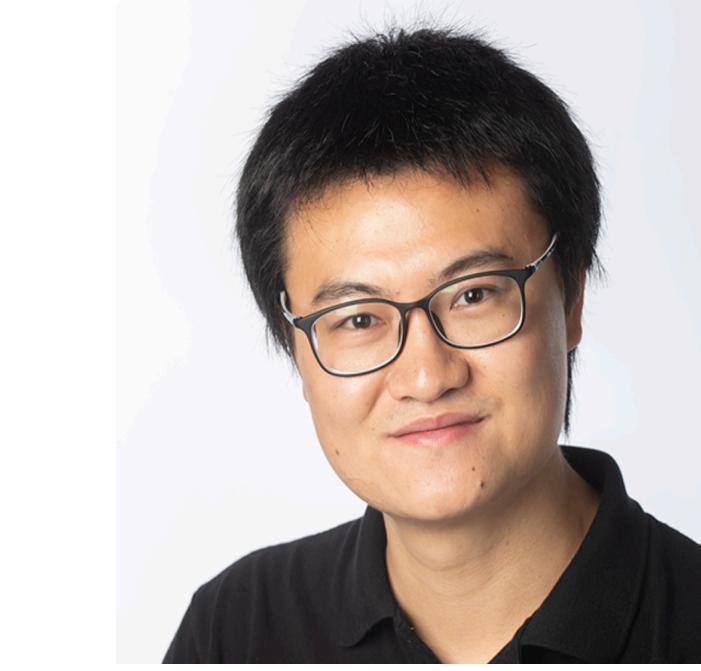
Yiping Lu

Northwestern McCORMICK SCHOOL OF
ENGINEERING



Lexing Ying (Stanford)

Jose Blanchet (Stanford)

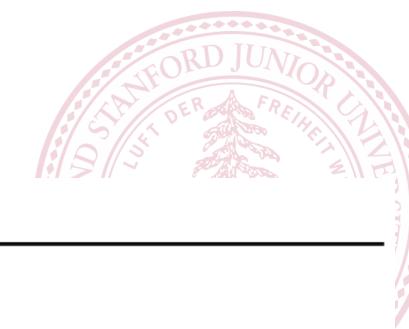


Shihao Yang (Gatech)

Ruihan Xu (Uchicago)

My Journey

- Undergrad: Peking University: 2015-2019
 - Work with Prof. Bin Dong and Prof. Liwei Wang
- Ph.D. Stanford University: 2019-2023
 - Work with Prof. Lexing Ying and Jose E



Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations

Yiping Lu¹ Aoxiao Zhong² Quanzheng Li^{2,3,4} Bin Dong^{5,6,4}

Abstract

Deep neural networks have become the state-of-the-art models in numerous machine learning tasks. However, general guidance to network architecture design is still missing. In our work, we bridge deep neural network design with numerical differential equations. We show that many effective networks, such as ResNet, PolyNet, FractalNet and RevNet, can be interpreted as different numerical discretizations of differential equations. This finding brings us a brand new perspective on the design of effective deep architectures. We can take advantage of the rich knowledge in numerical analysis to guide us in de-

s while maintaining a similar performance. This can be explained mathematically using the concept of modified equation from numerical analysis. Last but not least, we also establish a connection between stochastic control and noise injection in the training process which helps to improve generalization of the networks. Furthermore, by relating stochastic training strategy with stochastic dynamic system, we can easily apply stochastic training to the networks with the LM-architecture. As an example, we introduced stochastic depth to LM-ResNet and achieve significant improvement over the original LM-ResNet on CIFAR10.

PDE-NET: LEARNING PDES FROM DATA

Zichao Long*, Yiping Lu*

School of Mathematical Sciences
Peking University, Beijing, China
{zlong,luyiping9712}@pku.edu.cn

Xianzhong Ma*

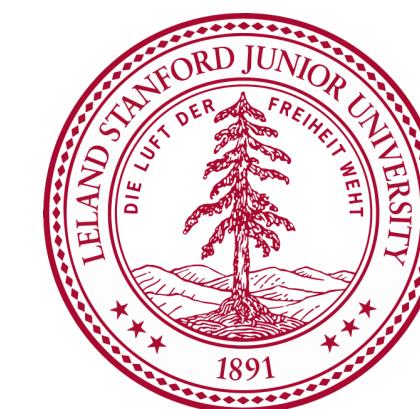
School of Mathematical Sciences, Peking University
Beijing Computational Science Research Center
Beijing, China
xianzhongma@pku.edu.cn

Bin Dong

Beijing International Center for Mathematical Research, Peking University
Center for Data Science, Peking University
Beijing Institute of Big Data Research
Beijing, China
dongbin@math.pku.edu.cn

My Journey

- Undergrad: Peking University: 2015-2019
 - Work with Prof. Bin Dong and Prof. Liwei Wang
- Ph.D. Stanford University: 2019-2023
 - Work with Prof. Lexing Ying and Jose Blanchet



Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality

Yiping Lu*, Haoxuan Chen[†], Jianfeng Lu [‡], Lexing Ying[§], and Jose Blanchet [¶]

Abstract. In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: the Schrödinger equation on a hypercube with zero Dirichlet boundary condition, which is applied in quantum-mechanical systems. We establish upper and lower bounds for both methods, which improve upon concurrently developed upper bounds for this problem via a fast rate generalization bound. We discover that the current Deep Ritz Method is sub-optimal and propose a modified version of it. We also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will improve with growing training sets according to a power law, we supply computational experiments to show similar behavior of dimension dependent power law for deep PDE solvers.

Minimax Optimal Kernel Operator Learning via Multilevel Training

Jikai Jin,^{*,1} Yiping Lu,^{*,2} Jose Blanchet,^{*,3} and Lexing Ying^{,4}

¹School of Mathematical Sciences, Peking University, Beijing, China

²ICME, Stanford University, CA, USA

³Management Science & Engineering, Stanford University, CA, USA

⁴Department of Mathematics, Stanford University, Stanford, CA, USA

*Corresponding author. Email: jkjin@pku.edu.cn; yplu@stanford.edu; jose.blanchet@stanford.edu; lexing@stanford.edu

Do you trust your theorem?

Big Constant

Theorem If you randomly collect () data, then you can achieve () accuracy with your AI!

Relu network is **optimal** for function regression

PINN is **optimal** for differential equation solving

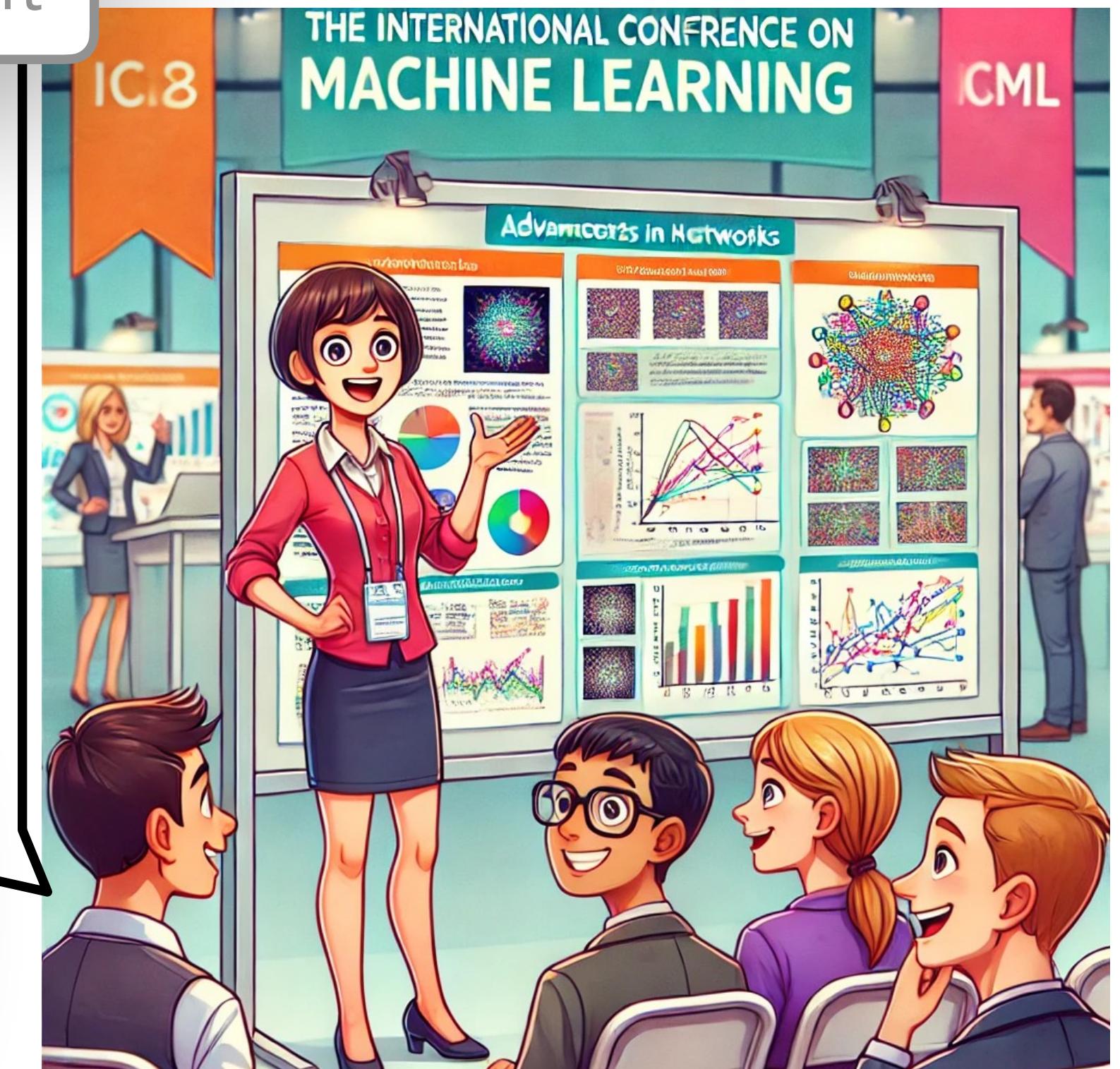
Diffusion Model is **optimal** for density estimation

Transformer is **optimal** for in-context learning

...

Global optimization, the structure of target function, The smoothness of ReLU, lower bound of $p(x)$...

Does Optimal results really gives me guarantee?



Consider How you use ChatGPT...

What is the most efficient route from Times Square to Chelsea Market that minimizes walking?

Option 1: Subway

1. **Walk to a Nearby Subway Entrance:** Head to the Times Sq–42nd Street station.
2. **Board the E Train:** Catch an E train heading downtown (toward World Trade Center).
3. **Ride to 8th Avenue–14th Street Station:** Get off at this station (roughly 4 stops).
4. **Walk to Chelsea Market:** Exit the station and walk east on 14th Street for a few blocks until you reach Chelsea Market at 75 9th Avenue.

double-check
with a map

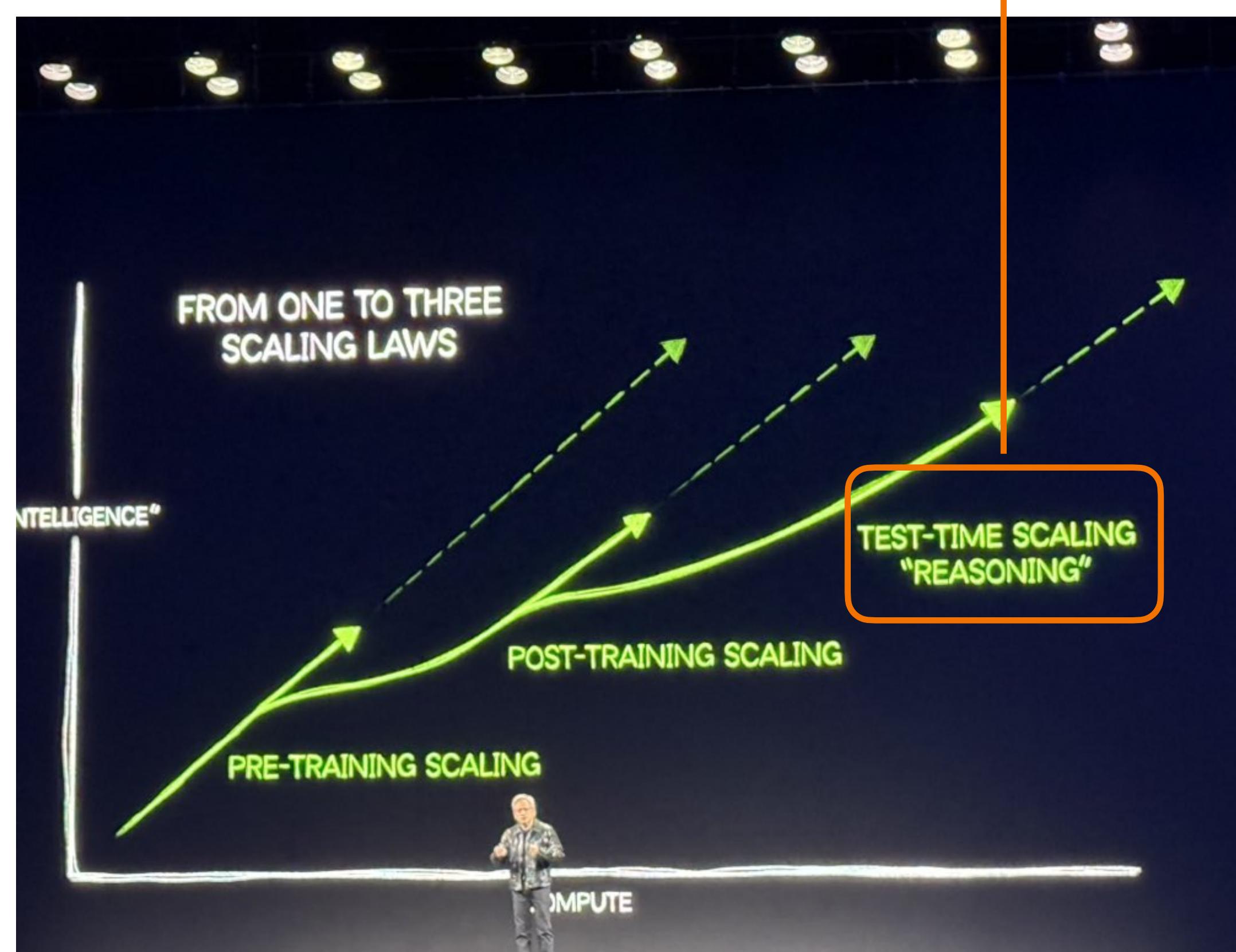
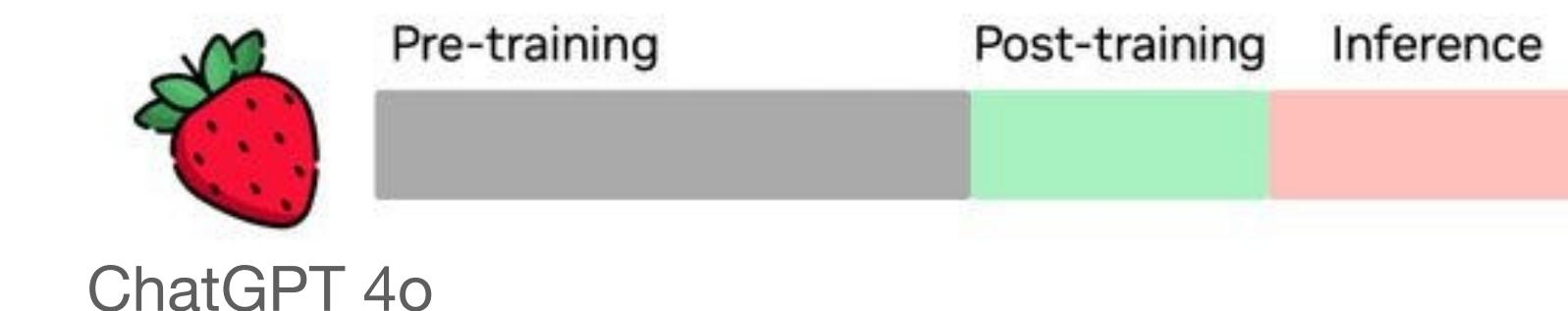
Port Authority

2 stops for A
3 stops for C/E

1. **At Times Square:** Enter the Times Square–42nd Street station.
2. **Board the 1 Train:** Hop on a downtown 1 train (the red line).
3. **Ride to 14th Street:** Stay on until you reach the 14th Street station.
4. **Exit Appropriately:** Use the exit that leads toward 9th Avenue—this drop-off point is just a short walk from Chelsea Market (located at 75 9th Ave).

Inference Time Scaling Law

“No training”
e.g. answer question 10 times

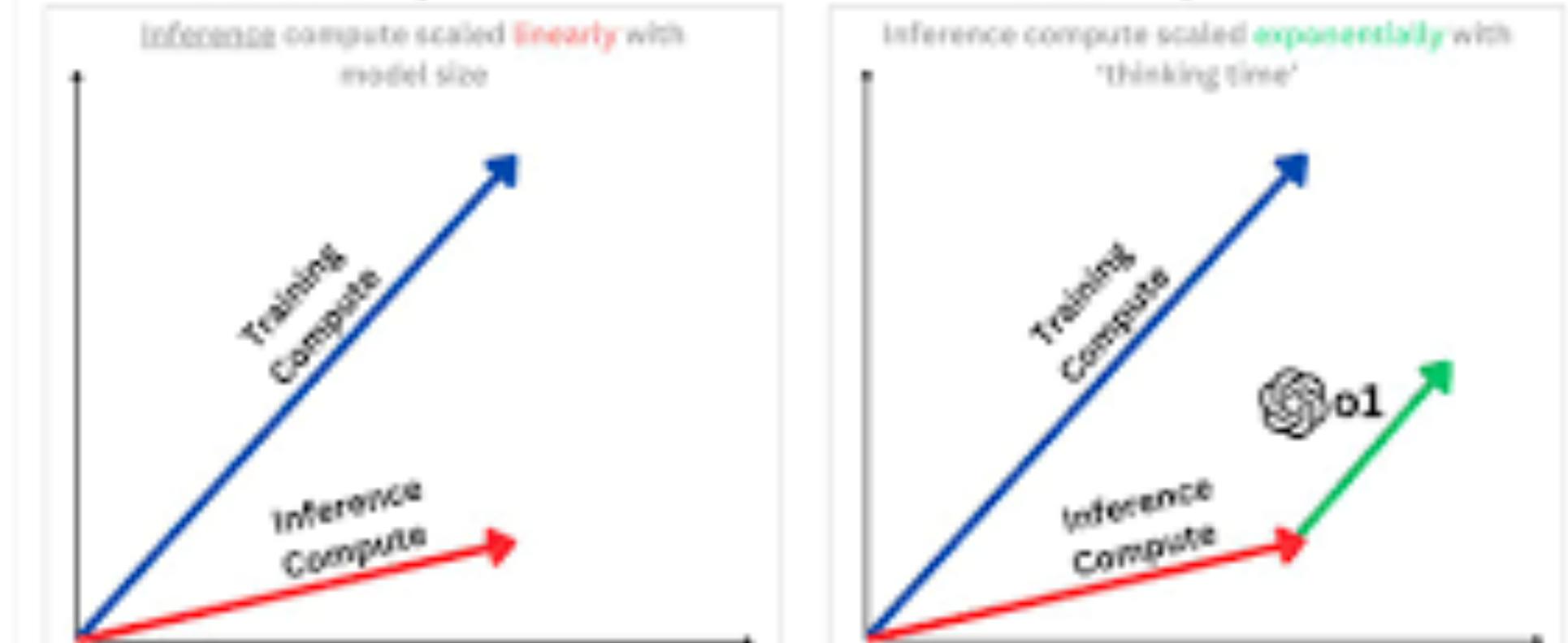


New scaling law: why OpenAI's o1 model matters

OpenAI created a new way to scale - through more compute during generation

Before OpenAI o1

After OpenAI o1



How can we perform Inference-Time Scaling for Scientific Machine Learning?

With trustworthy guarantee

don't fine-tune/retrain/add a new surrogate model

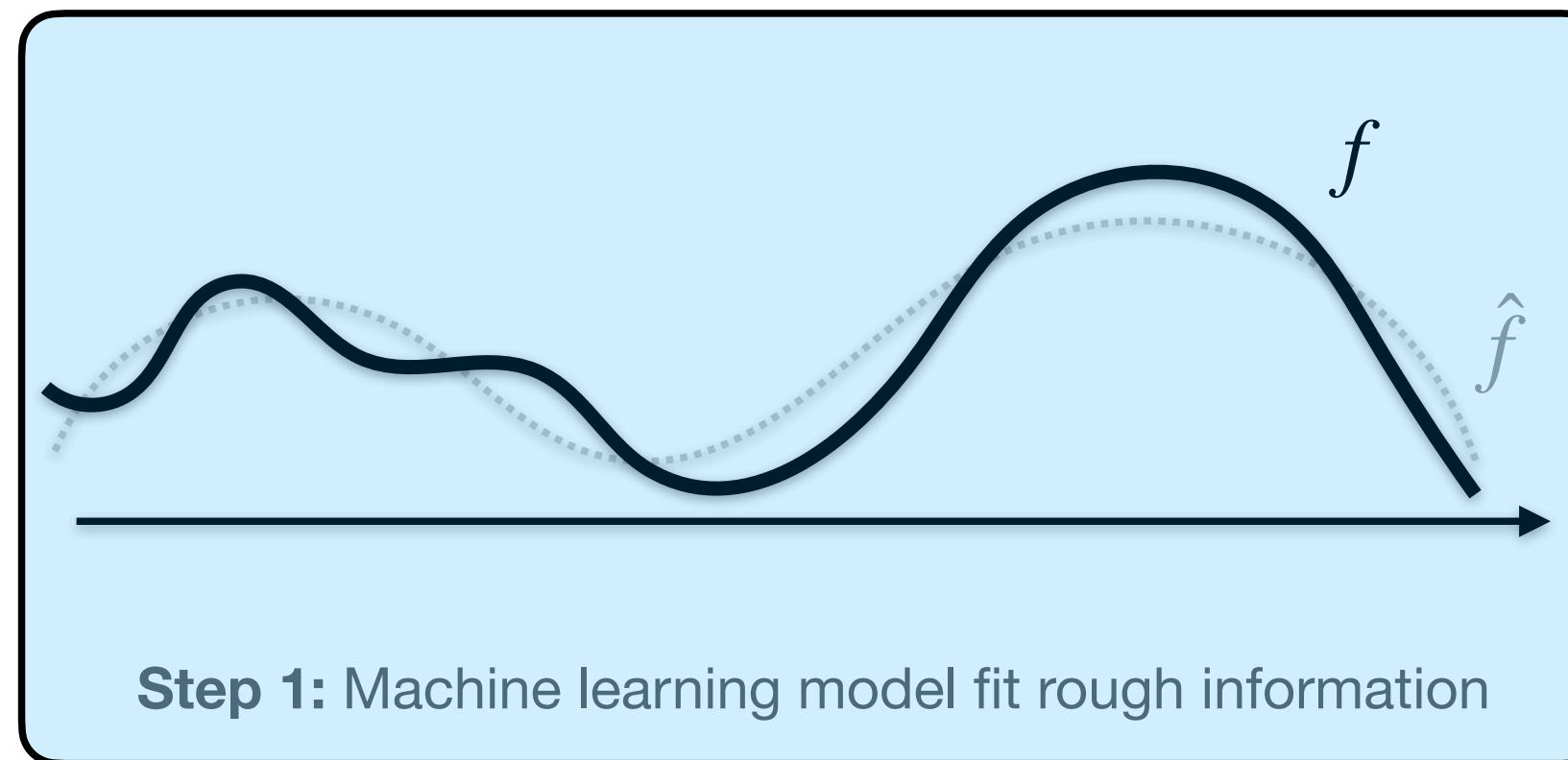
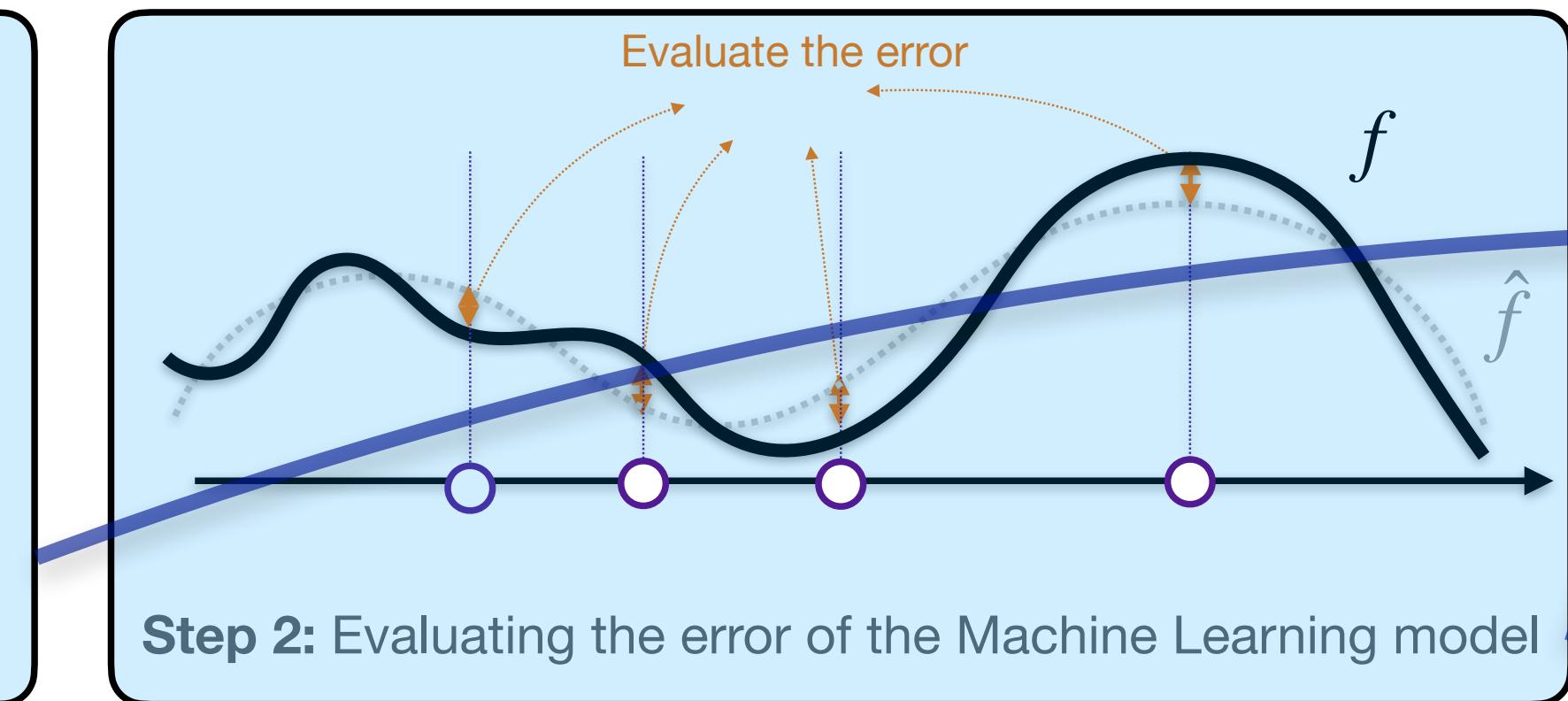
How can we perform Inference-Time Scaling for Scientific Machine Learning?

