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Is Scaling All We Need?

Pareto optimal 

Compute-loss

Why is attention all we need?

Because transformer scales?

What does scale means mathmetically?

Why is depth all we need?

Because  deeper 
scales better



What is Scaling Law?

This is what we do in the past!

L̂(N, D) := E +
A
Nα

+
B

DβIrreducible error

: Number of parameters, : number of dataN D

Neurips 1993

GP

FEM

Chinchilla scaling law: Training compute-optimal large language models. Neurips, 2022.



How does academia consider an algorithm to be good?

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.

Fix a comput budget

Baseline

New Methods

Better
Worse

We may consdier new methods is best



How does industry consider