“Physics-informed”

With trustworthy guarantee

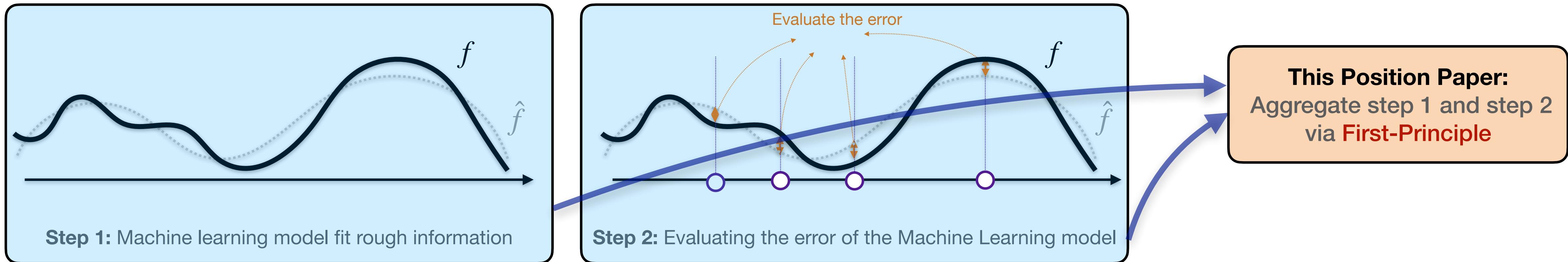
Tale 1: Debiasing Hybrid **Scientific Computing** and Machine Learning

Physics-Informed Inference Time Scaling



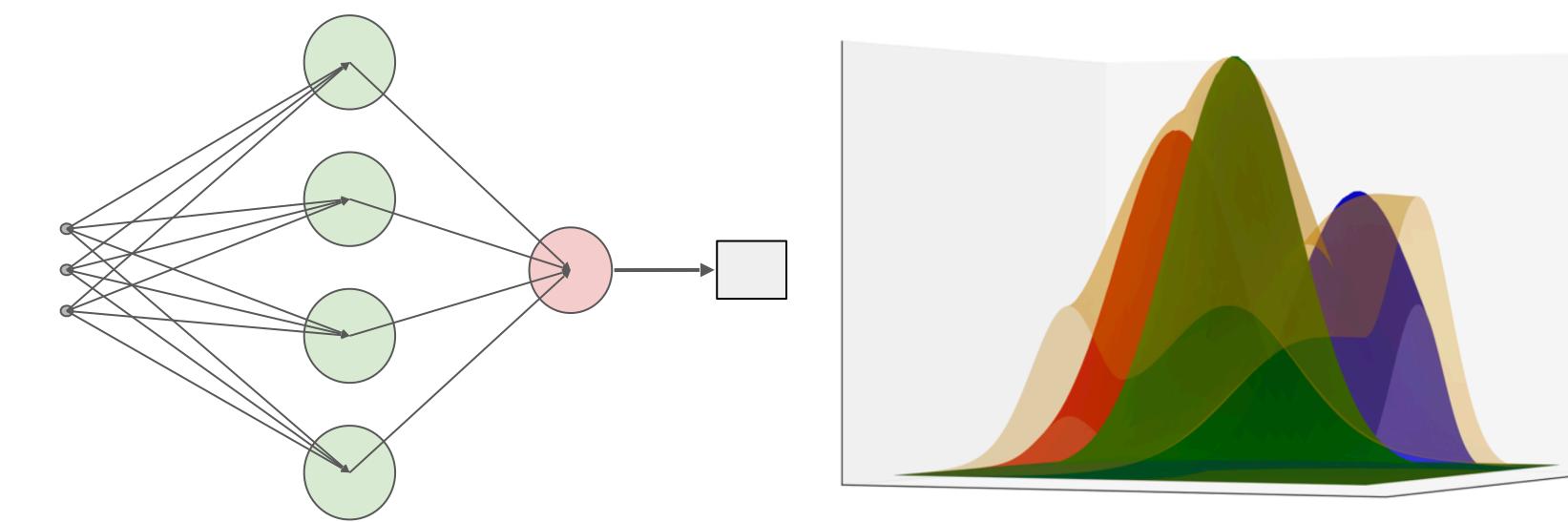
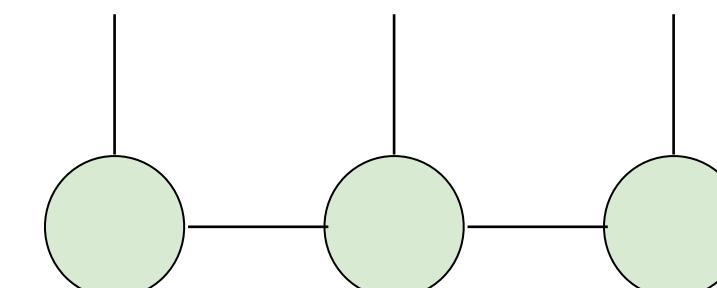
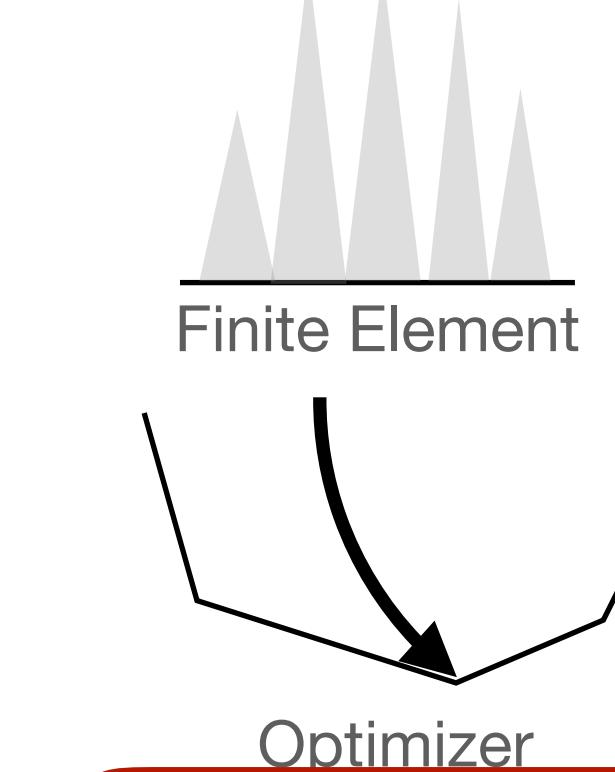
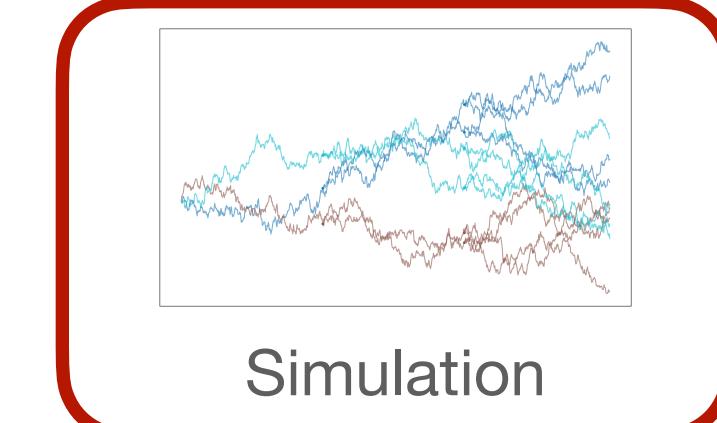
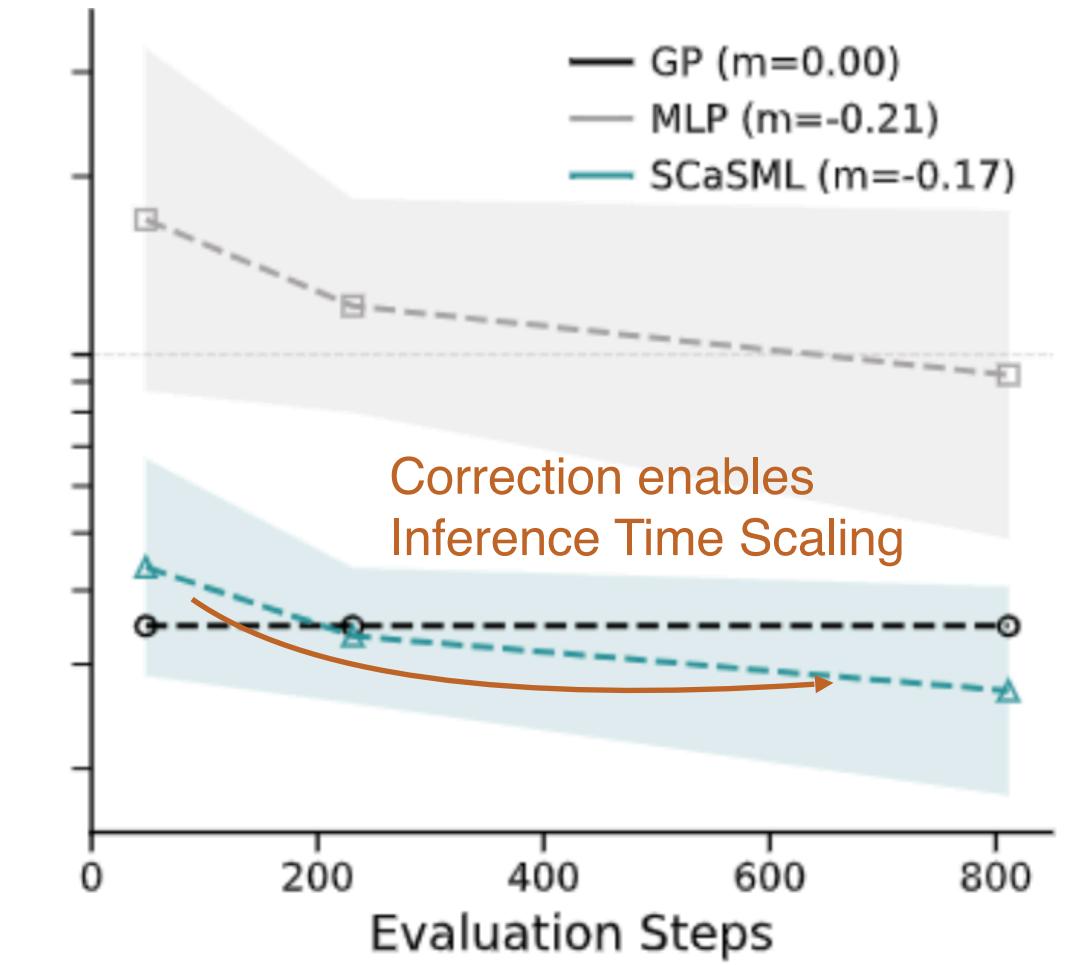
This Position Paper:
Aggregate step 1 and step 2
via **First-Principle**

Physics-Informed Inference Time Scaling



Step 2. Correct with a Trustworthy Solver

Step 1. Train a Surrogate (ML) Model



Our Framework

Step 1: Sceintific Computing as Machine Learning

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

Function fitting

Example 2

$$\theta = \Delta^{-1}f, \quad X_i = (x_i, f(x_i)) \quad \text{Solving } \Delta u = f$$

Solving PDE

Example 3

$$\theta = A, \quad X_i = (x_i, Ax_i)$$

Estimation \hat{A} via Randomized SVD

Our Framework

Step 2: Consider a Downstream Application

Scientific Machine Learning

Downstream application

Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = \int f(x)dx$$

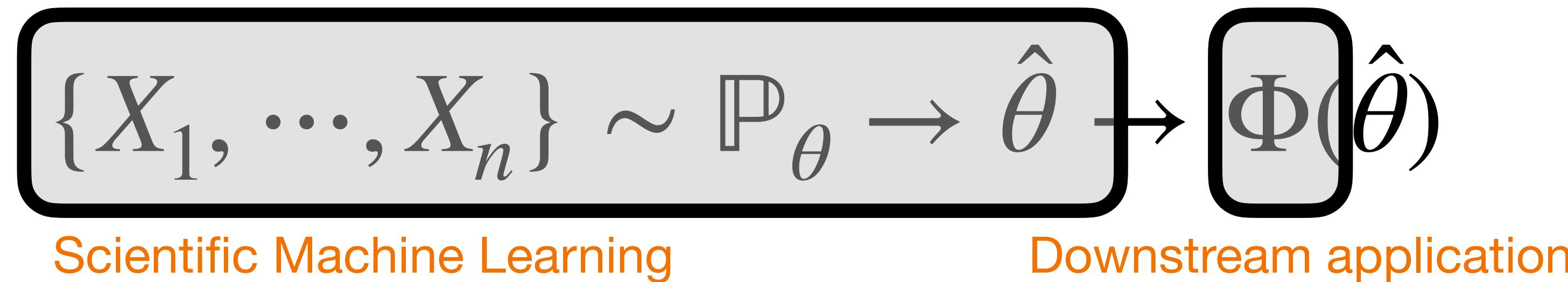
Example 2

$$\theta = \Delta^{-1}f, \quad X_i = (x_i, f(x_i)) \quad \Phi(\theta) = (\Delta^{-1}f)(x)$$

Example 3

$$\theta = A, \quad X_i = (x_i, Ax_i) \quad \Phi(\theta) = \text{tr}(A), \text{eigs}(A)$$

Our Framework

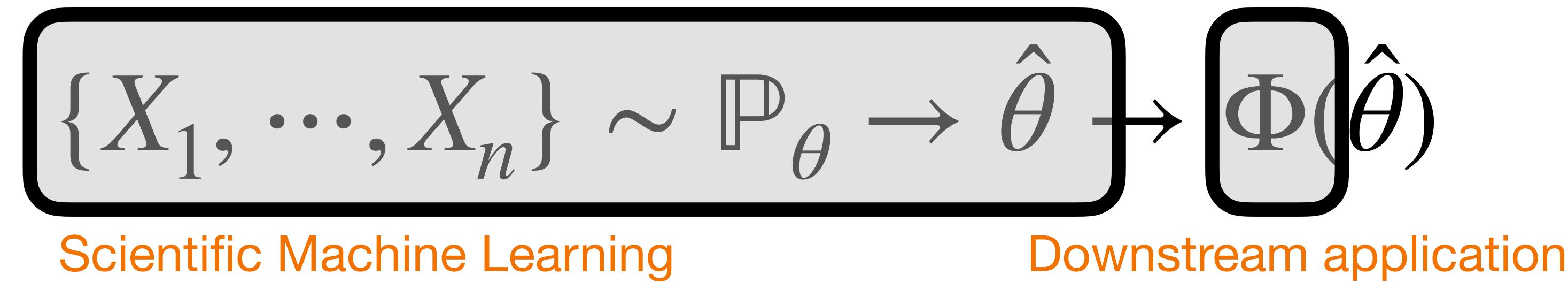


AIM: Unbiased prediction even with biased machine learning estimator

AIM: Compute $\Phi(\hat{\theta}) - \Phi(\theta)$ during Inference time

Using (stochastic) simulation to calibrate the (scientific) machine learning output !

Our Framework



AIM: Unbiased prediction even with biased machine learning estimator

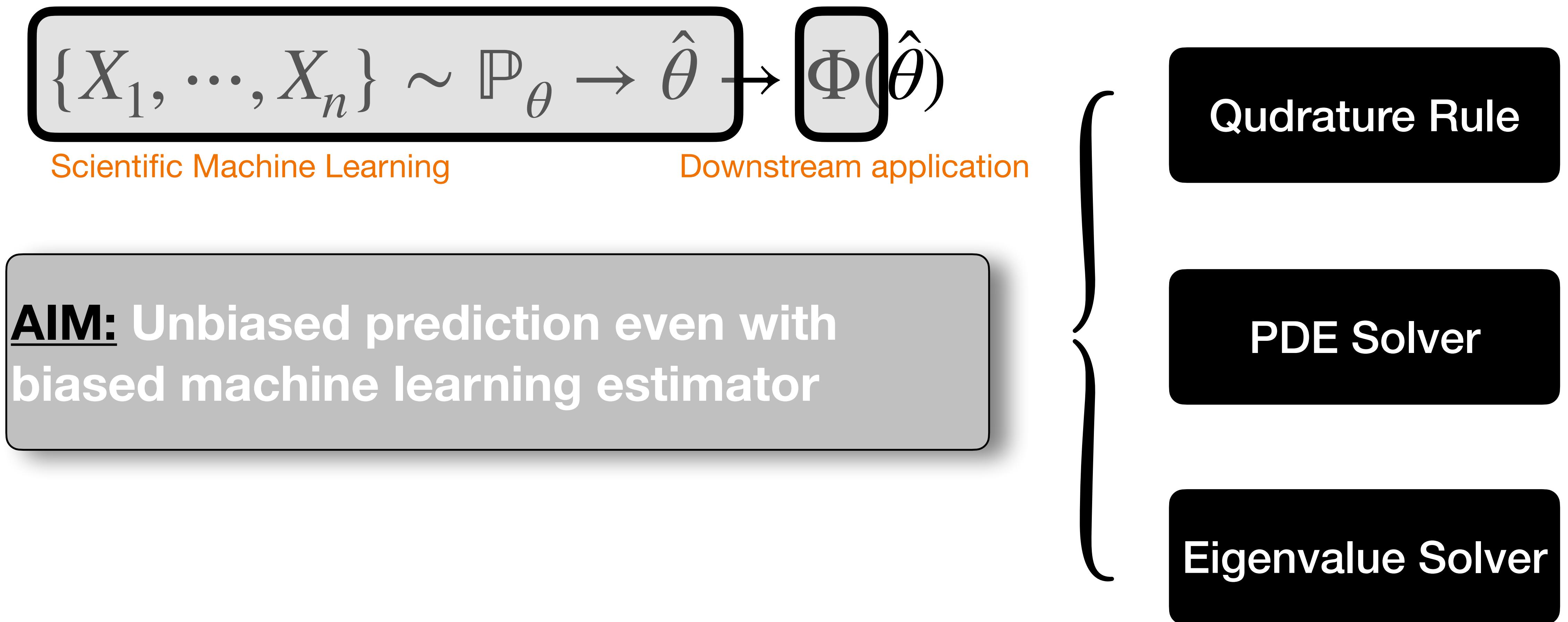
How to estimate $\Phi(\hat{\theta}) - \Phi(\theta)$?

Physics-Informed! (Structure of Φ)

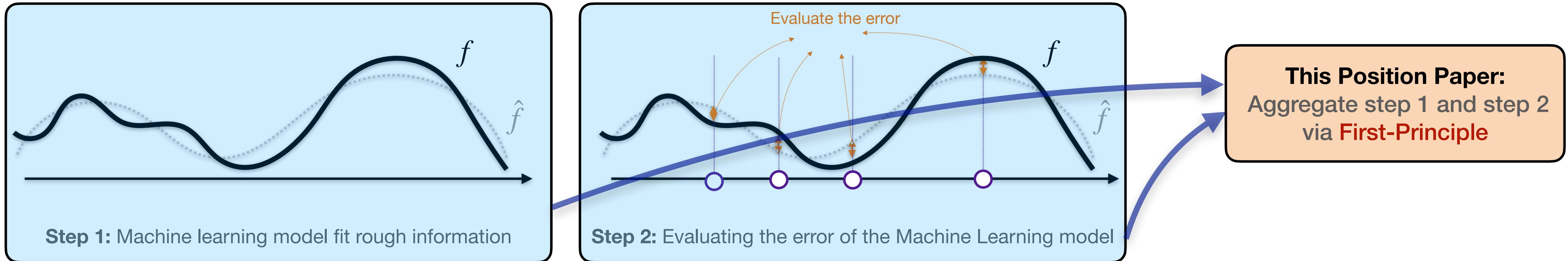
Why it is easier than directly estimate $\Phi(\theta)$?

Variance Reduction

Our Framework



Debiasing a Machine Learning Solution



$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

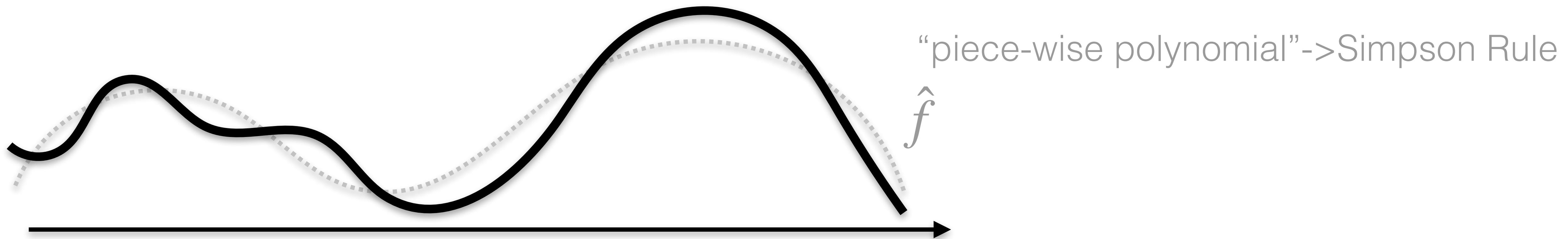
Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = \int f^q(x) dx$$

Temperature, overall velocity...

Debiasing a Machine Learning Solution



$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

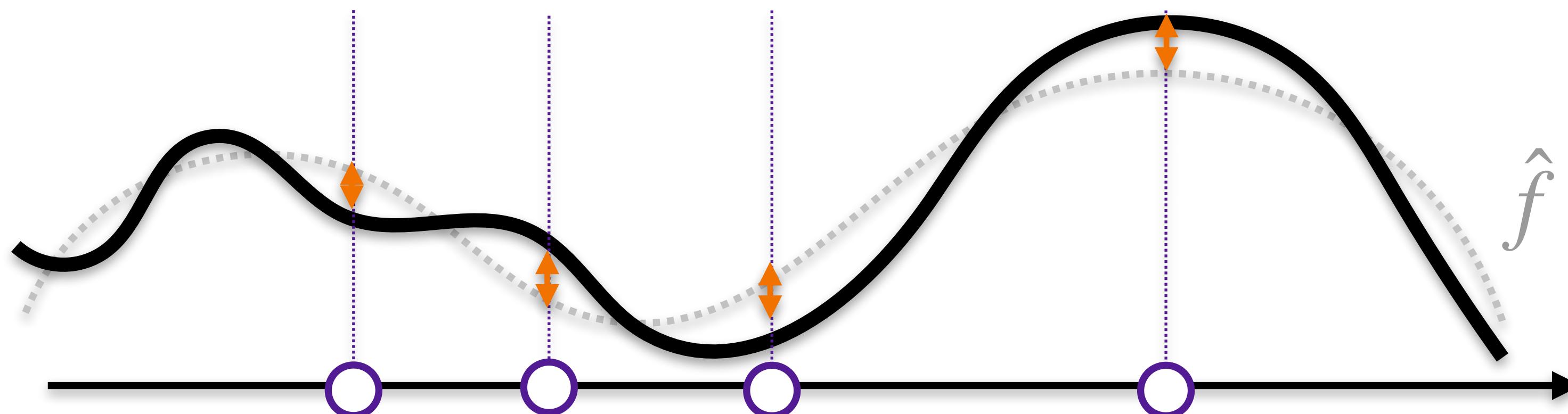
Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = \int f^q(x) dx$$

Temperature, overall velocity...

Debiasing a Machine Learning Solution



Our Approach

$$\text{Estimate } \mathbb{E}_P f \approx \mathbb{E}_P \hat{f} + \mathbb{E}_{\hat{P}} f - \hat{f}$$

An estimate to $\Phi(\hat{\theta}) - \Phi(\theta)$

Scientific Machine Learning

Downstream application

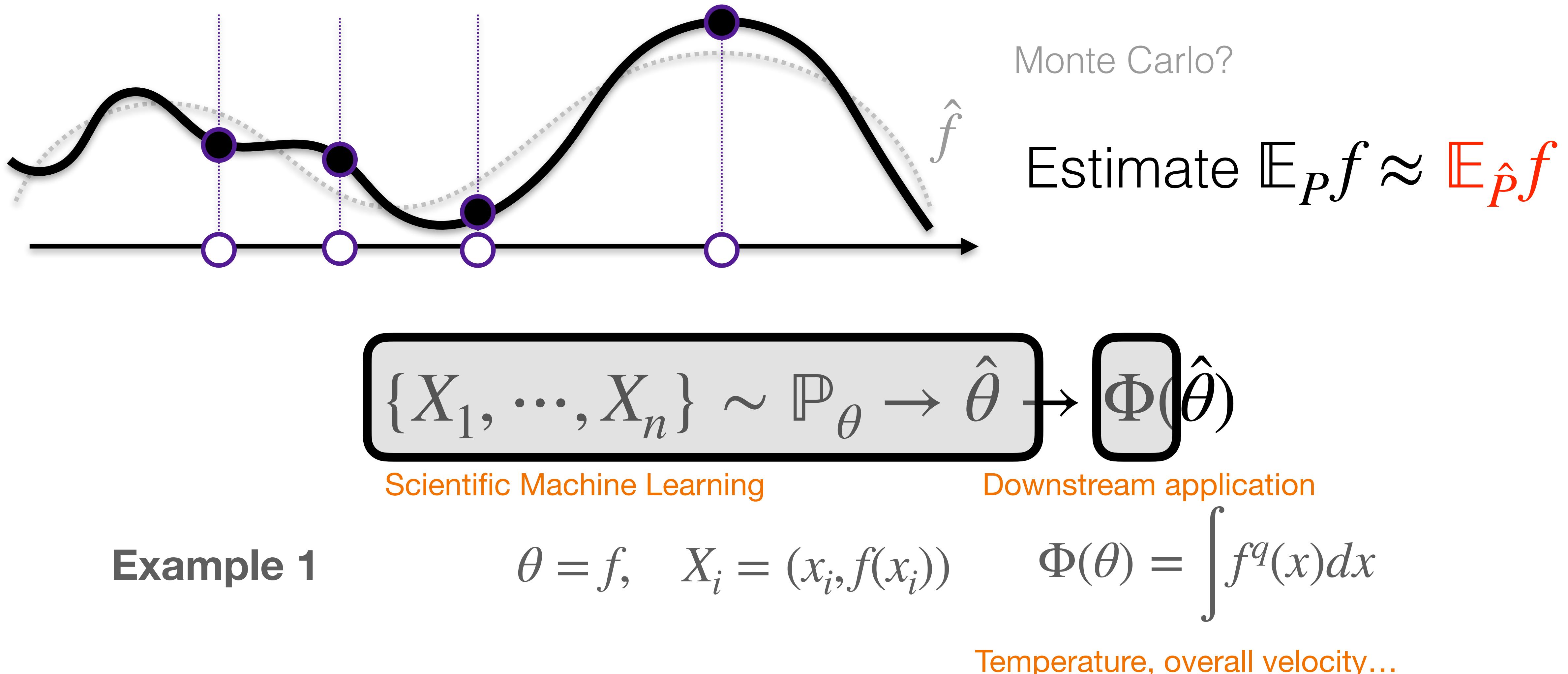
Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = \int f^q(x) dx$$

Temperature, overall velocity...

Debiasing a Machine Learning Solution



The 101 Example

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

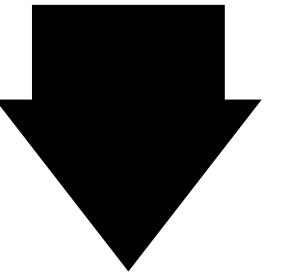
Scientific Machine Learning

Downstream application

Example

$$\theta = f, \underbrace{X_i}_{=} (x_i, f(x_i))$$

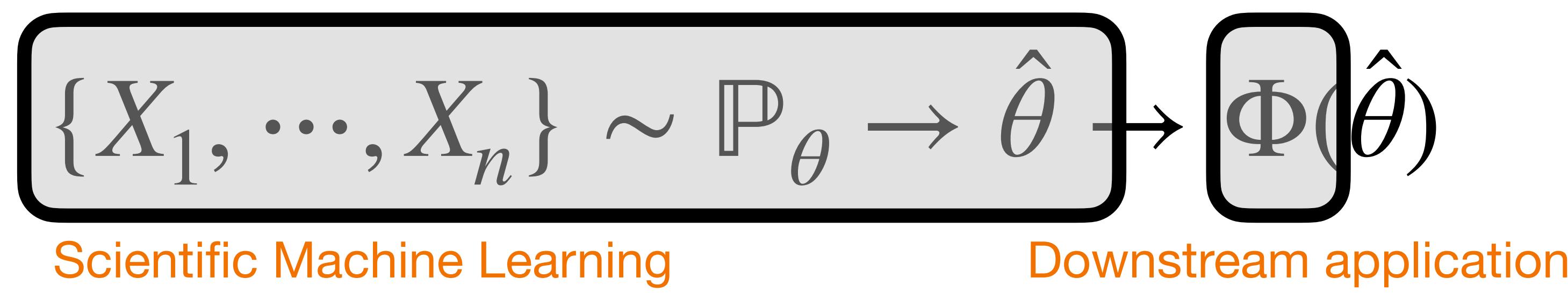
$$\Phi(\theta) = \int (f(x))dx$$



Machine Learning: $\hat{\theta} = \hat{f}$

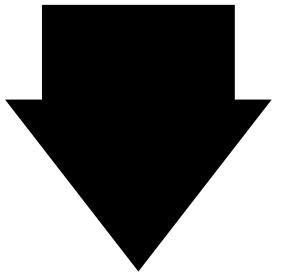
The 101 Example

Example



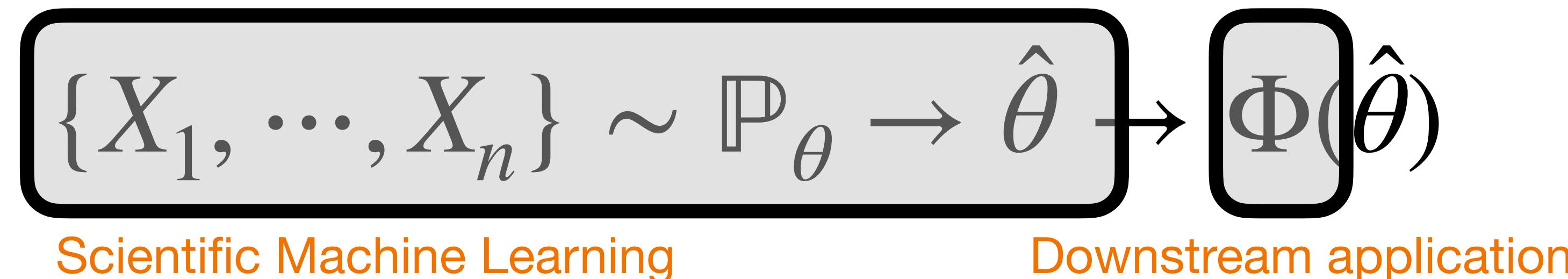
$$\theta = f, \quad \underbrace{X_i}_{= (x_i, f(x_i))}$$

$$\Phi(\theta) = \int (f(x)) dx$$



Machine Learning: $\hat{\theta} = \hat{f}$ $\longrightarrow \Phi(\hat{\theta}) = \int f(x) dx$

The 101 Example

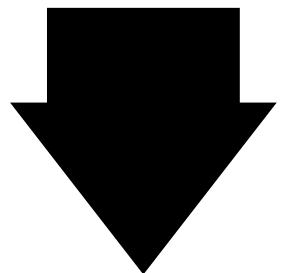


Example

$$\theta = f, \quad \underbrace{X_i}_{=} = (x_i, f(x_i))$$

$$\Phi(\theta) = \int (f(x))dx$$

||



Machine Learning: $\hat{\theta} = \hat{f}$

$$\Phi(\hat{\theta}) = \int f(x)dx +$$

$$\Phi(\theta) - \Phi(\hat{\theta}) = \int (f(x) - \hat{f}(x))dx$$

Debiasing a Machine Learning Solution

Regression-adjusted Control Variates

Doubly Robust Estimator

Multi-fidelity monte carlo

...

- Investigated the **optimality** of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, **Yiping Lu**, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality Neurips 2023

- Extend to **nonlinear** functional estimation using iterative methods

Later

Scientific Machine Learning

Downstream application

Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

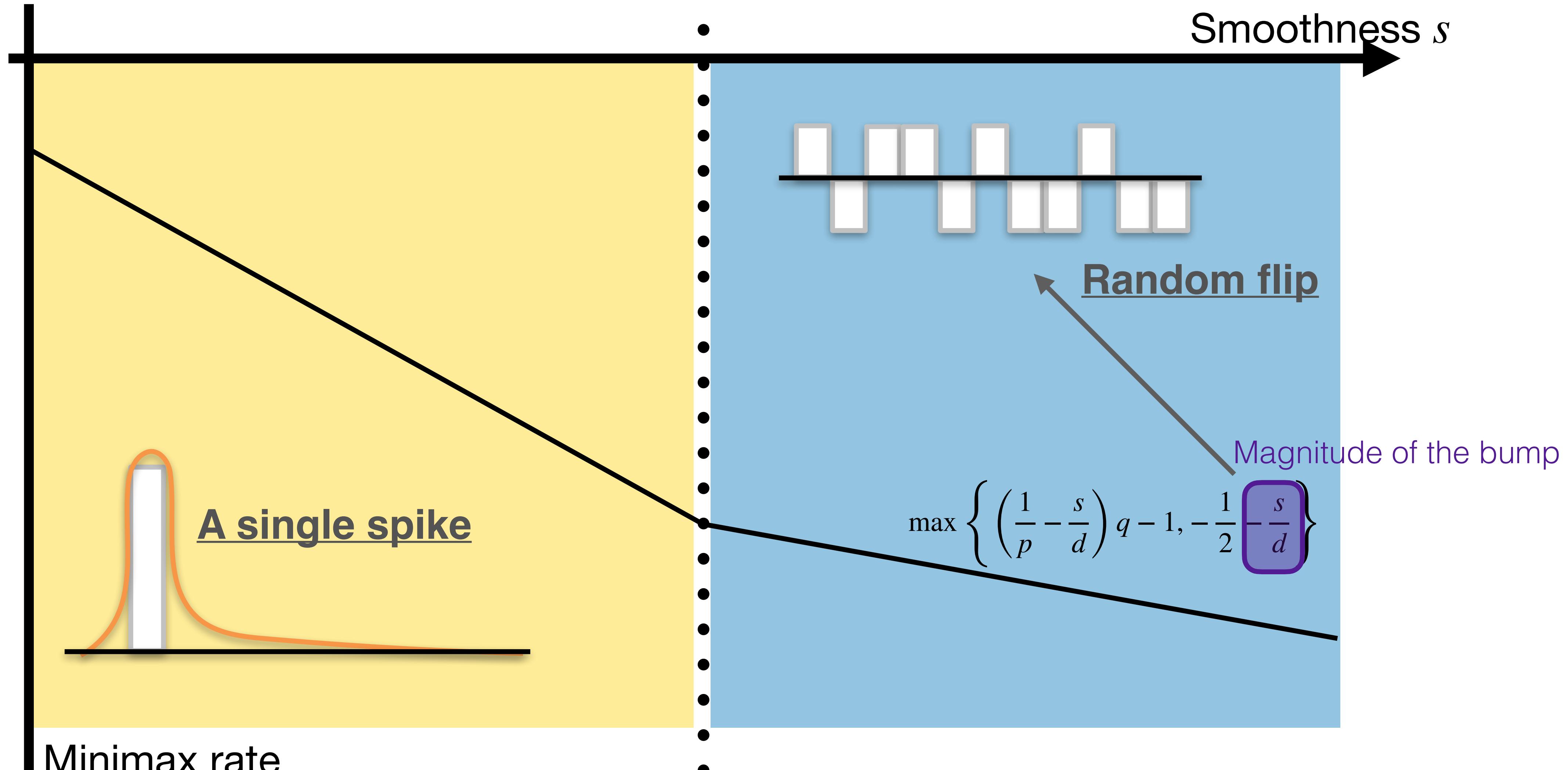
$$\Phi(\theta) = \int f^q(x) dx$$

Temperature, overall velocity...

Lower Bound

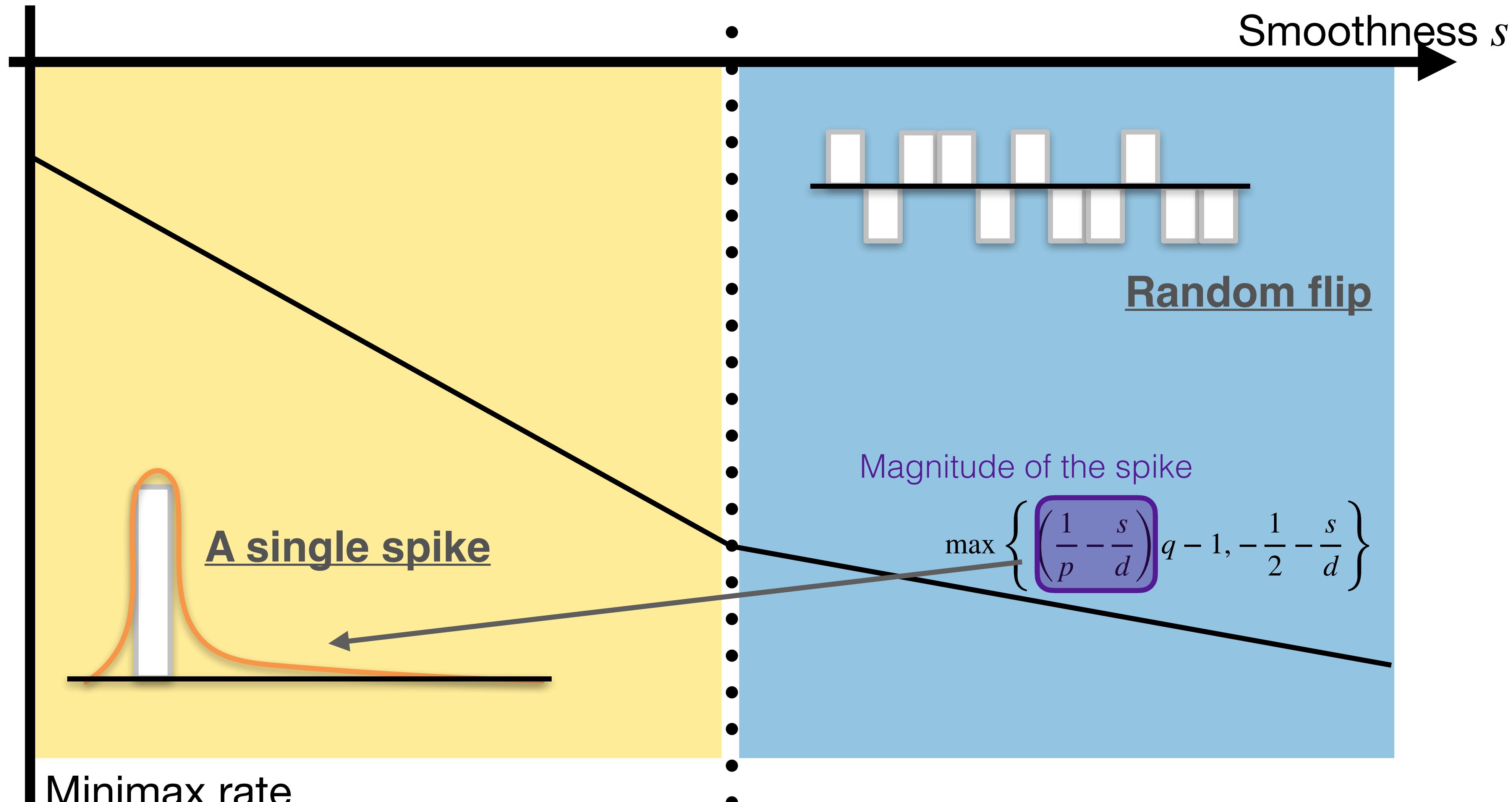
Hardest Examples

SCaML



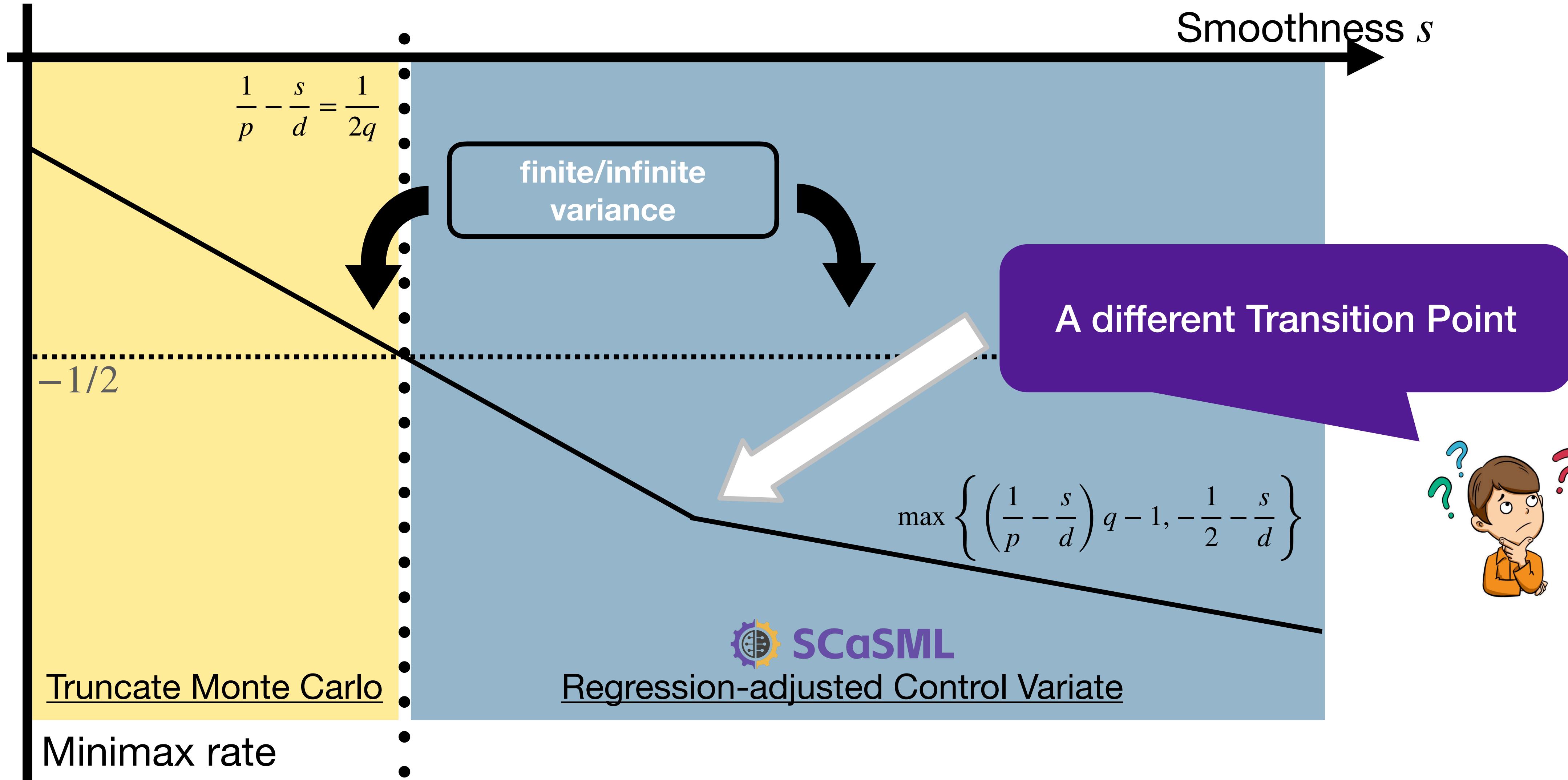
Hardest Examples

SCaML

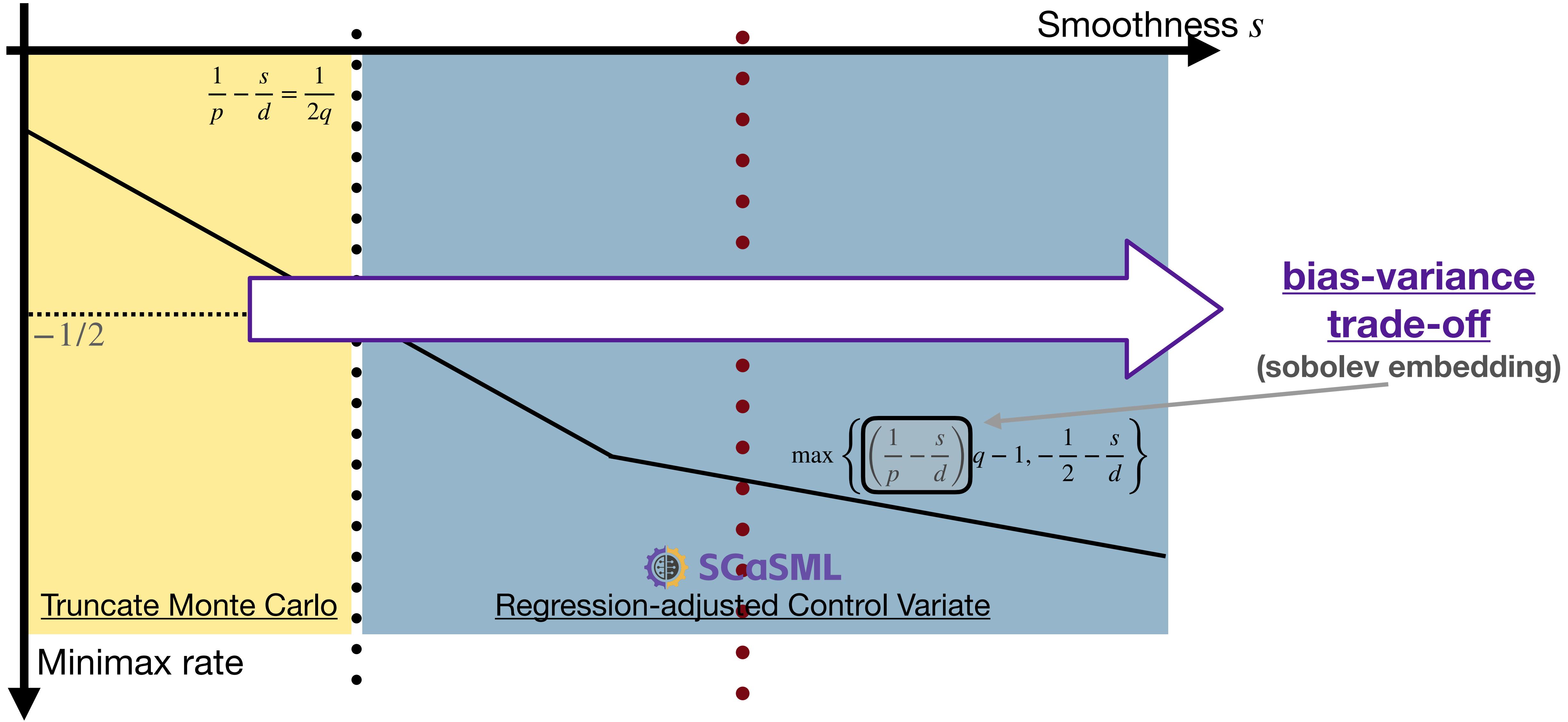


Optimal Algorithms

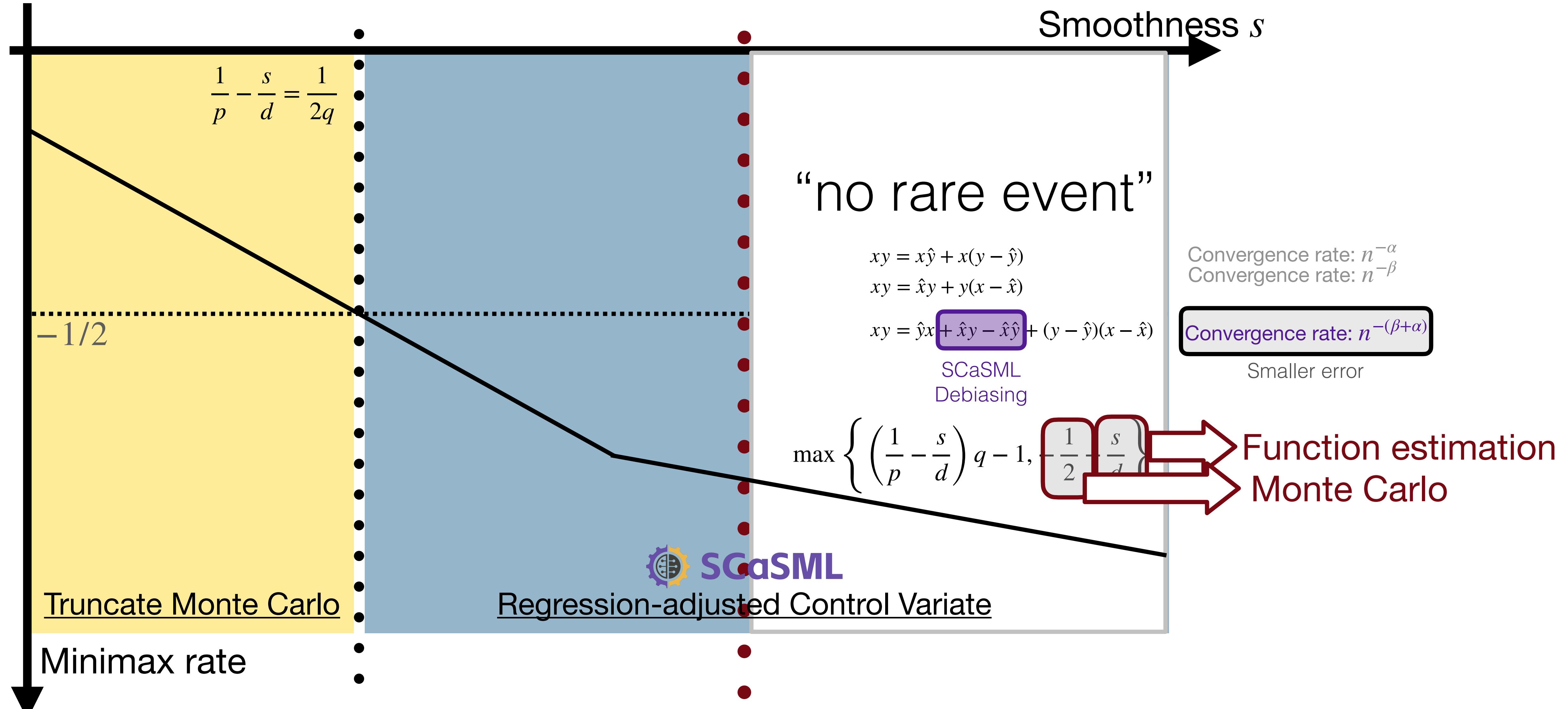
Easiest Understanding



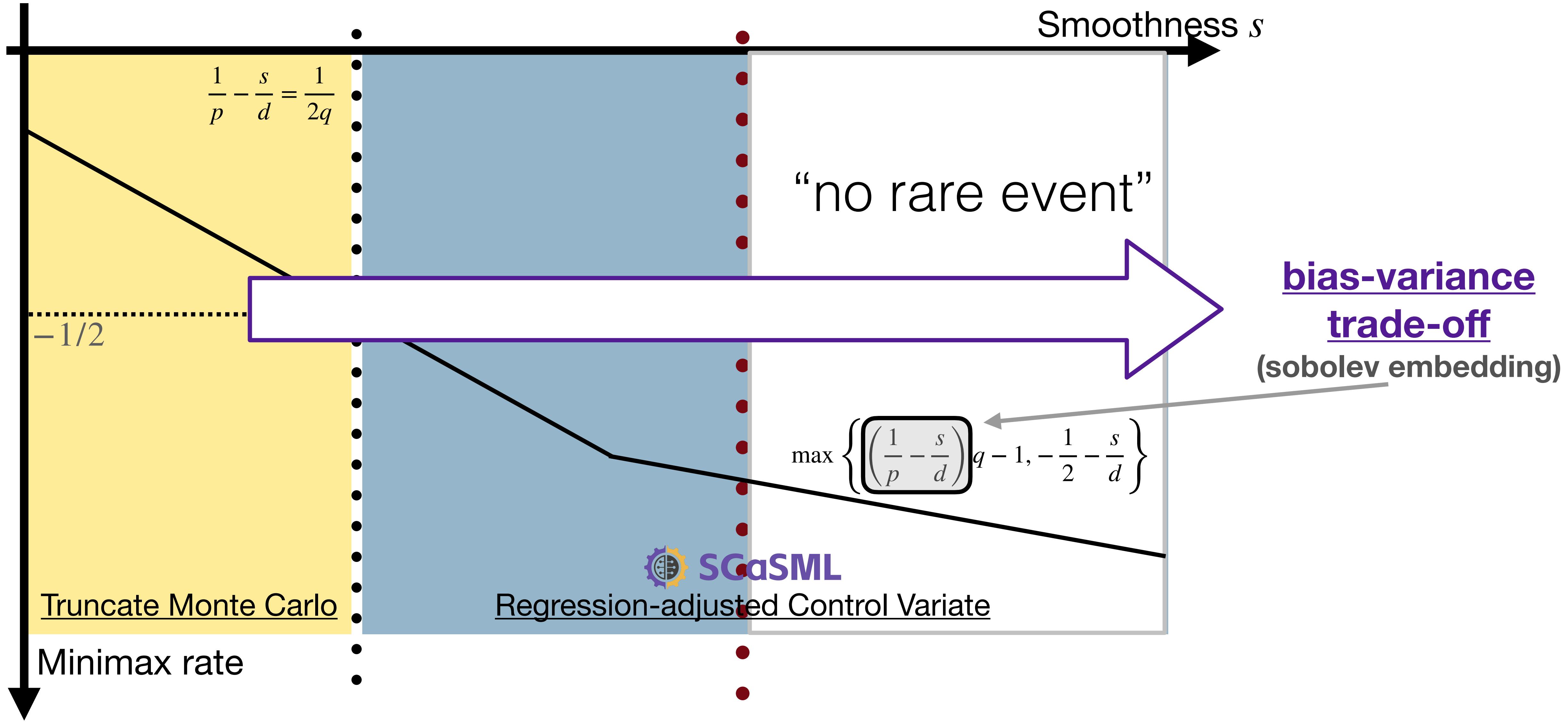
Easiest Understanding



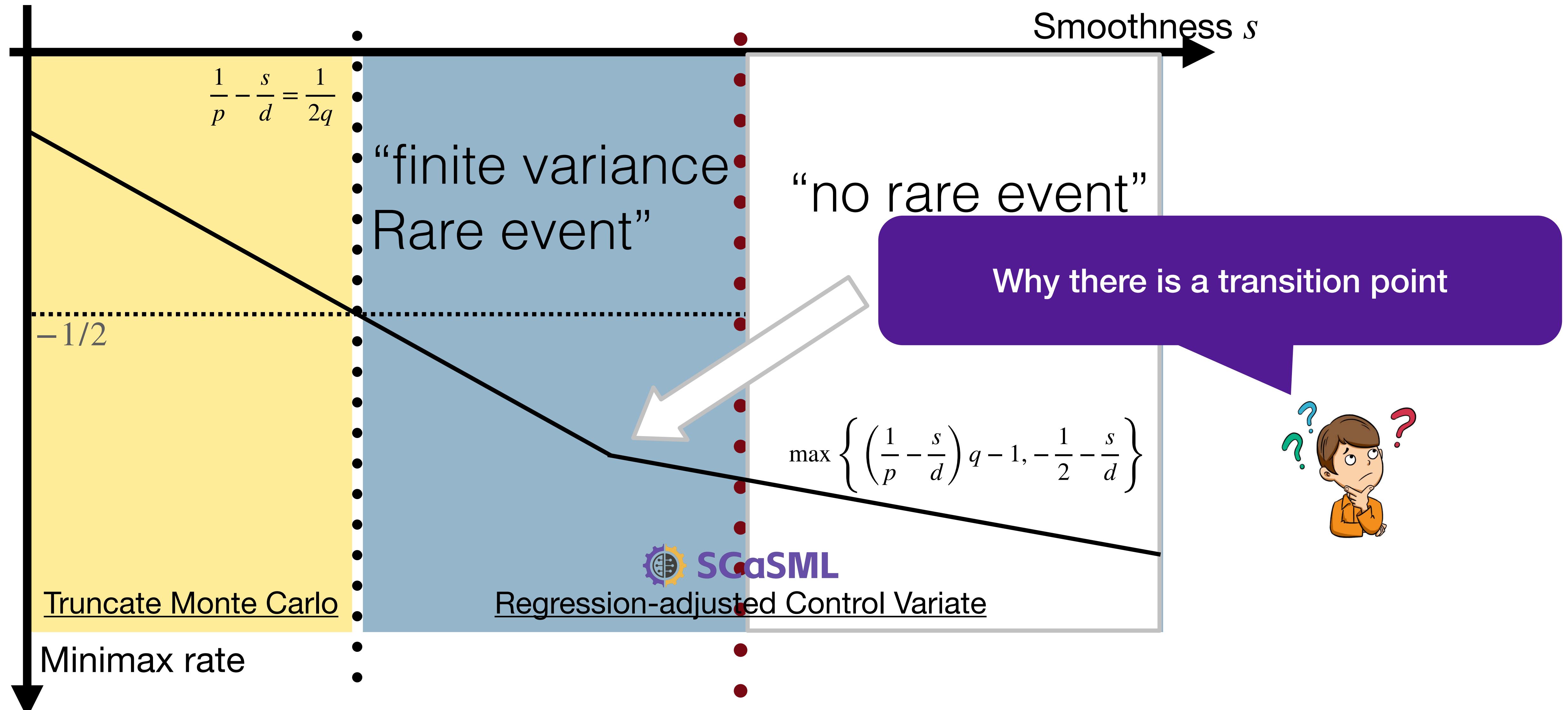
Easiest Understanding



Easiest Understanding



Why...



Analysis of Error propagation

 SCaML estimate of $\mathbb{E}_P f^q, f \in W^{s,p}$

Step 1

Using half of the data to estimate \hat{f}

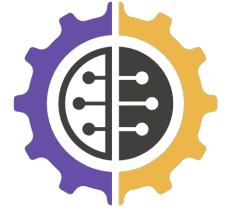
Step 2

$$\mathbb{E}_P f^q = \mathbb{E}_P(\hat{f}^q) + \mathbb{E}_P(\hat{f}^q - f^q)$$

How does step 2 variance depend on estimation error?

Hardness = The variance of the debasing step

Analysis of Error propagation

 **SCaML** estimate of $\mathbb{E}_P f^q, f \in W^{s,p}$

Step 1

Using half of the data to estimate \hat{f}

Step 2

$$\mathbb{E}_P f^q = \mathbb{E}_P(\hat{f}^q) + \mathbb{E}_P(f^q - \hat{f}^q)$$

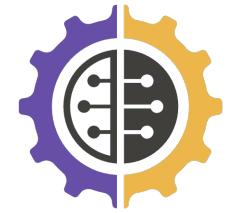
Low order term

$$f^{q-1}(f - \hat{f}) + (f - \hat{f})^q$$

How does step2 variance depend on estimation error?

“influence function” (gradient) Error propagation

Analysis of Error propagation

 **SCaML** estimate of $\mathbb{E}_P f^q, f \in W^{s,p}$

Step 1

Using half of the data to estimate \hat{f}

Step 2

$$\mathbb{E}_P f^q = \mathbb{E}_P(\hat{f}^q) + \mathbb{E}_P(f^q - \hat{f}^q)$$

Low order term

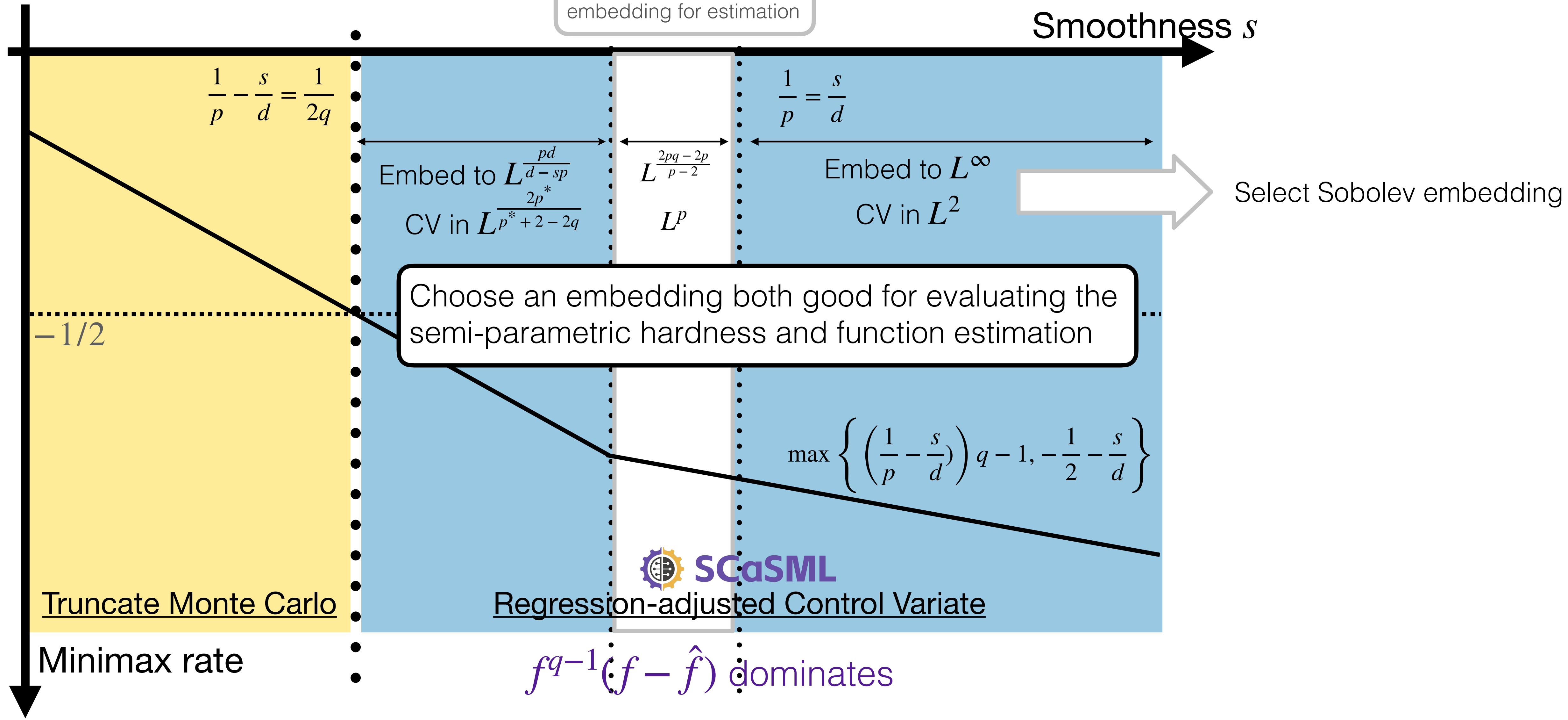
$$f^{q-1} (f - \hat{f}) + (f - \hat{f})^q$$

“influence function” (gradient) Error p

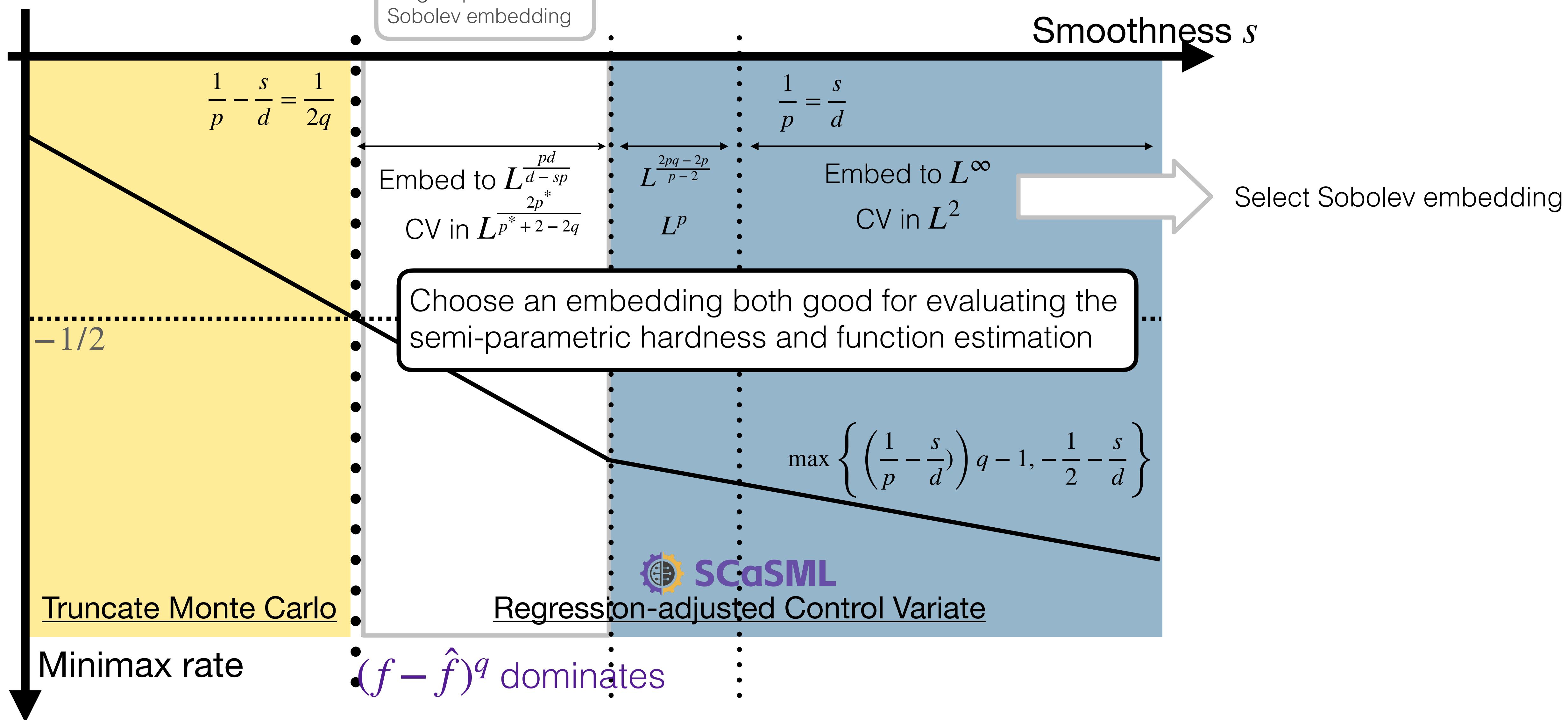
Embed f^{q-1} and $f - \hat{f}$ into “dual” space

How to select the
Sobolev embedding?

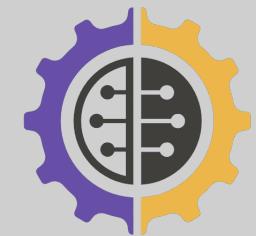
Selecting the Sobolev Embedding



|| Selecting the Sobolev Embedding



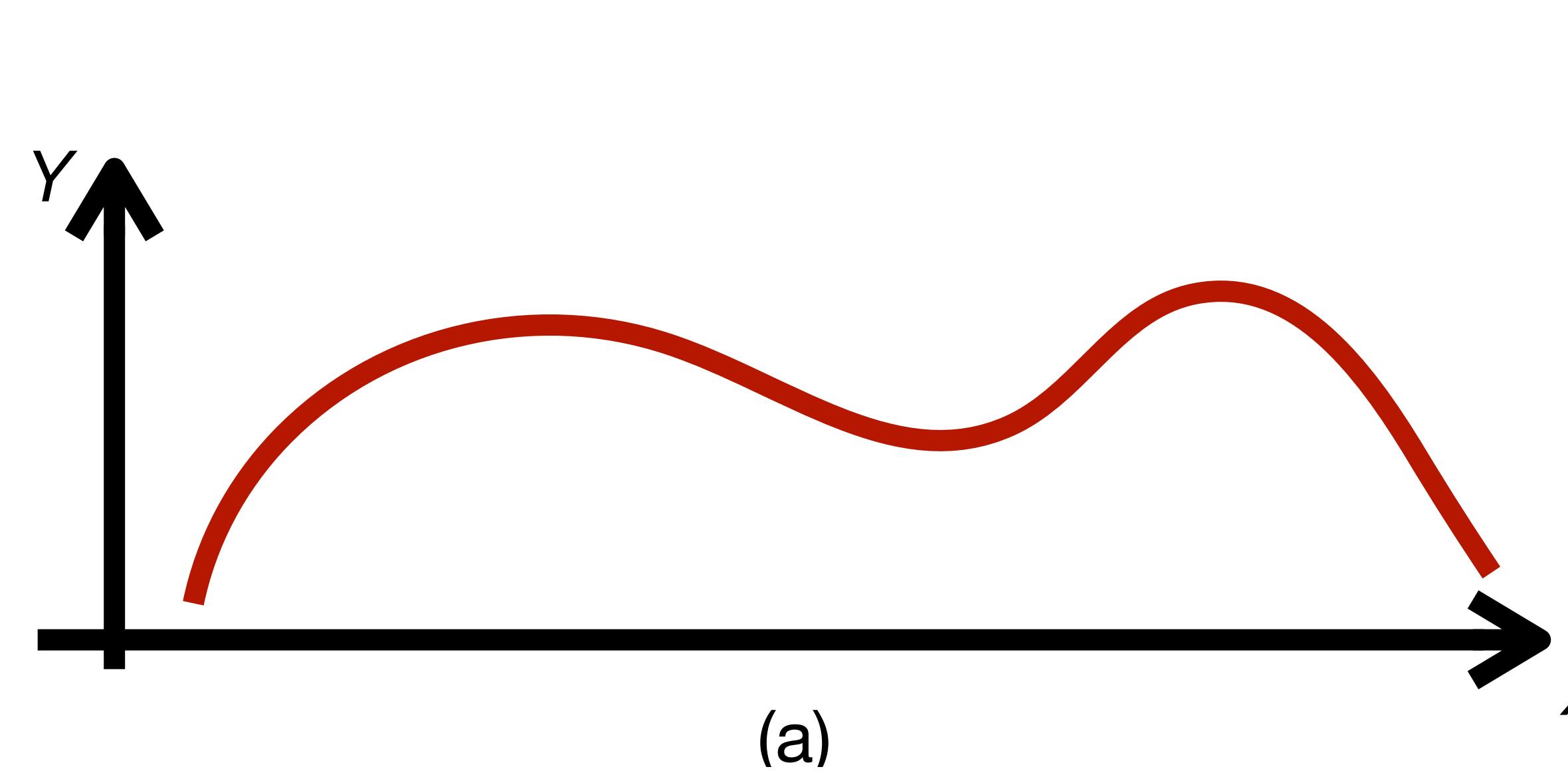
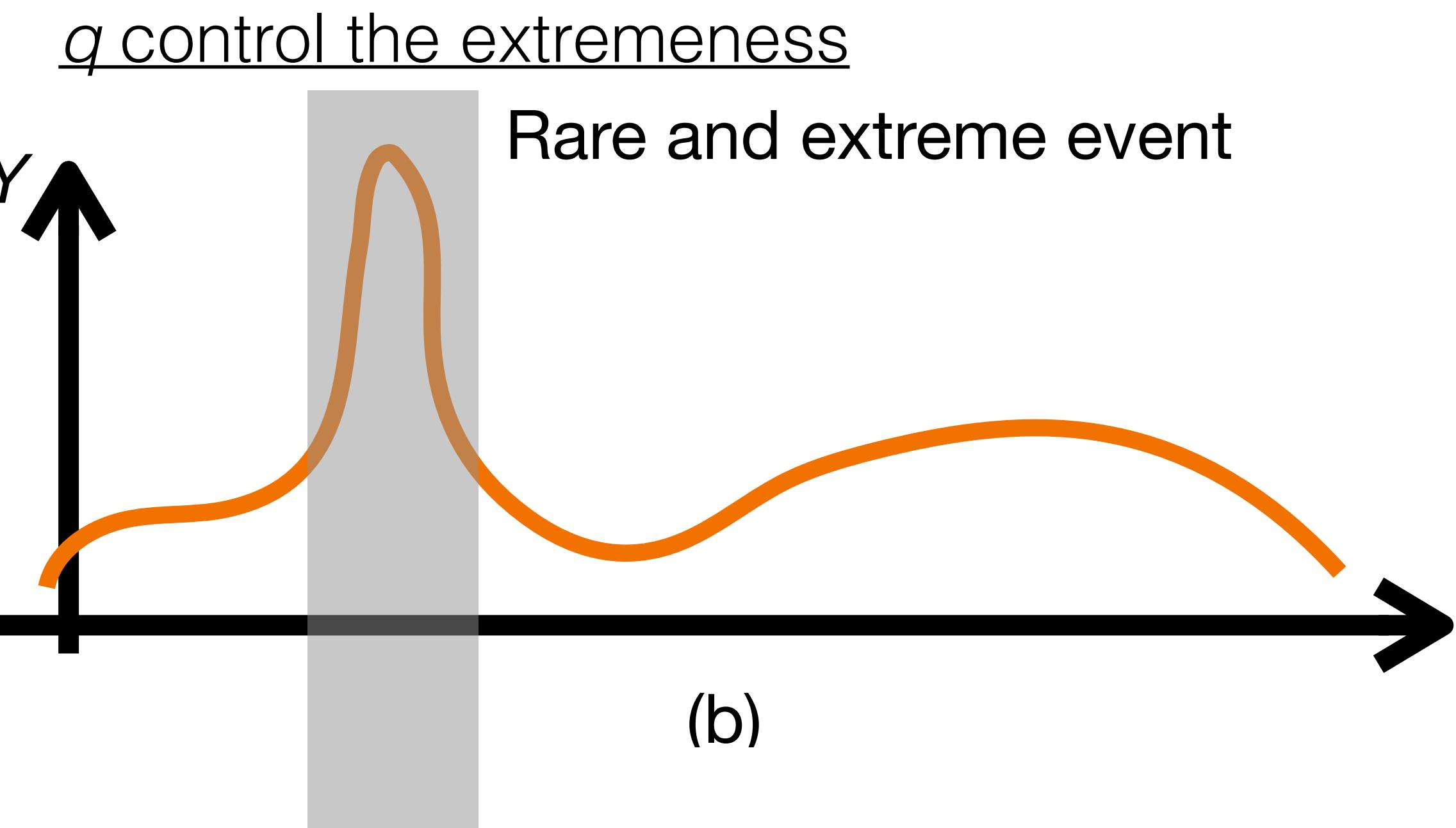
Take Home Message on the Theory



SCaML

- a) Statistical optimal regression is the optimal control variate
- b) It helps only if there isn't a hard to simulate (infinite variance)

Rare and extreme event



When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality

Jose Blanchet

Department of MS&E and ICME
Stanford University
Stanford, CA 94305
jose.blanchet@stanford.edu

Haoxuan Chen

ICME
Stanford University
Stanford, CA 94305
haoxuanc@stanford.edu

Yiping Lu

Courant Institute of Mathematical Sciences
New York University
New York, NY 10012
yiping.lu@nyu.edu

Lexing Ying

Department of Mathematics and ICME
Stanford University
Stanford, CA 94305
lexing@stanford.edu

PDE Solver

The PDE Example

Let's consider $\Delta u = f$

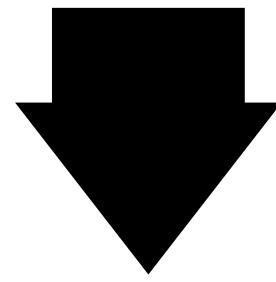
$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

$$\theta = u, \quad \underbrace{X_i}_{=} = (x_i, f(x_i))$$

$$\Phi(\theta) = u(x), \text{ or } \int (u(x)) dx$$



FEM/PINN/DGM/Tensor/Sparse Grid/...:

$$\hat{\theta} = \hat{u}$$

The PDE Example

Let's consider $\Delta u = f$

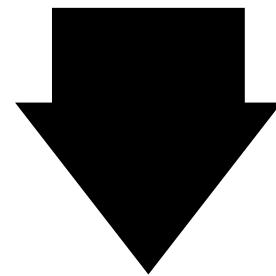
$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

$$\theta = u, \quad \underbrace{X_i}_{=} = (x_i, f(x_i))$$

$$\Phi(\theta) = u(x), \text{ or } \int (u(x))dx$$



What is $\Phi(\theta) - \Phi(\hat{\theta}) = u(x) - \hat{u}(x)$?

FEM/PINN/DGM/Tensor/Sparse Grid/...

$$\hat{\theta} = \hat{u}$$

$$\Phi(\hat{\theta}) = \hat{u}(x)$$

The PDE Example

Let's consider $\Delta u = f$

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

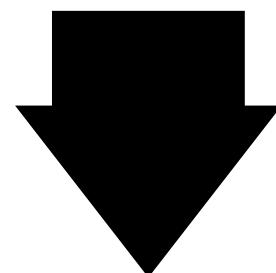
Scientific Machine Learning

Downstream application

$$\Delta u = f$$

$$\theta = u, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = u(x), \text{ or } \int (u(x))dx$$



What is $\Phi(\theta) - \Phi(\hat{\theta}) = u(x) - \hat{u}(x)$?

$$\Delta \hat{u} = \hat{f}$$

FEM/PINN/DGM/Tensor/Sparse Grid/...

$$\hat{\theta} = \hat{u}$$

$$\Phi(\hat{\theta}) = \hat{u}(x)$$

||

$$\Delta(u - \hat{u}) = f - \hat{f}$$

$$(u - \hat{u})(x) = \mathbb{E} \int (f - \hat{f})(X_t)dt$$

Works for Semi-linear PDE

$$\frac{\partial U}{\partial t}(x, t) + \boxed{\Delta U(x, t)} + f(U(x, t)) = 0$$

Keeps the structure to enable brownian motion simulation

Can you do simulation
for nonlinear equation?

Δ is linear!

Works for Semi-linear PDE

$$\frac{\partial U}{\partial t}(x, t) + \boxed{\Delta U(x, t)} + f(U(x, t)) = 0$$

Keeps the structure to enable brownian motion simulation

$$\frac{\partial \hat{U}}{\partial t}(x, t) + \boxed{\Delta \hat{U}(x, t)} + f(\hat{U}(x, t)) = g(x, t)$$

$g(x, t)$ is the error made by NN

Works for Semi-linear PDE

$$\frac{\partial U}{\partial t}(x, t) + \boxed{\Delta U(x, t)} + f(U(x, t)) = 0$$

Keeps the structure to enable brownian motion simulation

$$\frac{\partial \hat{U}}{\partial t}(x, t) + \boxed{\Delta \hat{U}(x, t)} + f(\hat{U}(x, t)) = g(x, t)$$

NN

g(x, t) is the error made by NN

Subtract two equations

$$\frac{\partial(U - \hat{U})}{\partial t}(x, t) + \boxed{\Delta(U - \hat{U})(x, t)} + \underbrace{f(t, \hat{U}(x, t) + U(x, t) - \hat{U}(x, t)) - f(t, \hat{U}(x, t))}_{G(t, (U - \hat{U})(x, t))} = g(x, t).$$

Keeps the linear structure

Closed with respect to $U - \hat{U}$ for we know \hat{U}

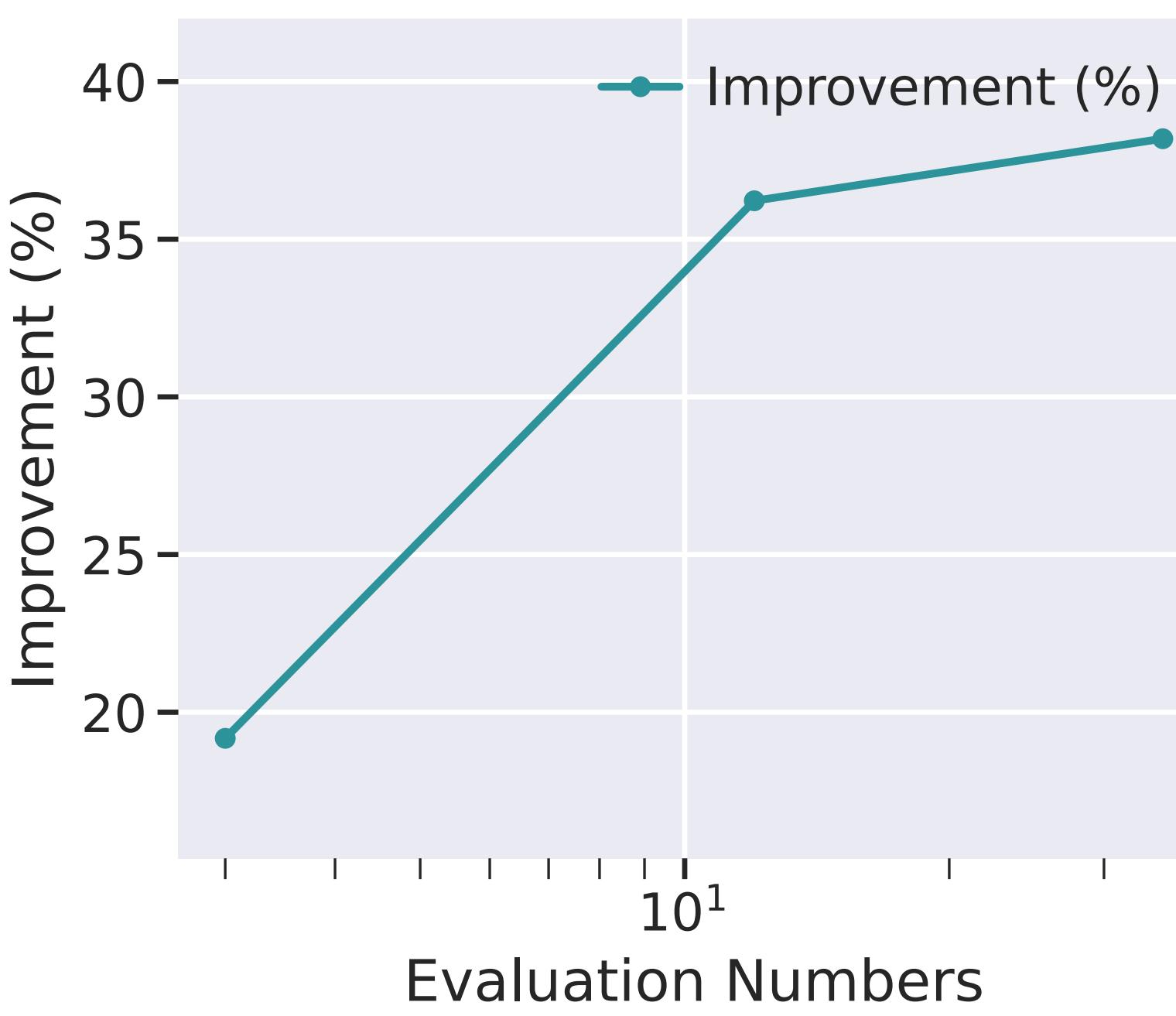
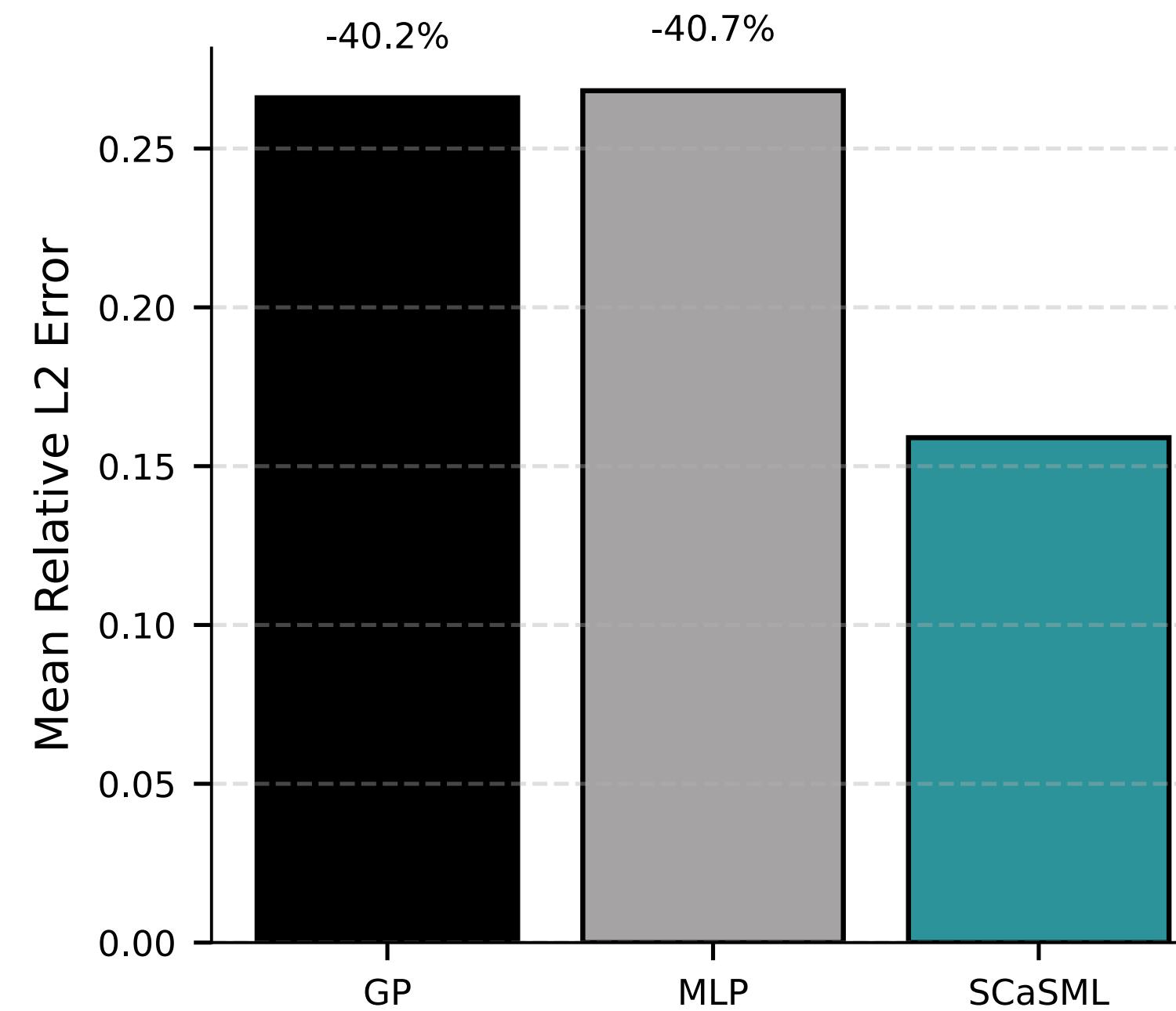
Numerical Results

		Time (s)			Relative L^2 Error			L^∞ Error			L^1 Error		
		SR	MLP	SCaSML	SR	MLP	SCaSML	SR	MLP	SCaSML	SR	MLP	SCaSML
LCD	10d	2.64	11.24	23.75	5.24E-02	2.27E-01	2.73E-02	2.50E-01	9.06E-01	1.61E-01	3.43E-02	1.67E-01	1.78E-02
	20d	1.14	7.35	17.59	9.09E-02	2.35E-01	4.73E-02	4.52E-01	1.35E+00	3.28E-01	9.47E-02	2.37E-01	4.52E-02
	30d	1.39	7.52	25.33	2.30E-01	2.38E-01	1.84E-01	4.73E+00	1.59E+00	1.49E+00	1.75E-01	2.84E-01	1.91E-01
	60d	1.13	7.76	35.58	3.07E-01	2.39E-01	1.32E-01	3.23E+00	2.05E+00	1.55E+00	5.24E-01	4.07E-01	2.06E-01
VB-PINN	20d	1.15	7.05	13.82	1.17E-02	8.36E-02	3.97E-03	3.16E-02	2.96E-01	2.16E-02	5.37E-03	3.39E-02	1.29E-03
	40d	1.18	7.49	16.48	3.99E-02	1.04E-01	2.85E-02	8.16E-02	3.57E-01	7.16E-02	1.97E-02	4.36E-02	1.21E-02
	60d	1.19	7.57	19.83	3.97E-02	1.17E-01	2.90E-02	8.10E-02	3.93E-01	7.10E-02	1.95E-02	4.82E-02	1.24E-02
	80d	1.32	7.48	21.99	6.78E-02	1.19E-01	5.68E-02	1.89E-01	3.35E-01	1.79E-01	3.24E-02	4.73E-02	2.49E-02
VB-GP	20d	1.97	10.66	65.46	1.47E-01	8.32E-02	5.52E-02	3.54E-01	2.22E-01	2.54E-01	7.01E-02	3.50E-02	1.91E-02
	40d	1.68	10.14	49.38	1.81E-01	1.05E-01	7.95E-02	4.01E-01	3.47E-01	3.01E-01	9.19E-02	4.25E-02	3.43E-02
	60d	1.01	7.25	35.14	2.40E-01	2.57E-01	1.28E-01	3.84E-01	9.50E-01	7.10E-02	1.27E-01	9.99E-02	6.11E-02
	80d	1.00	7.00	38.26	2.66E-01	3.02E-01	1.52E-01	3.62E-01	1.91E+00	2.62E-01	1.45E-01	1.09E-01	7.59E-02
LQG	100d	1.54	8.67	26.95	7.96E-02	5.63E+00	5.51E-02	7.78E-01	1.26E+01	6.78E-01	1.40E-01	1.21E+01	8.68E-02
	120d	1.25	8.17	27.46	9.37E-02	5.50E+00	6.64E-02	9.02E-01	1.27E+01	8.02E-01	1.73E-01	1.22E+01	1.05E-01
	140d	1.80	8.27	29.72	9.79E-02	5.37E+00	6.78E-02	1.00E+00	1.27E+01	9.00E-01	1.91E-01	1.23E+01	1.11E-01
	160d	1.74	9.07	32.08	1.11E-01	5.27E+00	9.92E-02	1.38E+00	1.28E+01	1.28E+00	2.15E-01	1.23E+01	1.79E-01
DR	100d	1.62	7.75	60.86	9.52E-03	8.99E-02	8.87E-03	7.51E-02	6.37E-01	6.51E-02	1.13E-02	9.74E-02	1.11E-02
	120d	1.26	7.28	65.66	1.11E-02	9.13E-02	9.90E-03	7.10E-02	5.74E-01	6.10E-02	1.40E-02	9.97E-02	1.23E-02
	140d	2.38	7.82	76.90	3.17E-02	8.97E-02	2.94E-02	1.79E-01	8.56E-01	1.69E-01	3.96E-02	9.77E-02	3.67E-02
	160d	1.75	7.42	82.40	3.46E-02	9.00E-02	3.23E-02	2.08E-01	8.02E-01	1.98E-01	4.32E-02	9.75E-02	4.02E-02

Inference-Time Scaling

$$\frac{\partial}{\partial t}u + \left[\sigma^2u - \frac{1}{d} - \frac{\bar{\sigma}^2}{2}\right](\nabla \cdot u) + \frac{\bar{\sigma}^2}{2}\Delta u = 0$$

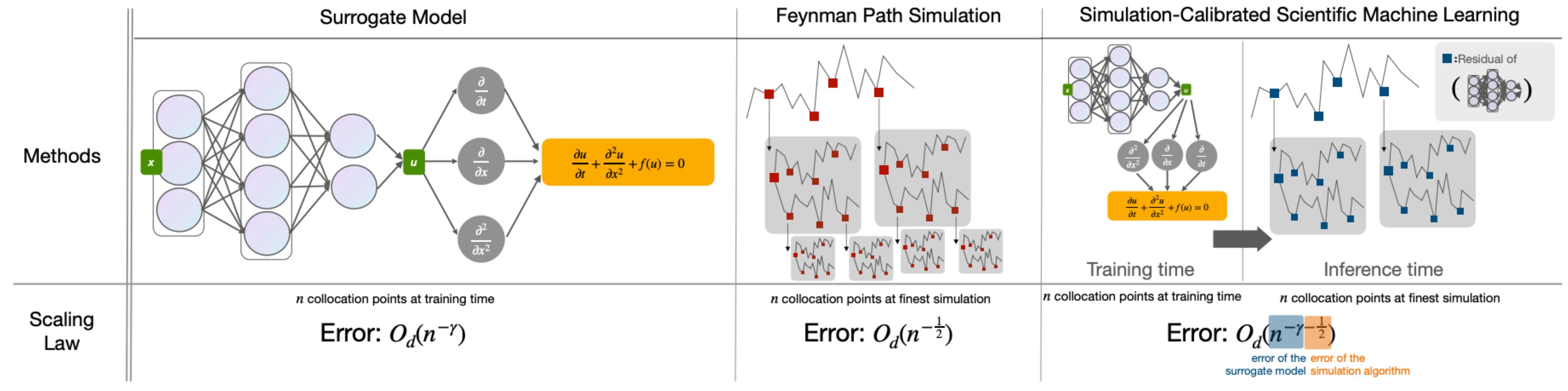
have closed-form solution $g(x) = \frac{\exp(T + \sum_i x_i)}{1 + \exp(T + \sum_i x_i)}$



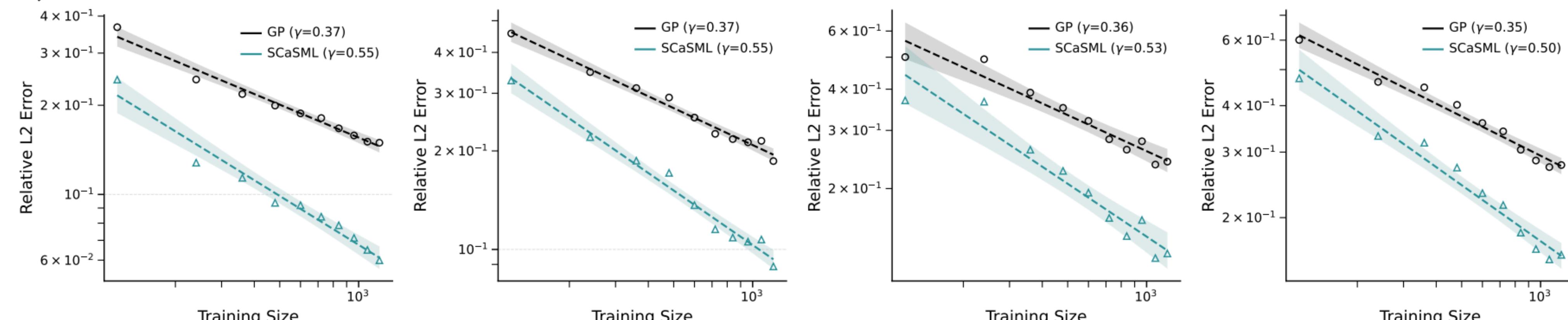
Method	Convergence Rate
PINN	$O(n^{-s/d})$
MLP	$O(n^{-1/4})$
SCaSML	$O(n^{-1/4-s/d})$

Better Scaling Law

a)



b)

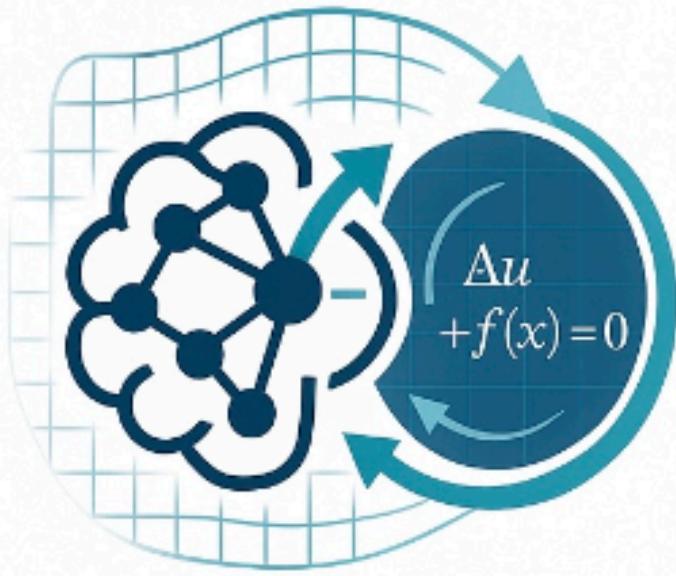


(a) $d = 20$

(b) $d = 40$

(c) $d = 60$

(d) $d = 80$



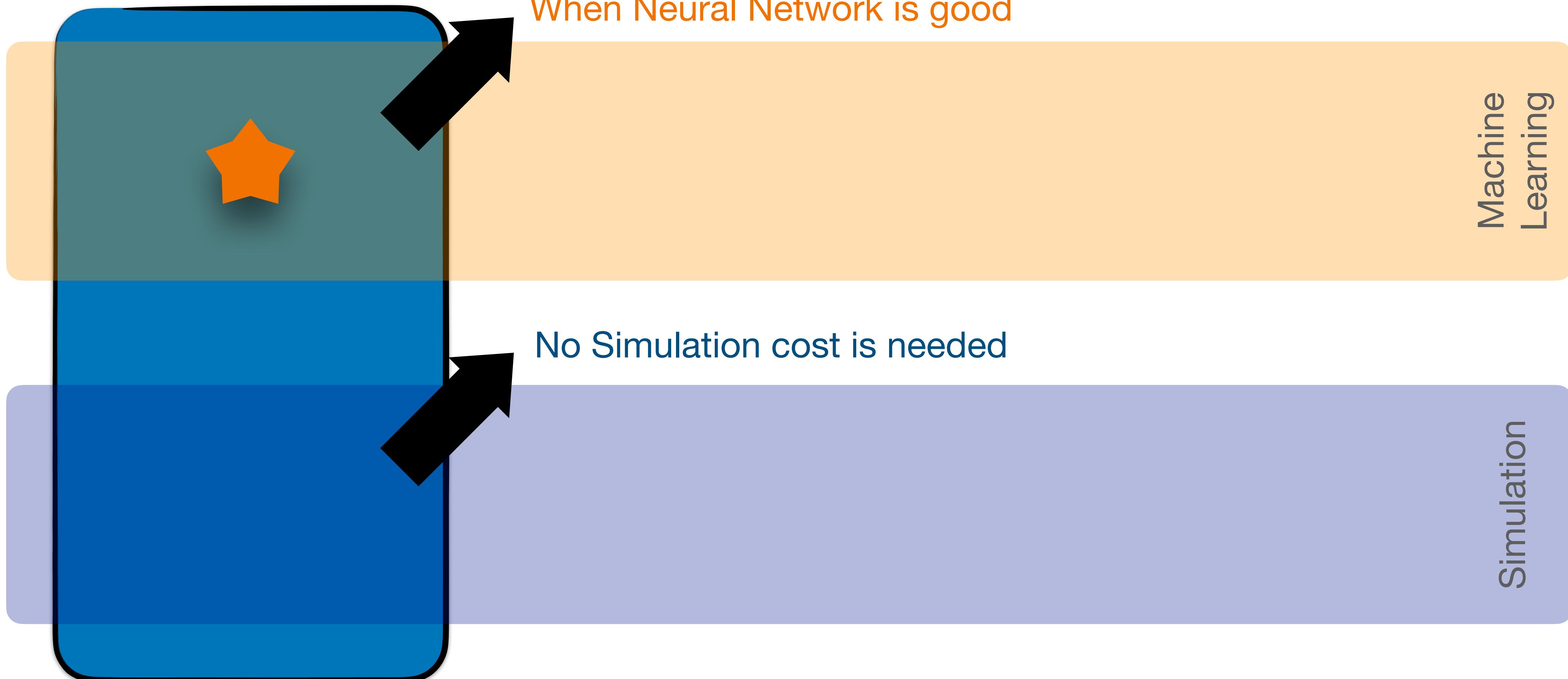
Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning

Zexi Fan¹, Yan Sun², Shihao Yang³, Yiping Lu^{*4}

¹ Peking University ² Visa Inc. ³ Georgia Institute of Technology ⁴ Northwestern University
fanzexi_francis@stu.pku.edu.cn, yansun414@gmail.com,
shihao.yang@isye.gatech.edu, yiping.lu@northwestern.edu

https://2prime.github.io/files/scasml_techreport.pdf

Our Aim Today : A Marriage



Our Aim Today : A Marriage

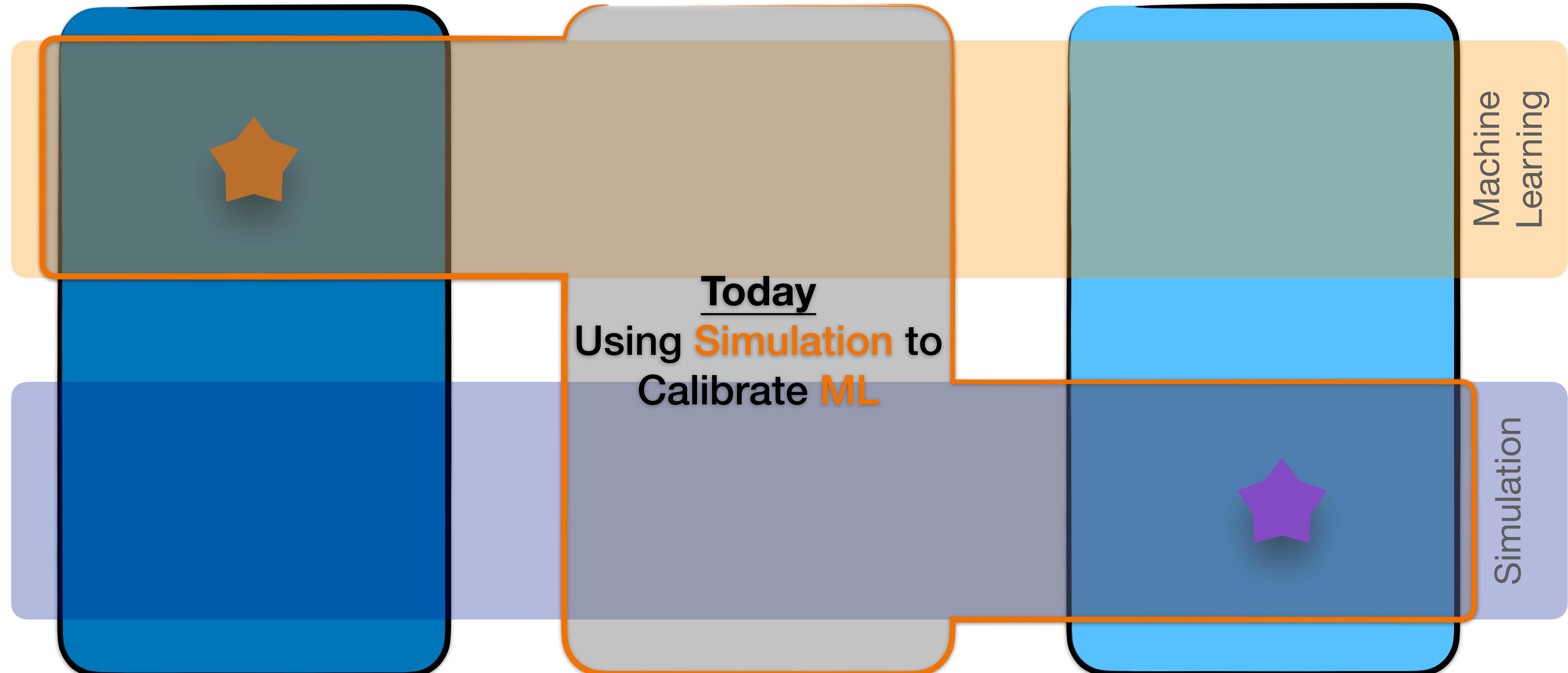
When Neural Network is bad

Provide pure Simulation solution

Machine
Learning

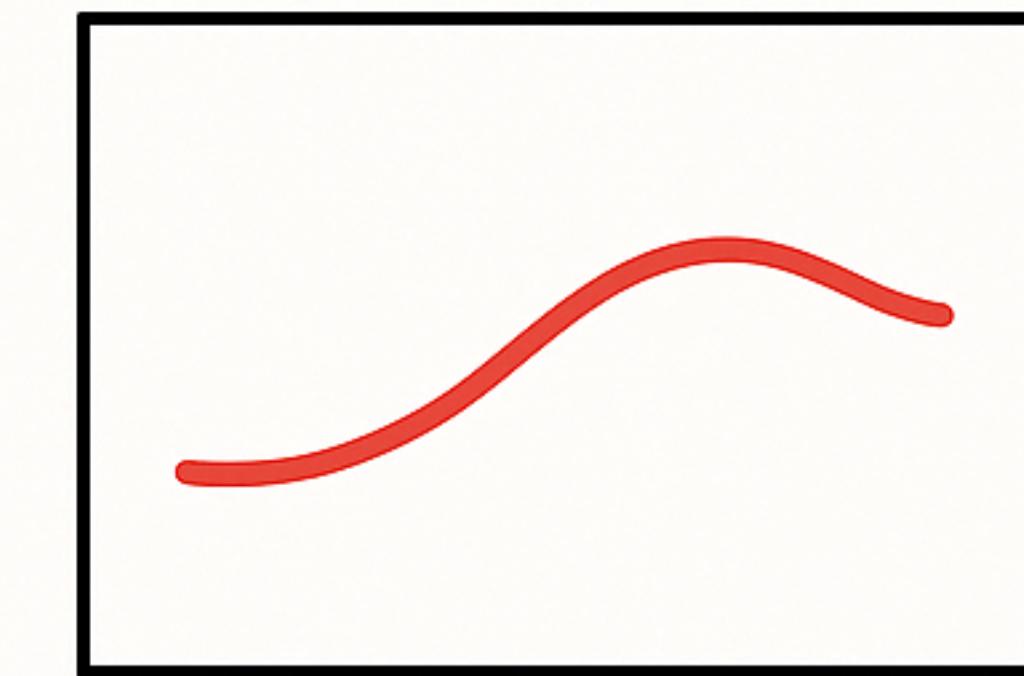
Simulation

Our AIM Today: A Marriage



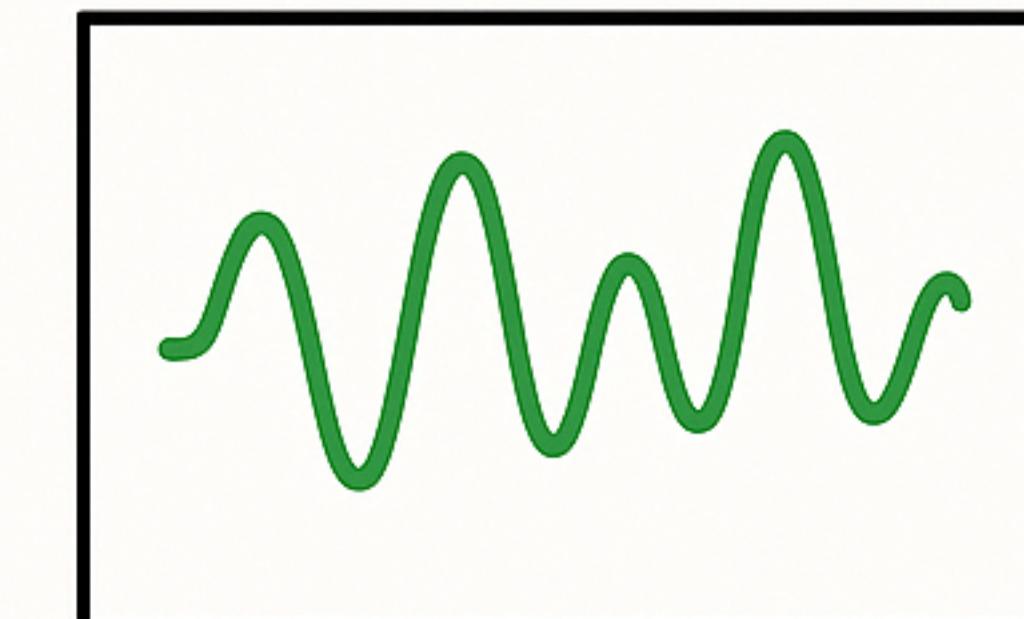
A multiscale view

Capture via surrogate model



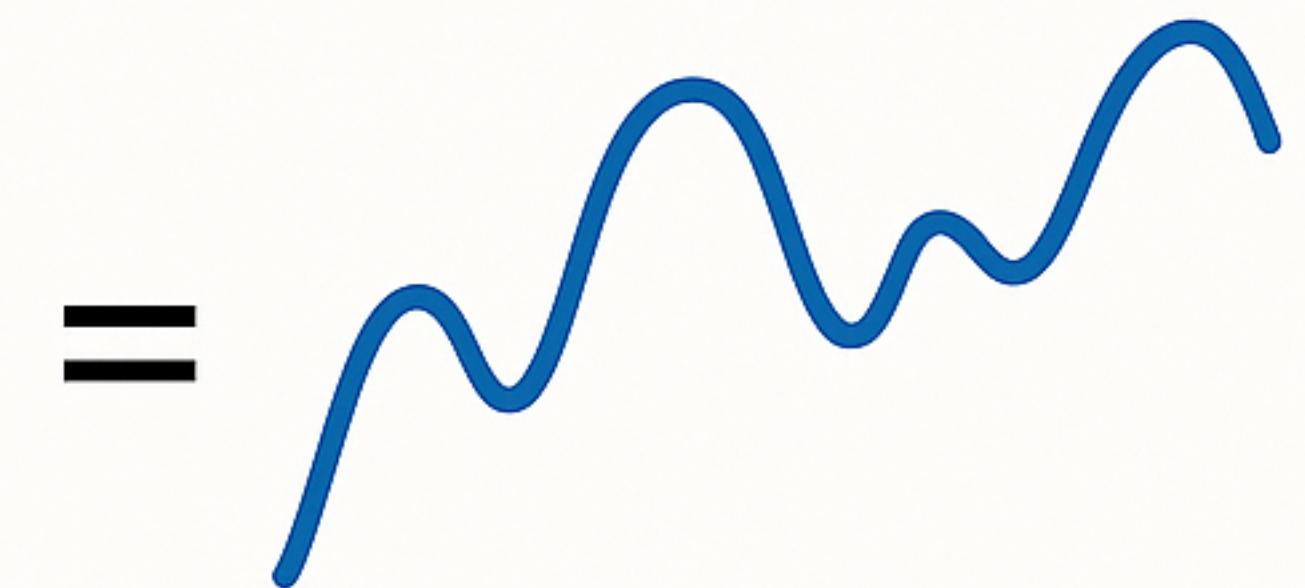
Coarse Scale

+

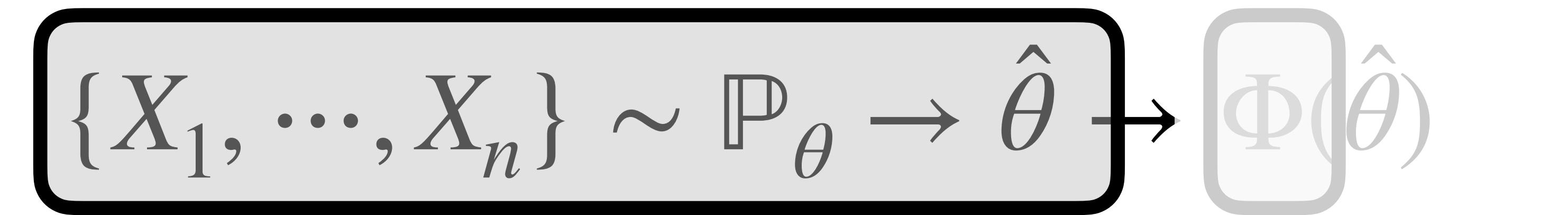


Fine Scale

True
Function

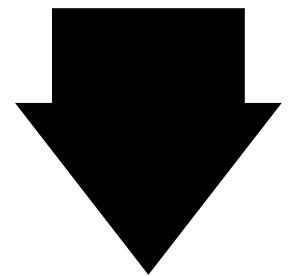


A Numerical Linear Algebra Example



Example

$$\theta = A, \quad \underbrace{X_i}_{\text{(Randomized) Subspace methods}} = (x_i, Ax_i) \quad \Phi(\theta) = \text{tr}(A)$$



Randomized SVD: $\hat{\theta} = \hat{A}$

A Numerical Linear Algebra Example

Example

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

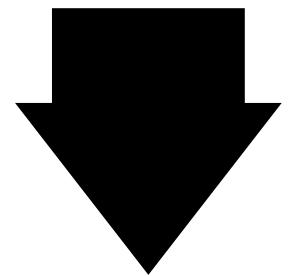
Scientific Machine Learning

Downstream application

$$\theta = A, \quad \underbrace{X_i}_{\text{(Randomized) Subspace methods}} = (x_i, Ax_i)$$

$$\Phi(\theta) = \text{tr}(A)$$

Application in graph theory, quantum ...



Randomized SVD: $\hat{\theta} = \hat{A}$

$$\Phi(\hat{\theta}) = \text{tr}(\hat{A})$$

A Numerical Linear Algebra Example

Example

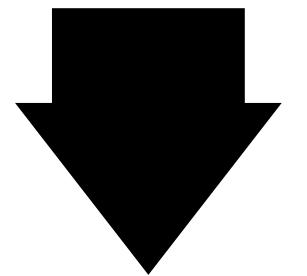
$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

$$\theta = A, \quad \underbrace{X_i}_{(\text{Randomized}) \text{ Subspace methods}} = (x_i, Ax_i)$$

$$\Phi(\theta) = \text{tr}(A)$$



Randomized SVD: $\hat{\theta} = \hat{A}$

||

$$\Phi(\hat{\theta}) = \text{tr}(\hat{A})$$

+

$$\Phi(\theta) - \Phi(\hat{\theta}) = \text{tr}(A - \hat{A})$$

Estimate $\text{tr}(A - \hat{A})$ via Hutchinson's estimator

More Examples...

Scientific Machine Learning

Downstream application

Example 1

$$\theta = f, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = \int f^q(x) dx$$

Example 2

$$\theta = \Delta^{-1}f, \quad X_i = (x_i, f(x_i))$$

$$\Phi(\theta) = \theta(x)$$

Example 3

$$\theta = A, \quad X_i = (x_i, Ax_i)$$

Estimation \hat{A} via Randomized SVD

$$\Phi(\theta) = \text{tr}(A)$$

Estimate $\text{tr}(A - \hat{A})$ via Hutchinson's estimator

Example 4

Siegel J W, Xu J. Sharp bounds on the approximation rates, metric entropy, and n -widths of shallow neural networks.

Foundations of Computational Mathematics, 2024, 24(2): 481-537.

More Examples... (Uncertainty Quantification)

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

Example 5

$$\theta = \theta, \quad X_i \sim P_\theta$$

Quantile regression

Confidence Interval of
Point Estimation

Conformal Prediction

Romano Y, Patterson E, Candes E. Conformalized quantile regression. Neurips 2019.

Influence Function

Bootstrap

Liu K, Blanchet J, Ying L, et al. Orthogonal bootstrap: efficient simulation of input uncertainty. ICML 2024.

More Examples... (Sampling)

$$\boxed{\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})}$$

Scientific Machine Learning

Downstream application

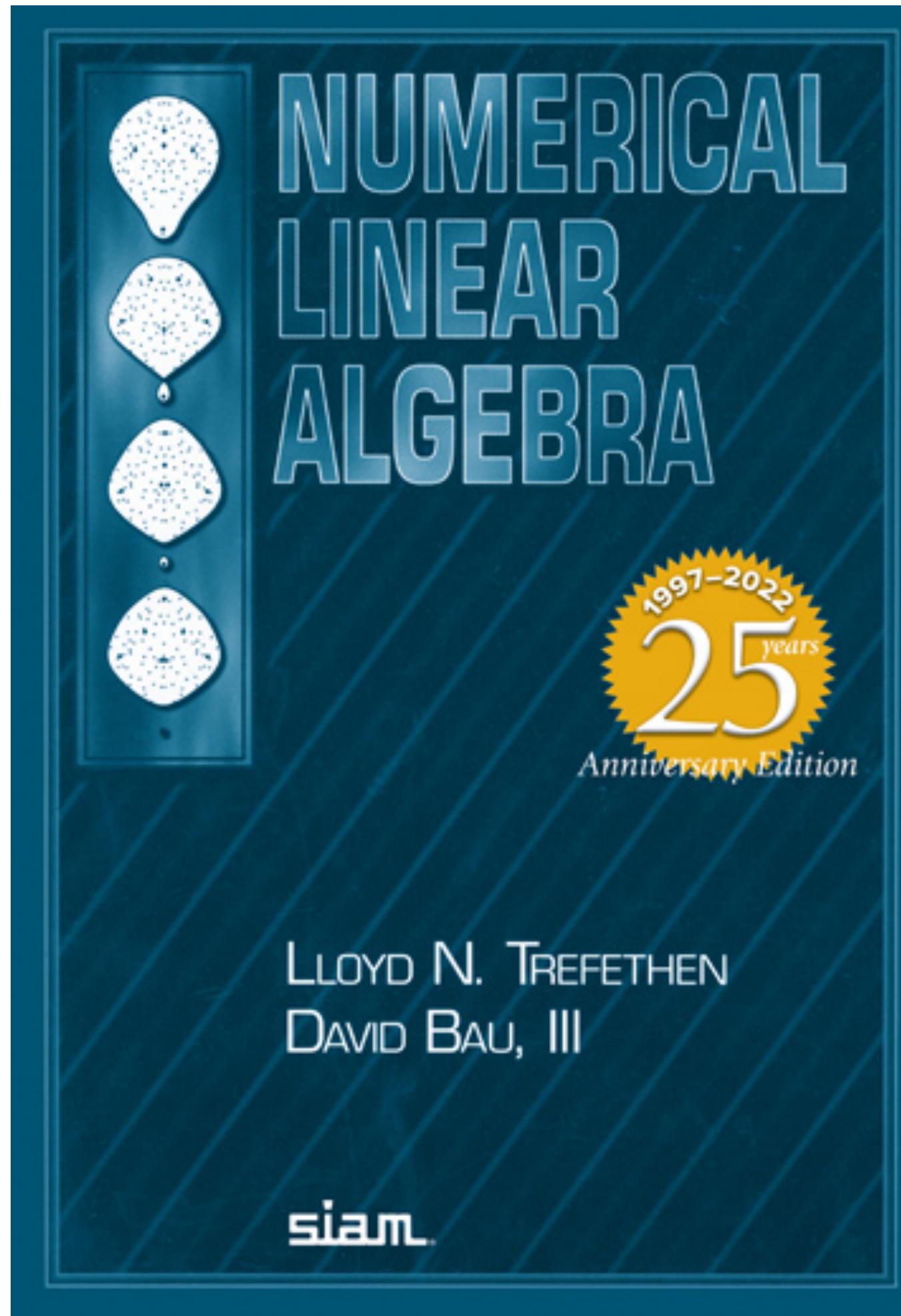
Example 6

$$\theta = V, \quad X_i = (x_i, V(x_i), -\nabla V(x_i)) \quad \Phi(\theta) = \int e^{-V(x)} dx$$

Holzmüller D, Bach F. Convergence rates for non-log-concave sampling and log-partition estimation.
arXiv preprint arXiv:2303.03237, 2023.

Tale 2: Pre-condition with a surprising connection with **debiasing**

Tale 2: Preconditioning



"In ending this book with the subject of preconditioners, we find ourselves at the philosophical center of the scientific computing of the future."

— L. N. Trefethen and D. Bau III, Numerical Linear Algebra [TB22]

Nothing will be more central to computational science in the next century than **the art of transforming a problem that appears intractable into another whose solution can be approximated rapidly**.

What is precondition

- Solving $Ax = b$ is equivalent to solving $B^{-1}Ax = B^{-1}b$
hardness depend on $\kappa(A)$ hardness depend on $\kappa(B^{-1}A)$

Become easier when $B \approx A$

A New Way to Implement Precondition

- Debiasing is a way of solving $Ax = b$
 - Using an approximate solver $Bx_1 = b$

A New Way to Implement Precondition

- Debiasing is a way of solving $Ax = b$
 - Using an approximate solver $Bx_1 = b$
 - $x - x_1$ satisfies the equation $A(x - x_1) = b - Ax_1$
 - Using the approximate solver to approximate $x - x_1$ via $Bx_2 = b - Ax_1$

Easy to solve for $b - Ax_1$ is small

A New Way to Implement Precondition

- Debiasing is a way of solving $Ax = b$
 - Using an approximate solver $Bx_1 = b$

Iterative Refinement Algorithm

- $x - \sum_{i=1}^t x_i$ satisfies the equation $A(x - \sum_{i=1}^t x_i) = b - A \sum_{i=1}^t x_i$
- Using the approximate solver to approximate $x - \sum_{i=1}^t x_i$ via $Bx_{i+1} = b - A \sum_{i=1}^t x_i$

A New Way to Implement Precondition

- Debiasing is a way of solving $Ax = b$

- Using an approximate solver $Bx_1 = b$

Iterative Refinement Algorithm

• $x - \sum_{i=1}^t x_i$ satisfies the equation $A(x - \sum_{i=1}^t x_i) = b - A \sum_{i=1}^t x_i$

• Using the approximate solver to approximate $x - \sum_{i=1}^t x_i$ via $Bx_{i+1} = b - A \sum_{i=1}^t x_i$

$$x_{i+1} = (I - B^{-1}A)x_i + B^{-1}b$$

Preconditioned Jacobi Iteration

This Talk: A New Way to Implement Precondition Via Debiasing

- **Step 1:** Aim to solve (potentially nonlinear) equation $A(u) = b$

use Machine Learning

- **Step 2:** Build an approximate solver $A(\hat{u}) \approx b$

Unreliable approximate
solver as preconditioner

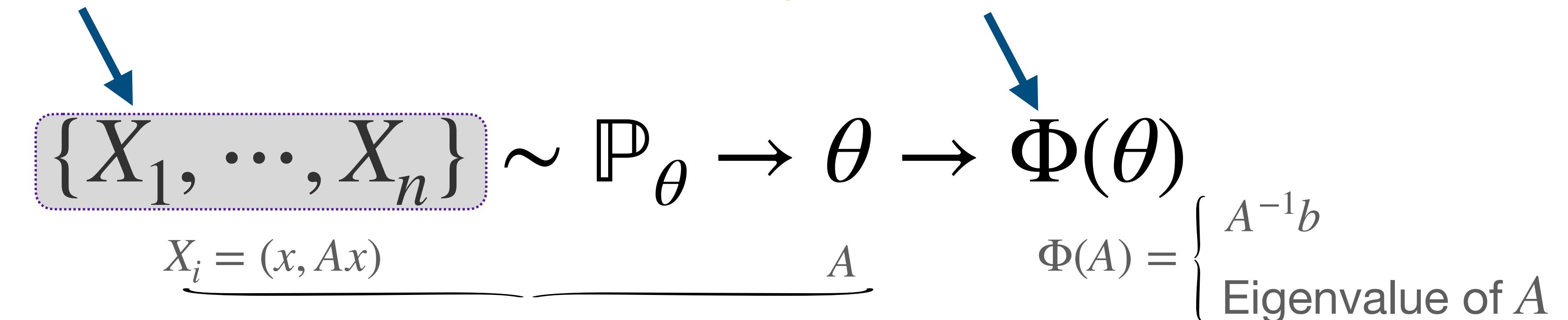
- Via machine learning/sketching/finite element....

- **Step 3:** Solve $u - \hat{u}$

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!

Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem



“Randomized Numerical Linear Algebra”/Sketching

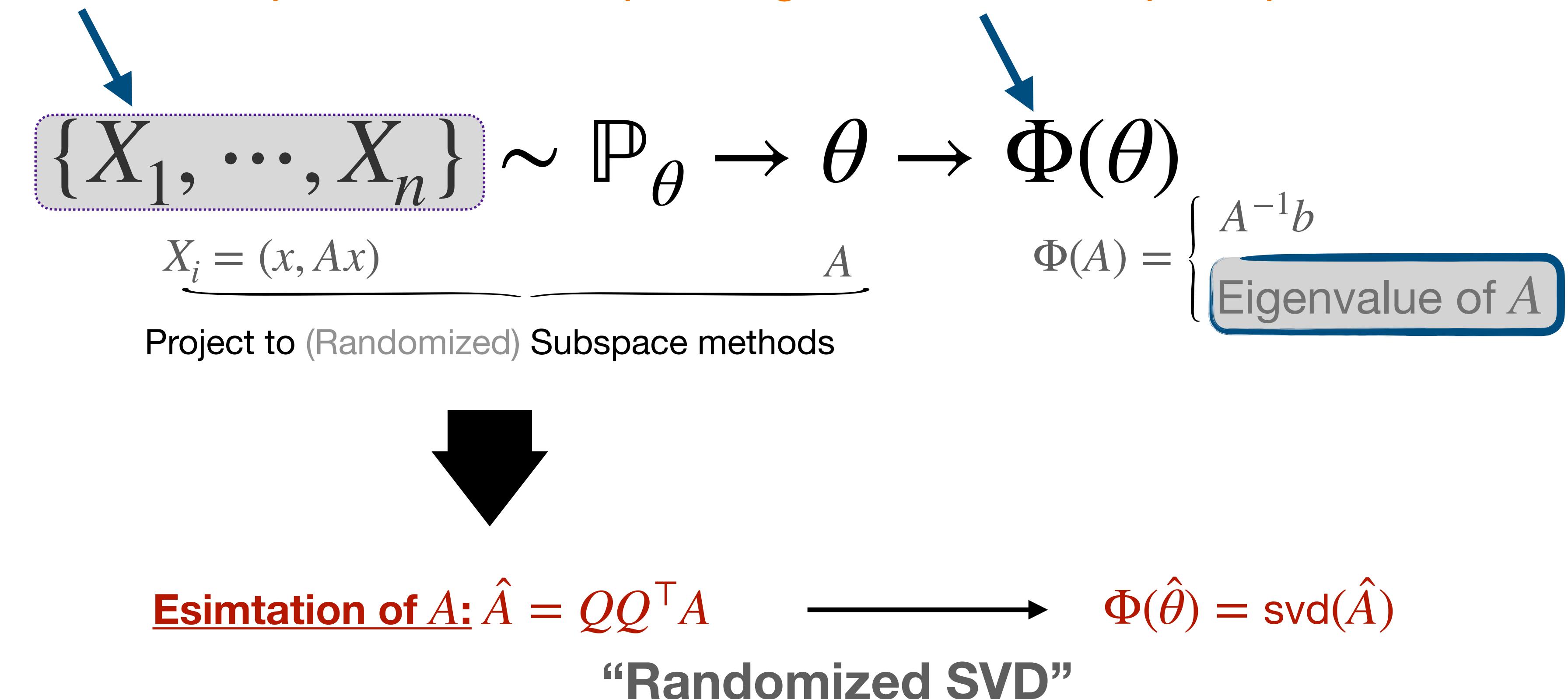
“Sketch-and-Solve”

It seems easier to train a bi-directional LSTM with attention than to compute the SVD of a large matrix. –Chris Re

NeurIPS 2017 Test-of-Time Award, Rahimi and Recht
(Rahimi and Recht, 2017).

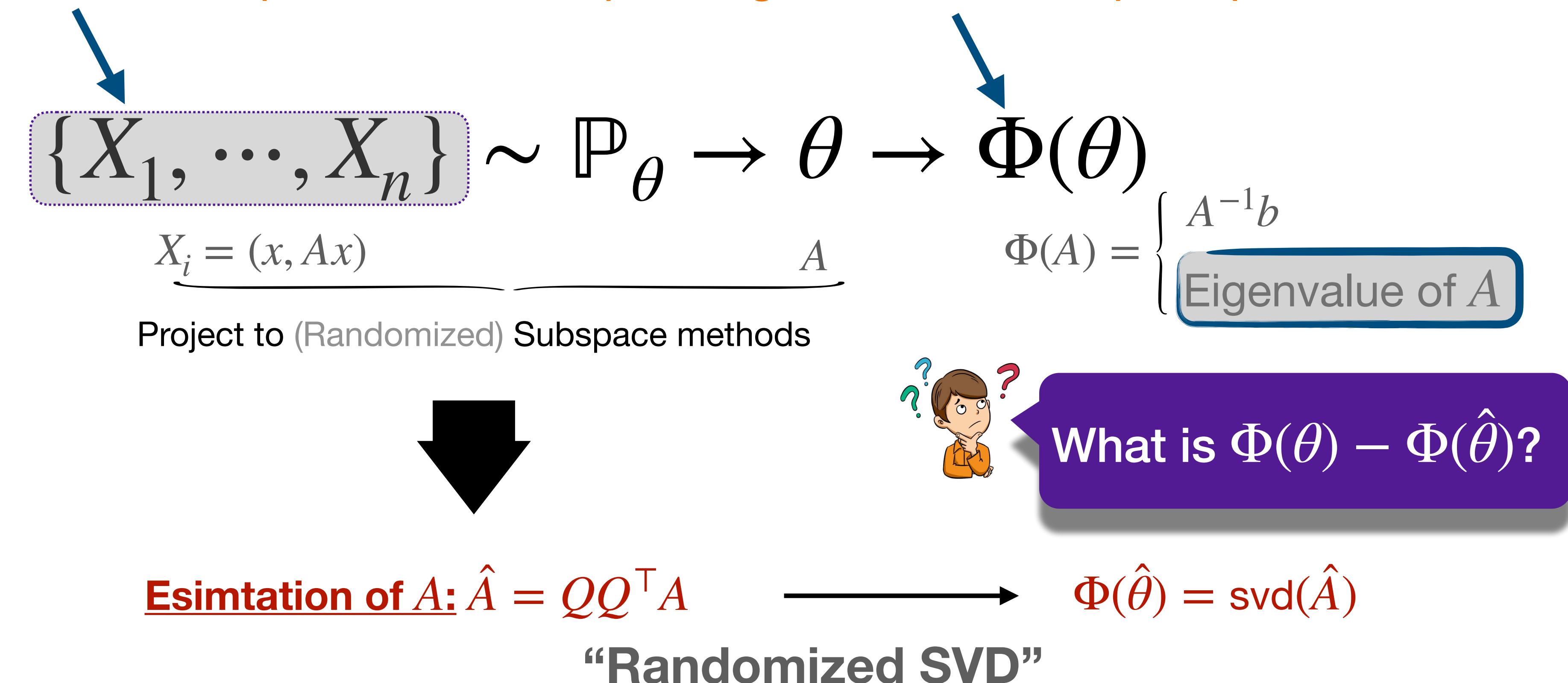
Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem



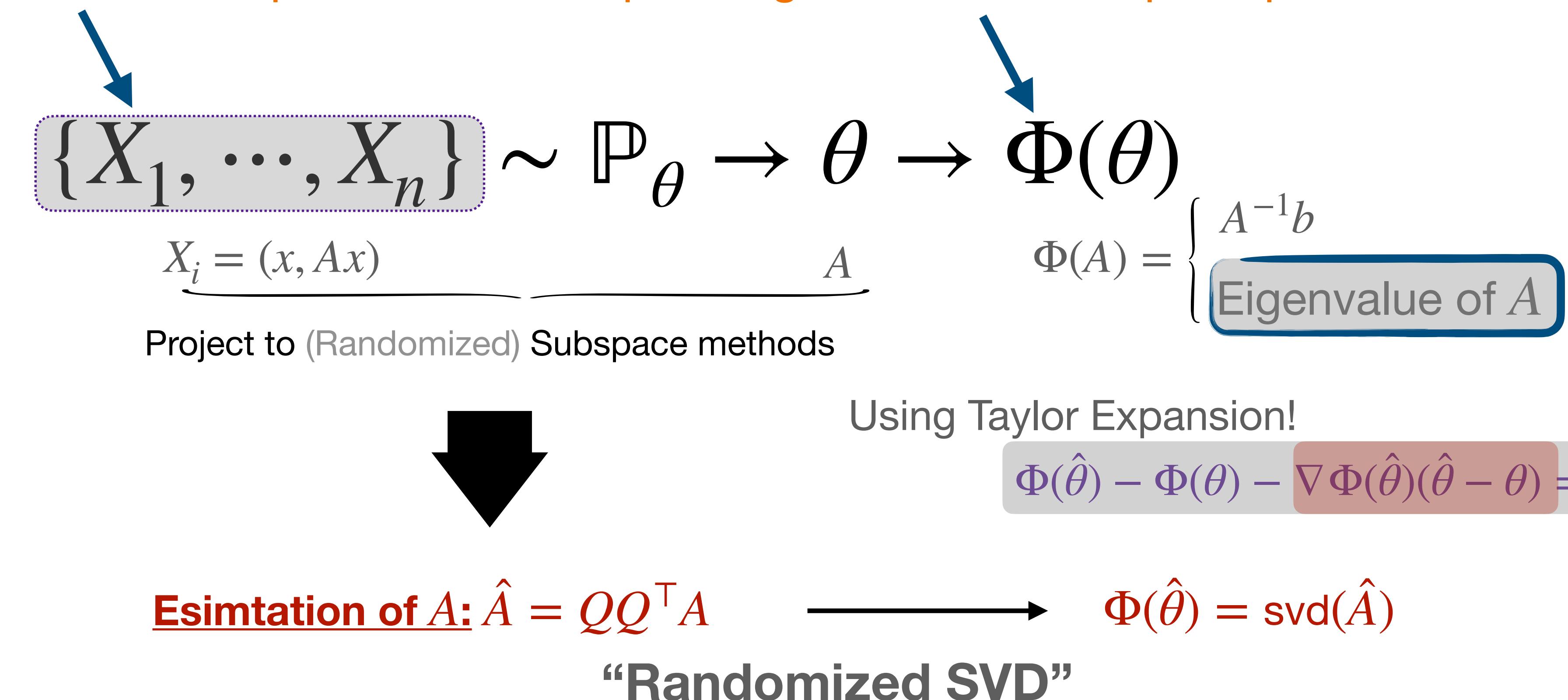
Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem



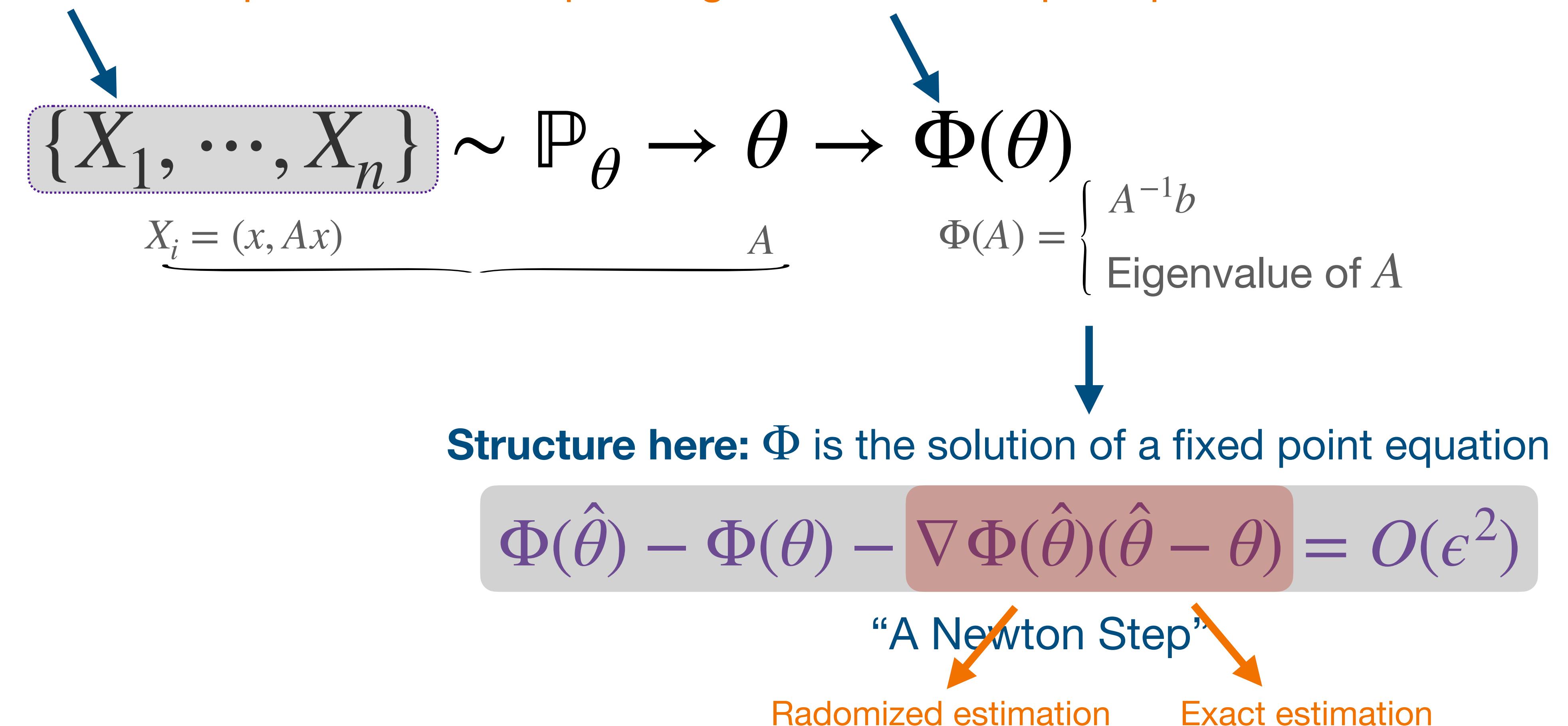
Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem



Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem



(In)exact Sub-sample Newton Method/Sketch-and-Precondition

Relationship with Inverse Power Methods

(Approximate) Inverse Power Method	Our Method
$X_{n+1} = (\lambda I - A)^\dagger X_n$	$X_{n+1} = \boxed{(\lambda I - \hat{A})^\dagger} \boxed{(A - \hat{A}) X_n} \\ \nabla \Phi(\hat{\theta}) \quad (\theta - \hat{\theta})$

Relationship with Inverse Power Methods

(Approximate) Inverse Power Method	Our Method
$X_{n+1} = (\lambda I - A)^\dagger X_n$	$X_{n+1} = (\lambda I - \hat{A})^\dagger (A - \hat{A}) X_n$

Replace with an approximate solver \hat{A} changes the fixed point

True eigenvector is the fix point for every approximate solver \hat{A}

Take Home Message 1:

Power the Residual but not Power the vector

Relationship with Inverse Power Methods

(Approximate) Inverse Power Method

$$X_{n+1} = (\lambda I - A)^\dagger X_n$$

Replace with an approximate
solver \hat{A} changes the fixed point

Our Method

$$X_{n+1} = (\lambda I - \hat{A})^\dagger \underbrace{(A - \hat{A})}_{\text{True eigenvector is the fix point}} X_n$$

True eigenvector is the fix point
for every approximate solver \hat{A}

How do you select the
preconditioner \hat{A} ?

Nyström approximation $\hat{A} = U\Lambda U^\top$
Using Woodbury to compute $(I - \hat{A})^{-1}$

Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

	Sketch-and-Solve	Sketch-and-Precondition
Least Square		Sketch-and-precondition, Sketch-and-project, Iterataive Sketching,
Low rank Approx	Idea 1: plug in a SVD Solver: Random SVD Idea 2: plug in a inverse power method	<u>Our Work!</u>

Use sketched matrix \hat{A} as
an approximation to A

Use sketched matrix \hat{A} as
an precondition to the probelm

Sorry... but I can't see the
relationship....

Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

	Sketch-and-Solve	Sketch-and-Precondition
Least Square		Sketch-and-precondition, Sketch-and-project, Iterataive Sketching,
Low rank Approx	Idea 1: plug in a SVD Solver: Random SVD Idea 2: plug in a inverse power method	 <u>Our Work!</u>

Use sketched matrix \hat{A} as
an approximation to A

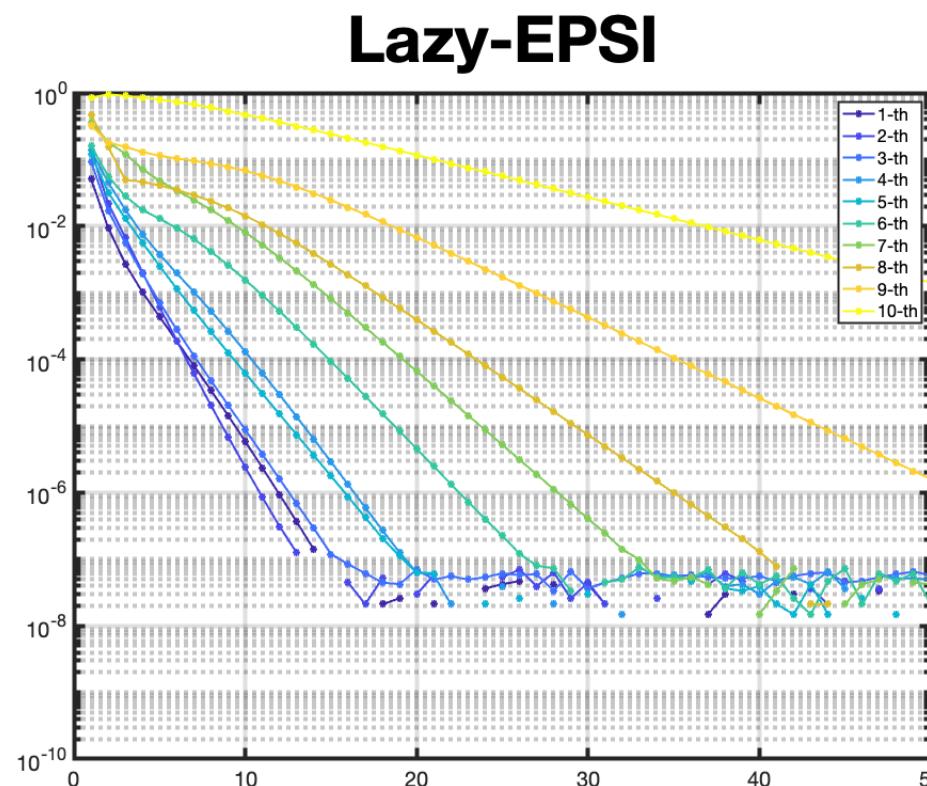
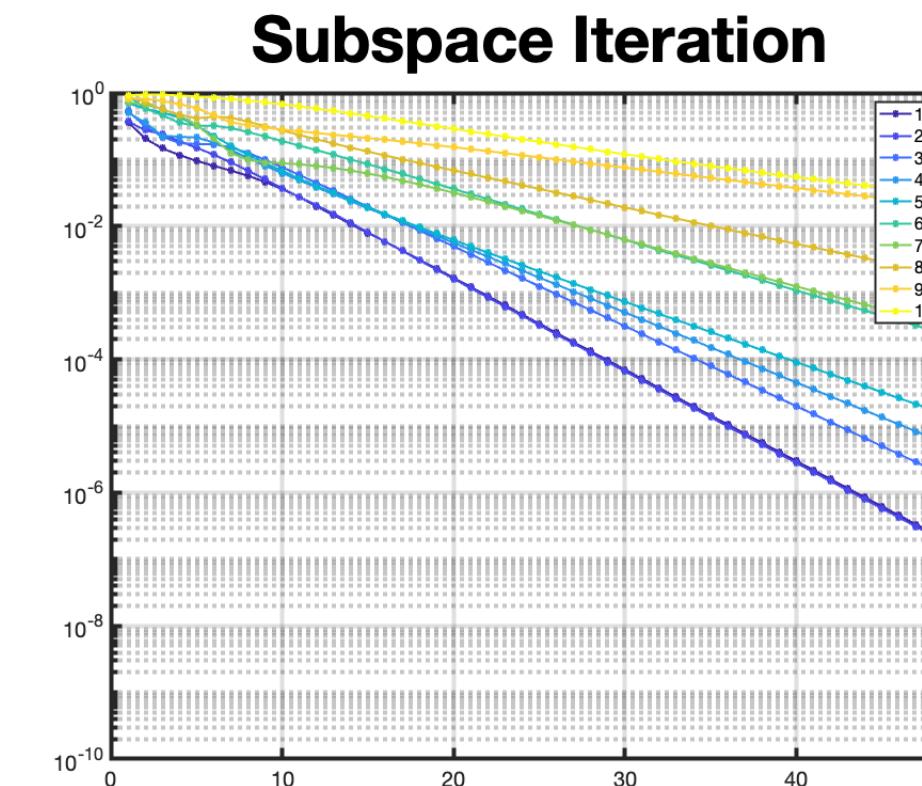
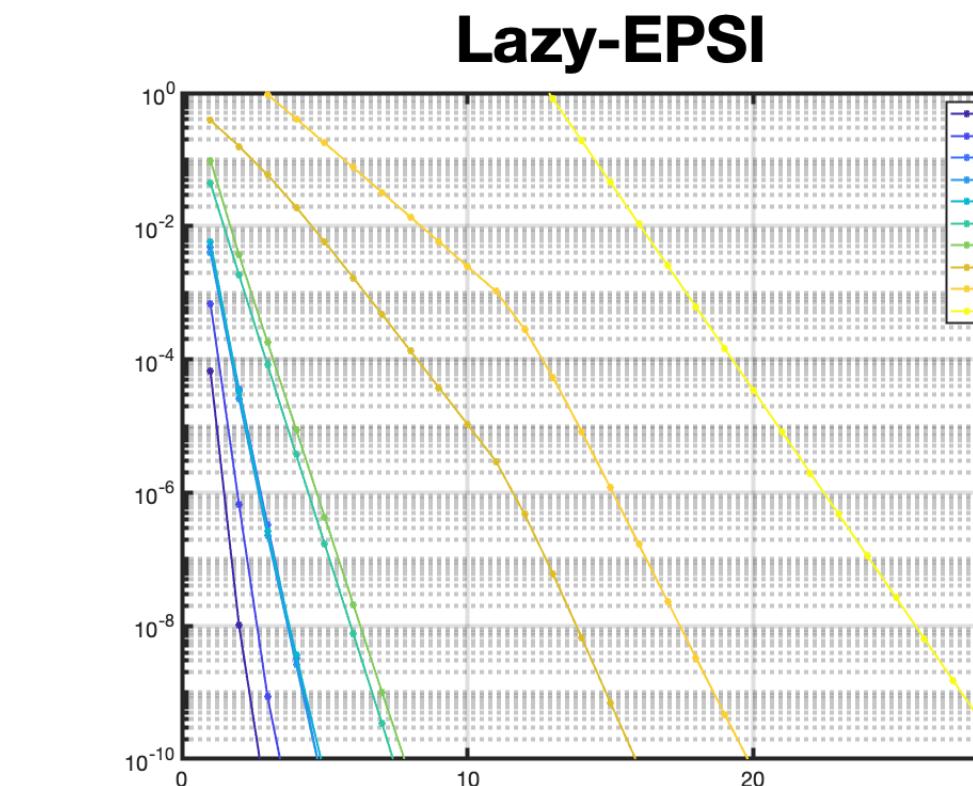
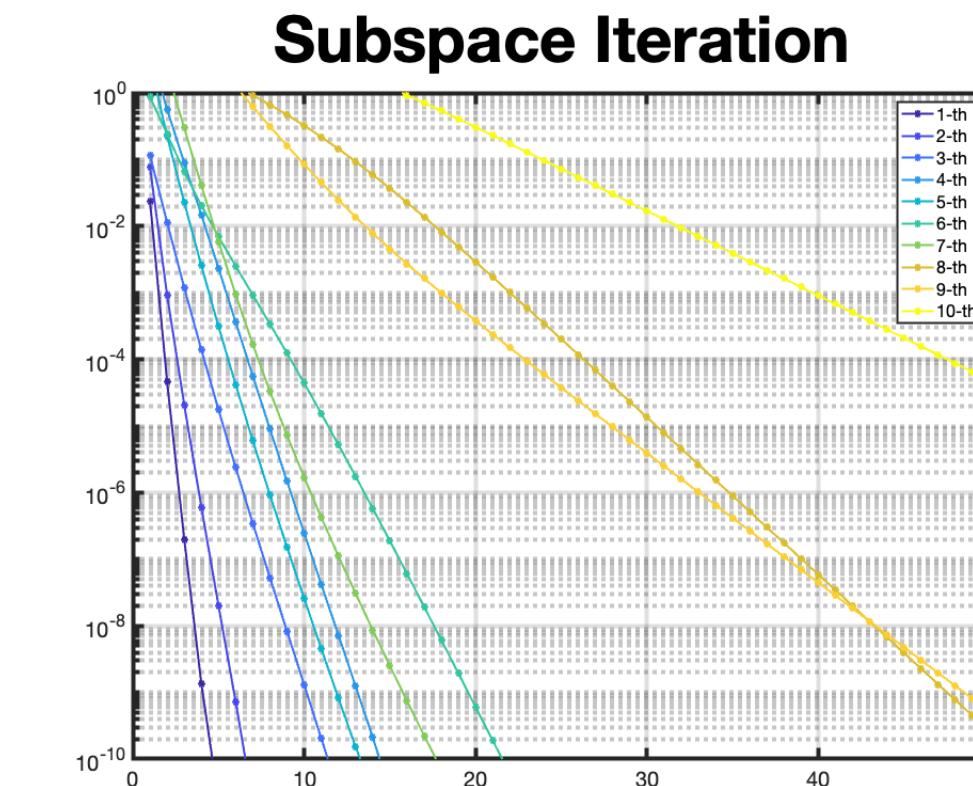
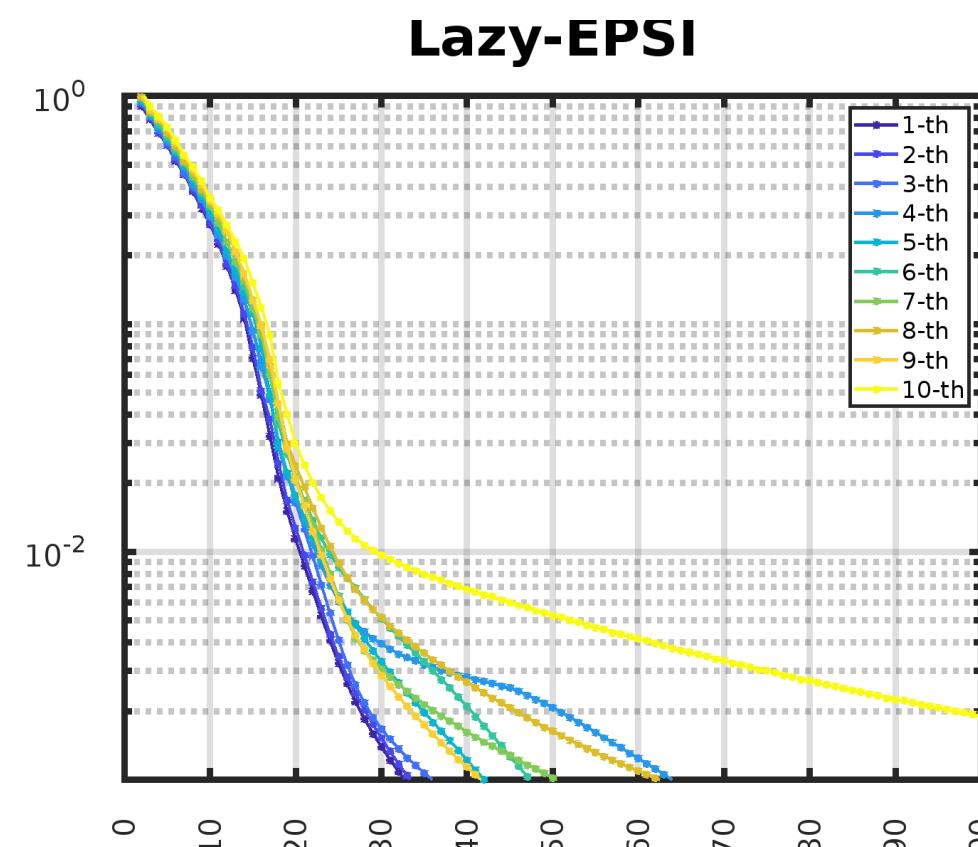
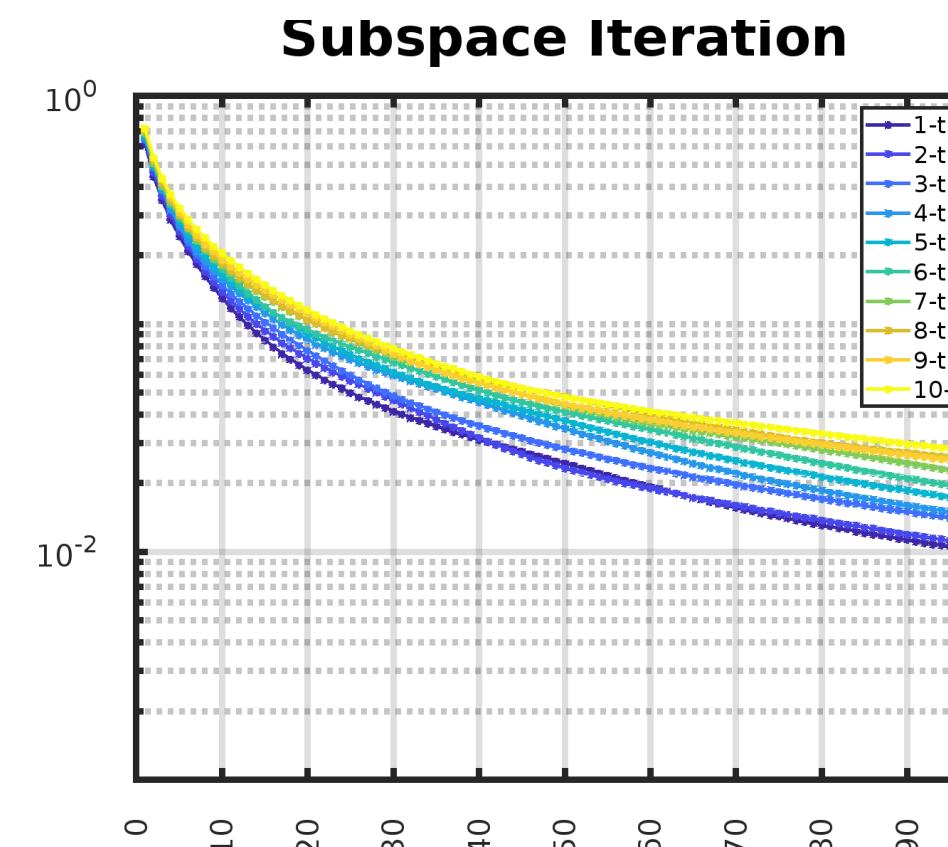
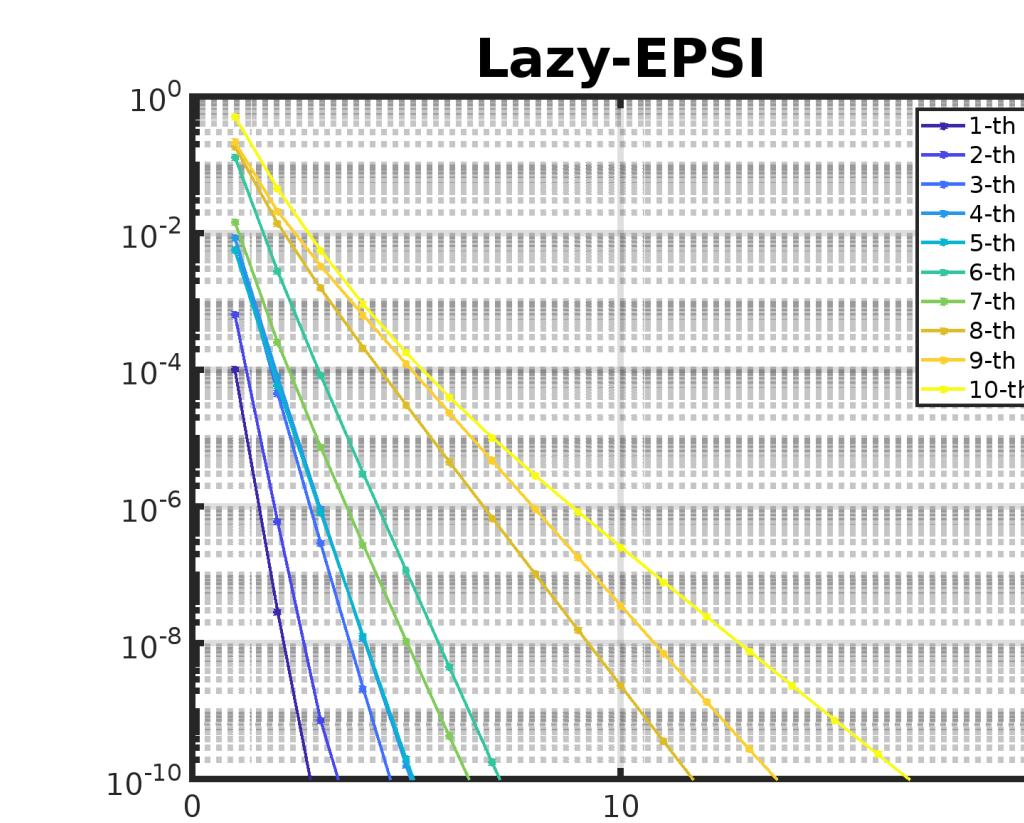
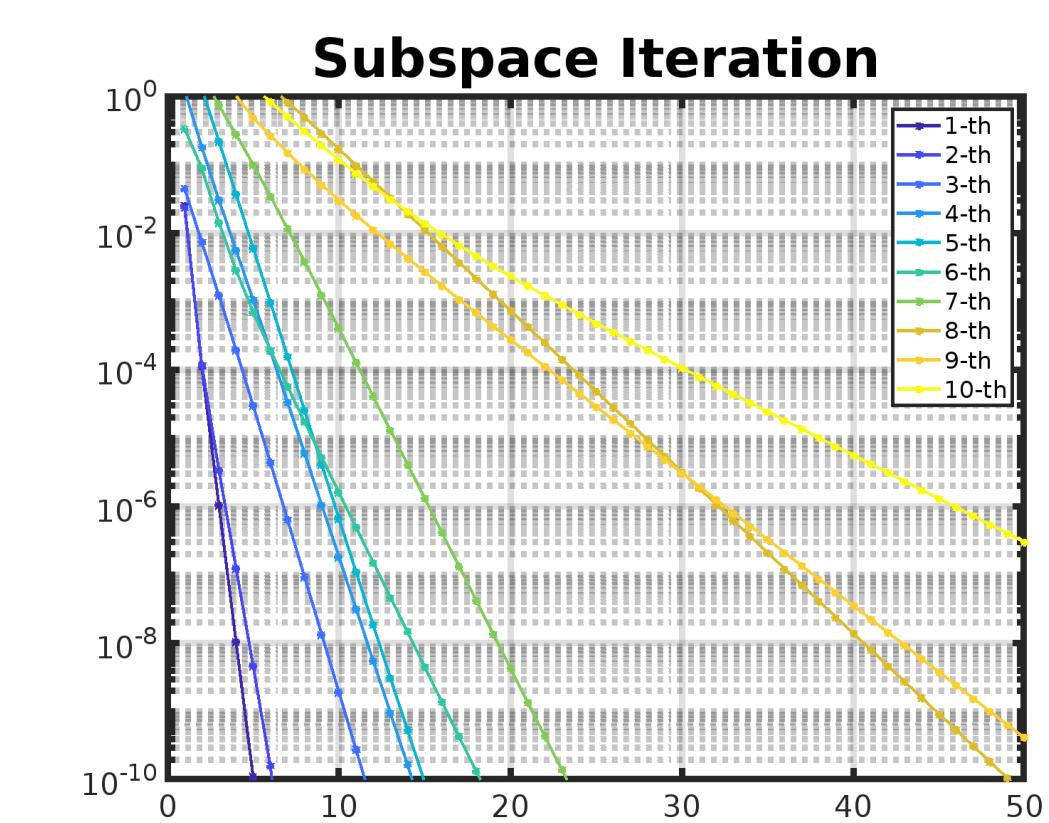
Use sketched matrix \hat{A} as
an precondition to the probelm

Idea: using (approximate) Newton method to solve the Lagrange from
$$\min u^\top A u - \lambda(x^\top x - 1)$$

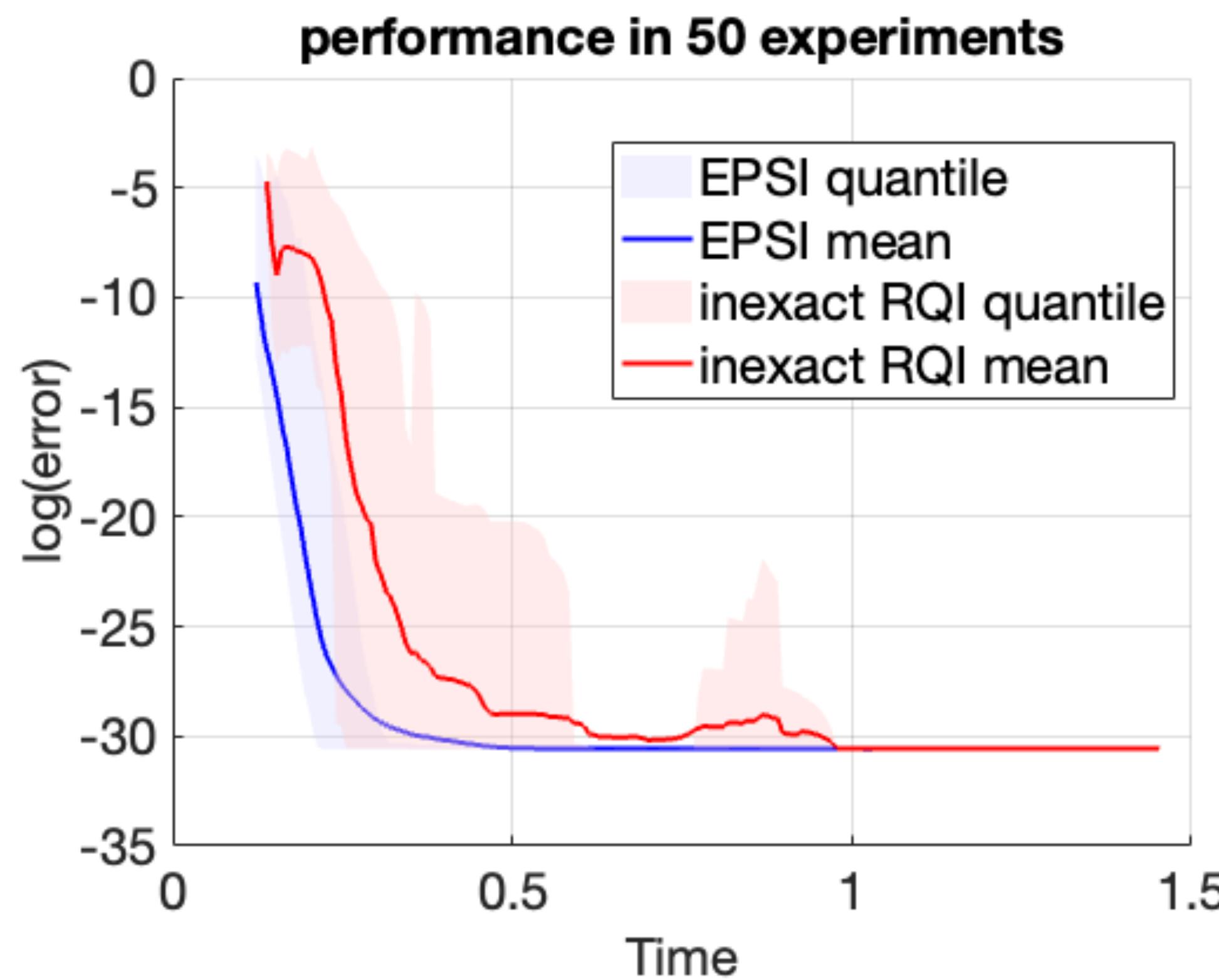
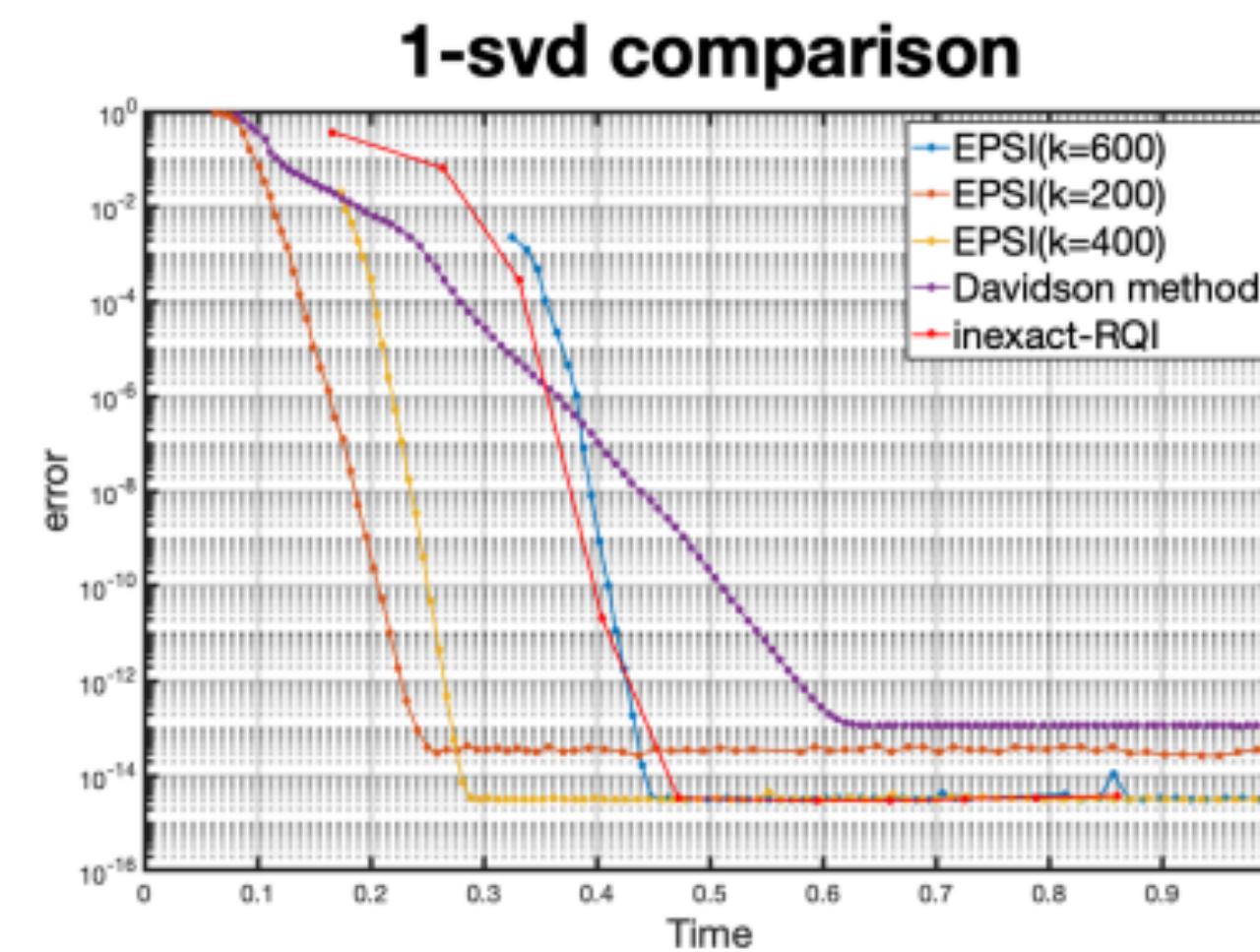
Thus Our convergence is u **linear-quadratic**

Contraction coefficient improves when sketching quality increases

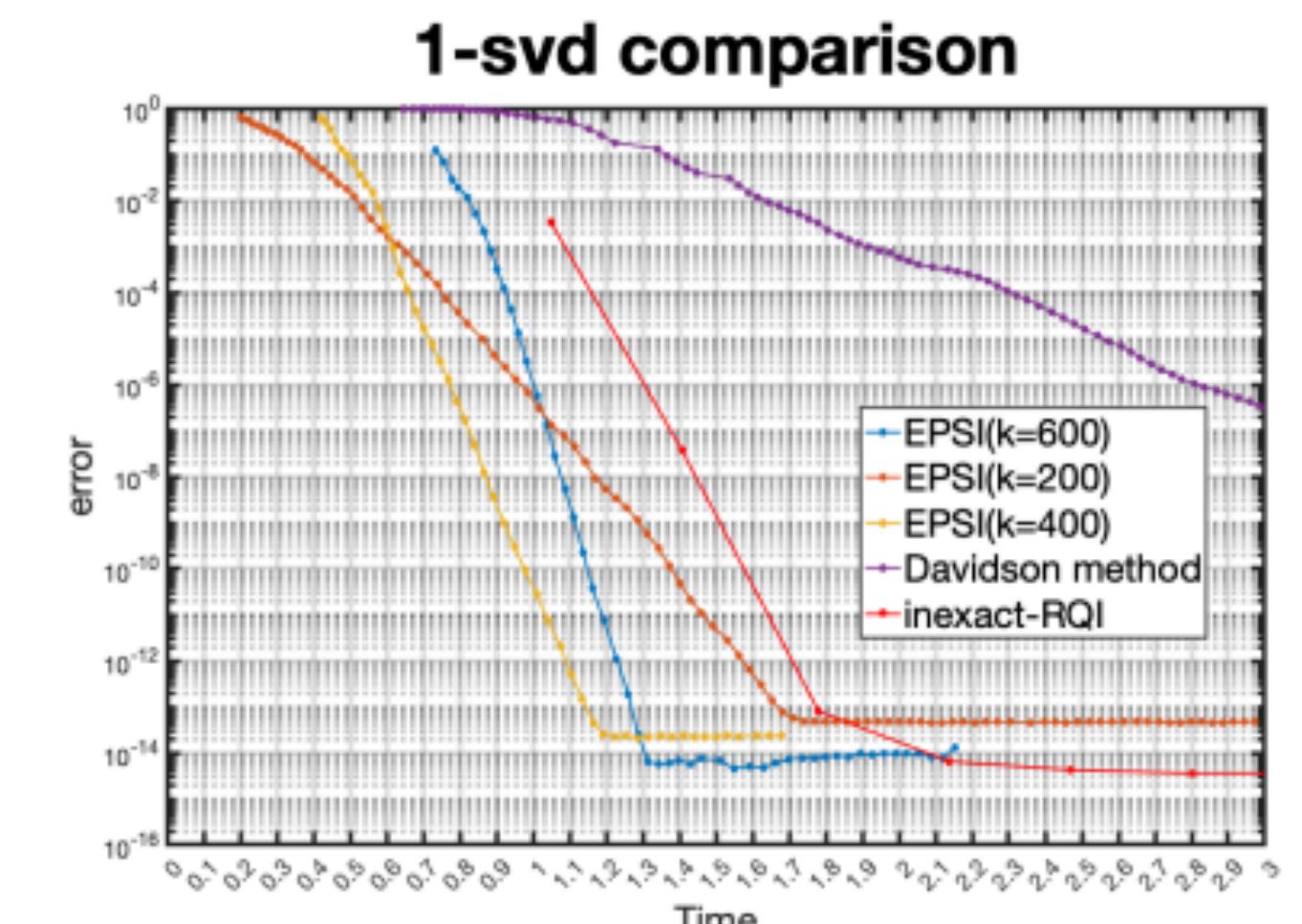
Eigenvalue Computation



Runing Time



(b) $n = 2000, \kappa = 10^{-6}$



(c) $n = 4000, \kappa = 10^{-6}$

What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Inverse Power Error or Inverse Power Estimation?

Ruihan Xu ^{*}

Yiping Lu [†]

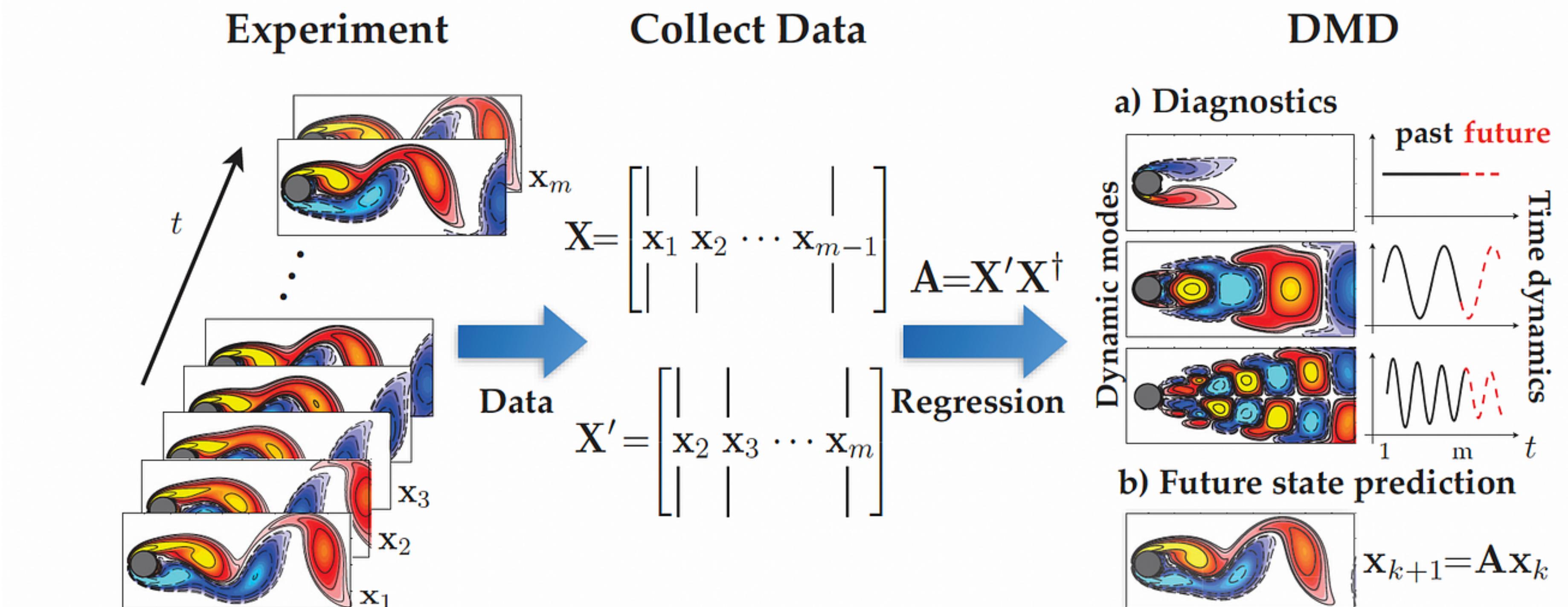
Abstract

Randomized sketching accelerates large-scale numerical linear algebra by reducing computational complexity. While the traditional sketch-and-solve approach reduces the problem size directly through sketching, the sketch-and-precondition method leverages sketching to construct a computational friendly preconditioner. This preconditioner improves the convergence speed of iterative solvers applied to the original problem, maintaining accuracy in the full space. Furthermore, the convergence rate of the solver improves at least linearly with the sketch size. Despite its potential, developing a sketch-and-precondition framework for randomized algorithms in low-rank matrix approximation remains an open challenge. We introduce the *Error-Powered Sketched Inverse Iteration* (EPSI) Method via run sketched Newton iteration for the Lagrange form as a sketch-and-precondition variant for randomized low-rank approximation. Our method achieves theoretical guarantees, including a convergence rate that improves at least linearly with the sketch size.

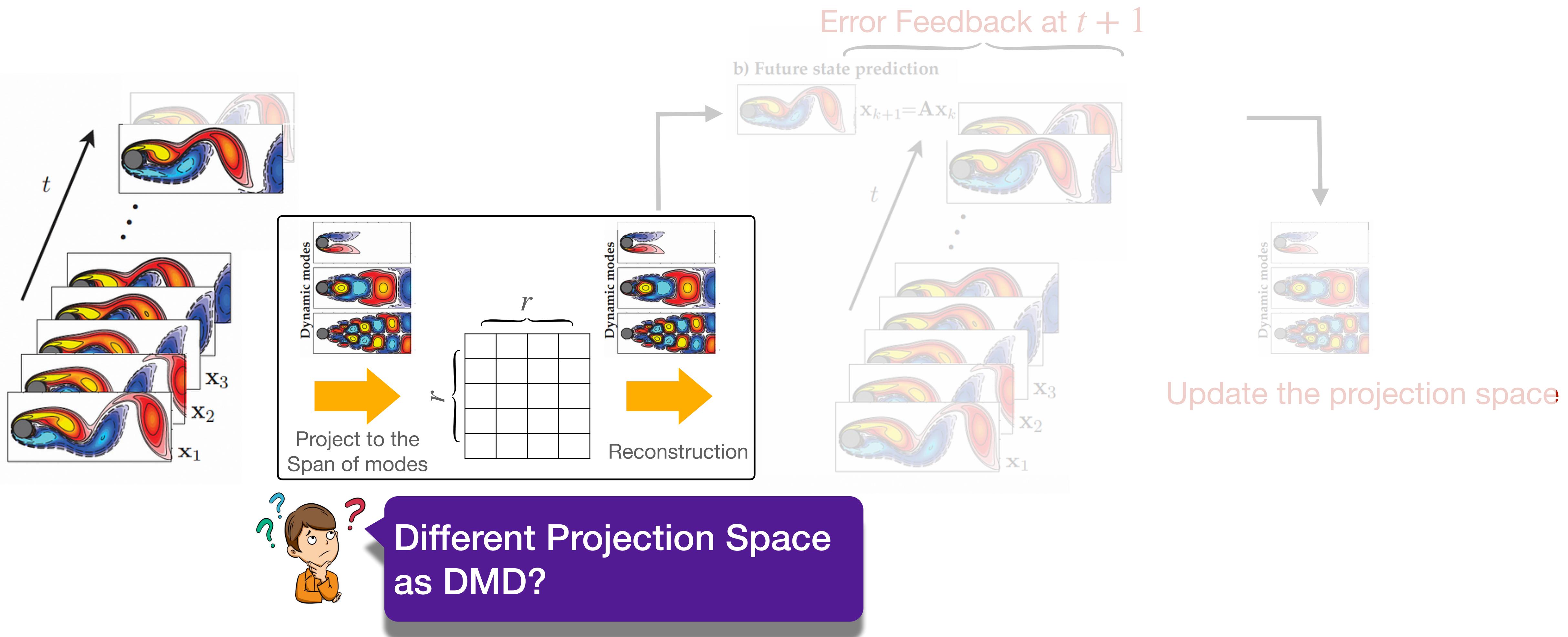
Another Supersing Fact...

Iteration lies in the Krylov Subspace

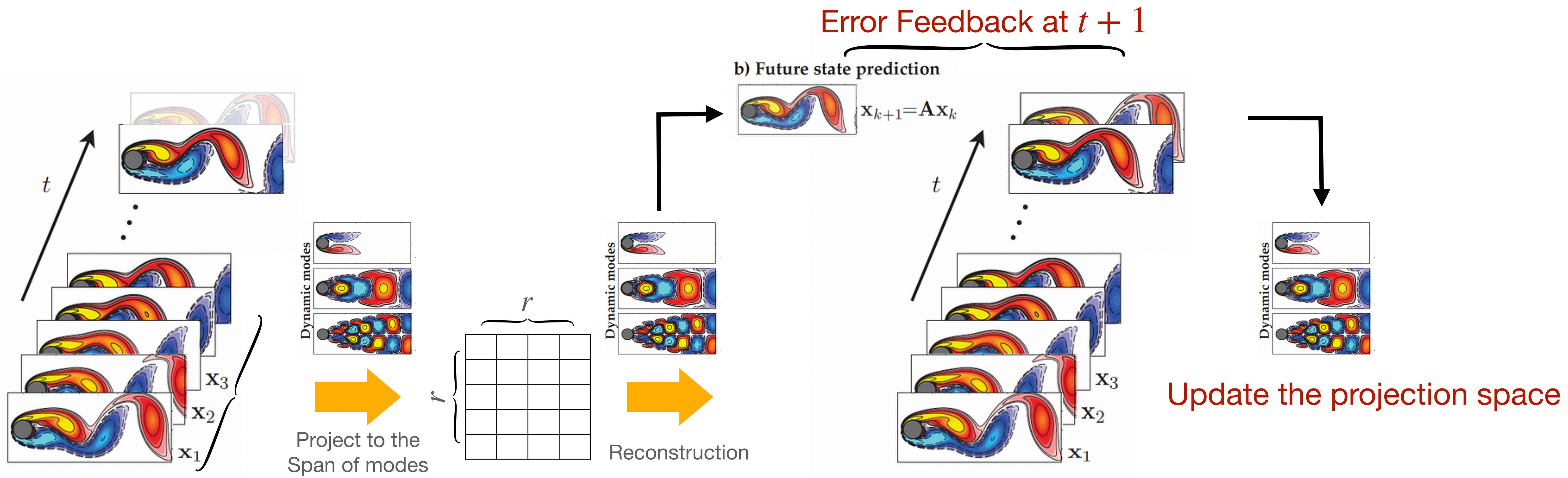
- enable dynamic mode decomposition
- Online fast update
- Much better than DMD



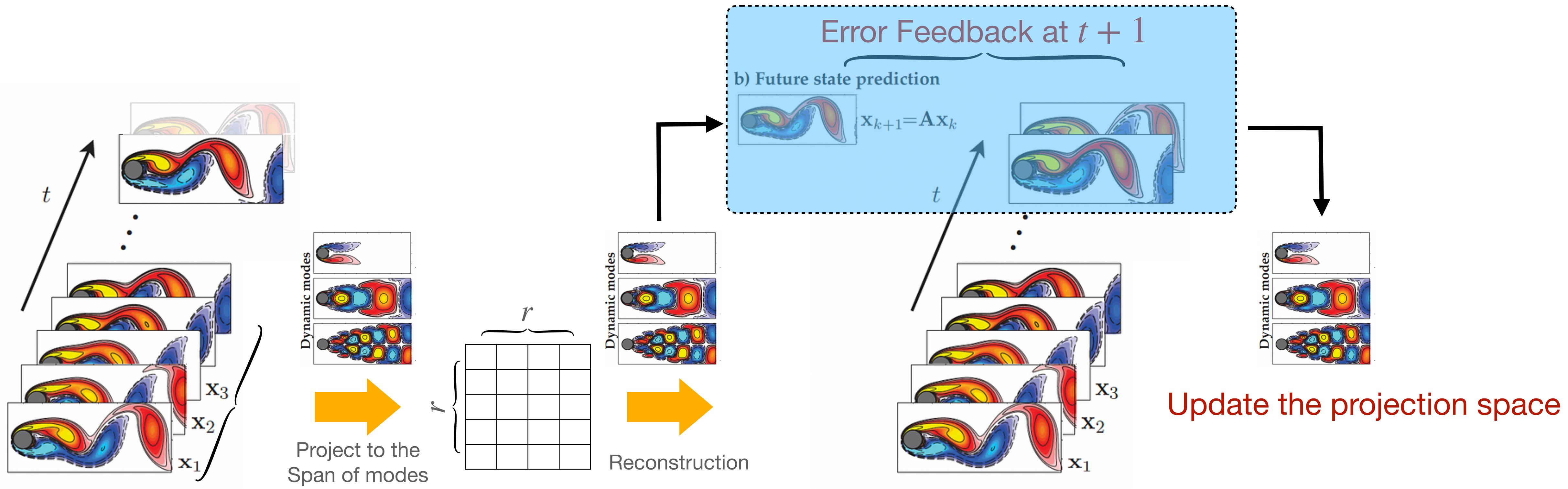
DMD with First-Order Feedback



DMD with First-Order Feedback

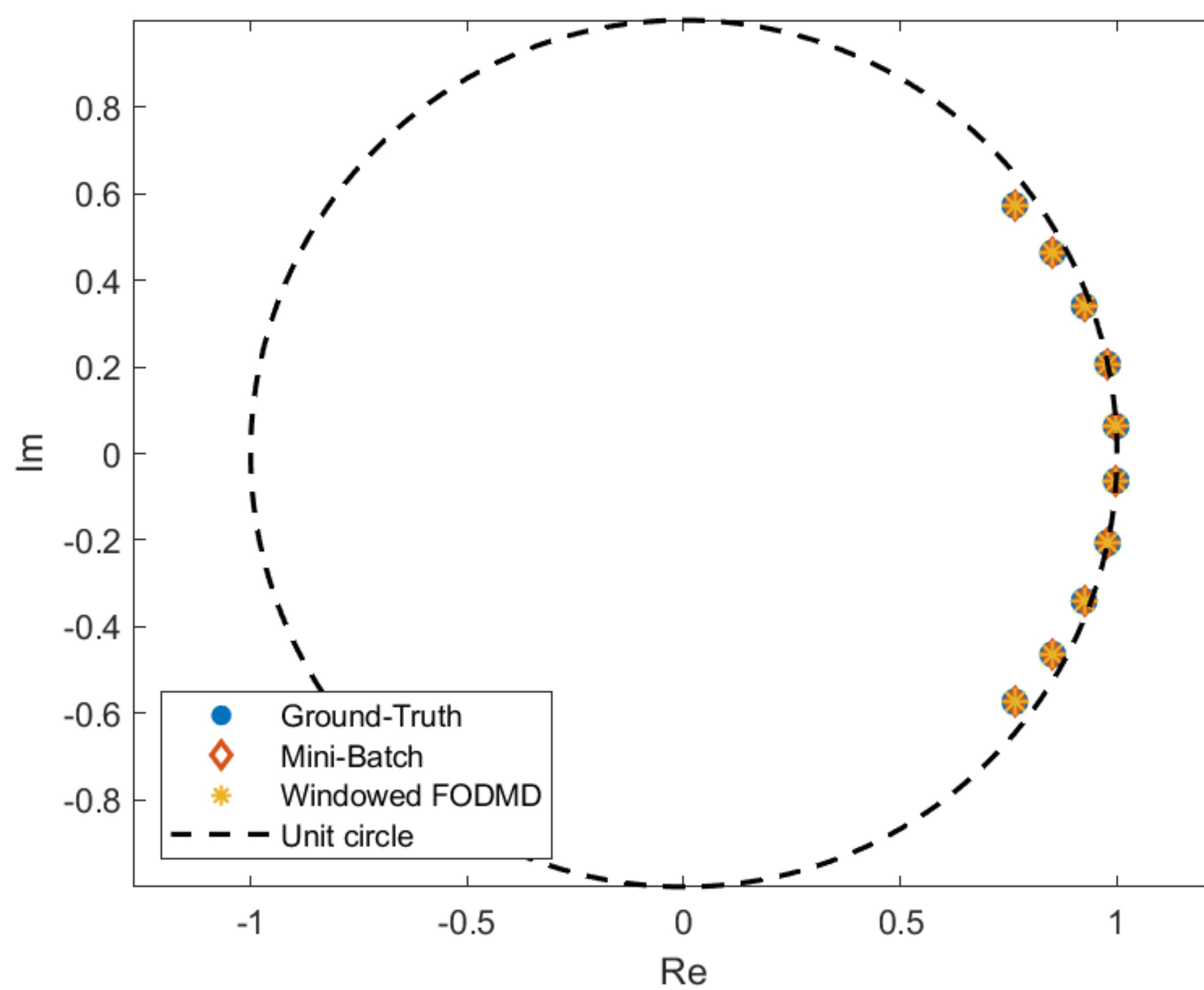
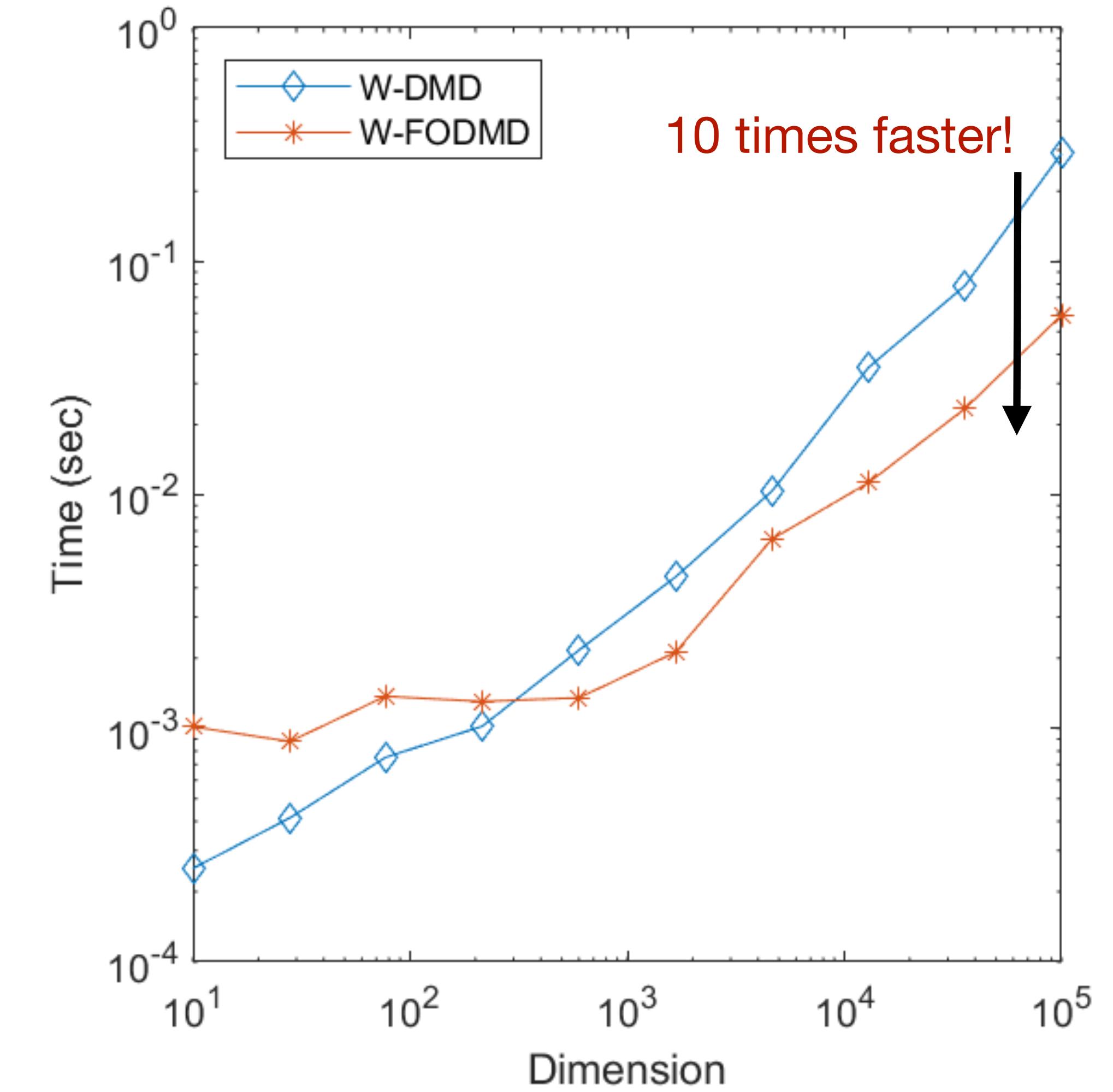


DMD with First-Order Feedback

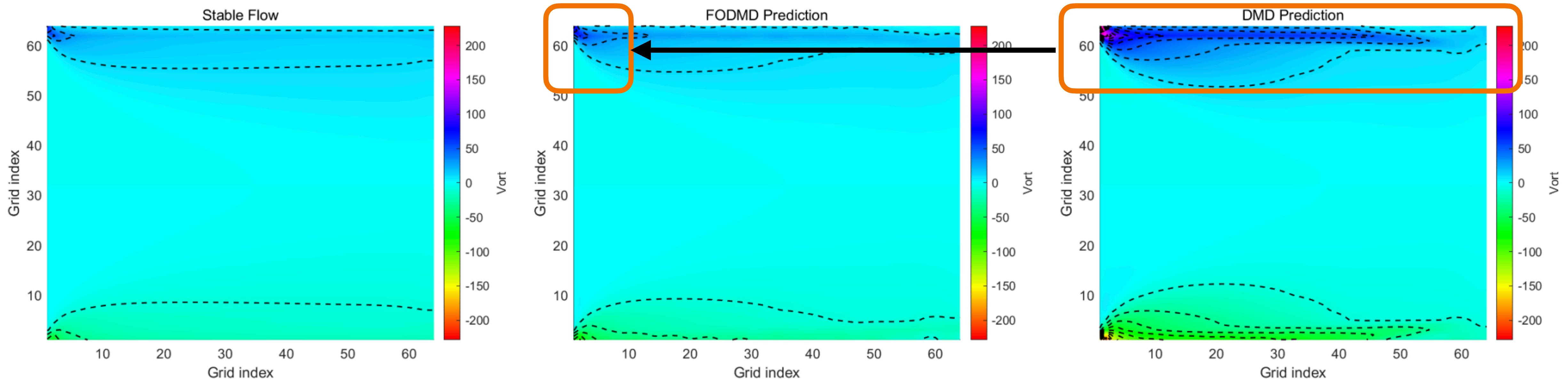


No matrix inverse, No SVD computation
Only a $n \times r$ QR decomposition
(Everything has a closed-form solution)

Faster than Recomputation!



Prediction of Tube Flow



One more thing...

Iterative
debiasing

Easier for numerical stability computation
Algorithms can do **online** computation

Newton
Methods

Easier for convergence analysis

Randomized Iterative Solver as Iterative Refinement A Simple Fix Towards Backward Stability

Ruihan Xu
University of Chicago

Yiping Lu
Northwestern University

Abstract

Iterative sketching and sketch-and-precondition are well-established randomized algorithms for solving large-scale over-determined linear least-squares problems. In this paper, we introduce a new perspective that interprets Iterative Sketching and Sketching-and-Precondition as forms of Iterative Refinement. We also examine the numerical stability of two distinct refinement strategies: iterative refinement and recursive refinement, which progressively improve

tive tools for developing approximate matrix factorizations. These methods are remarkable for their simplicity and efficiency, often producing surprisingly accurate results.

In this paper, we consider randomized algorithms to solve the overdetermined linear least-squares problem

$$x = \arg \min_{y \in \mathbb{R}^n} \|b - Ay\| \quad (A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m) \quad (1)$$

More Examples... (Uncertainty Quantification)

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \hat{\theta} \rightarrow \Phi(\hat{\theta})$$

Scientific Machine Learning

Downstream application

Example 5

$$\theta = \theta, \quad X_i \sim P_\theta$$

Quantile regression

Confidence Interval of Point Estimation

Conformal Prediction

Romano Y, Patterson E, Candes E. Conformalized quantile regression. Neurips 2019.

Influence Function

Bootstrap

Liu K, Blanchet J, Ying L, et al. Orthogonal bootstrap: efficient simulation of input uncertainty. ICML 2024.

LLM

Taylor Expansion

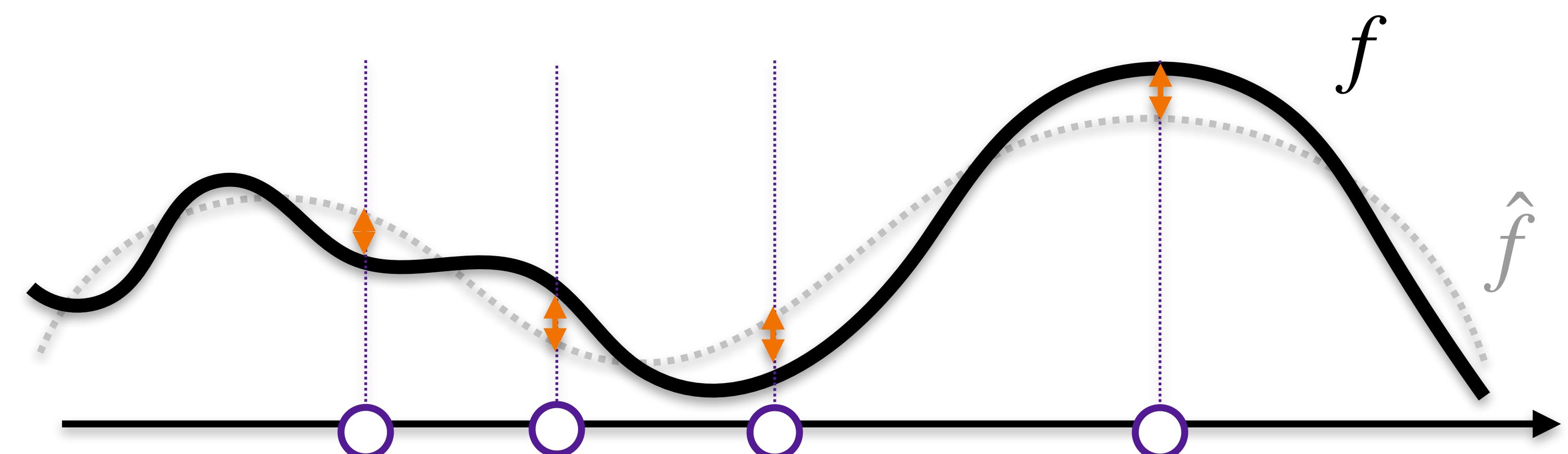
Angelopoulos A N, Bates S, Fannjiang C, et al. Prediction-powered inference. Science, 2023

What is SCaSML about?

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_\theta \rightarrow \theta \rightarrow \Phi(\theta)$$

Step 1: Using Machine Learning to fit the rough function/environment

Step 2: Using validation dataset to know how much mistake machine learning algorithm has made



Step 3: Using Simulation algorithm to estimate $\Phi(\theta) - \Phi(\hat{\theta})$

Using ML surrogate during inference time to improve ML solution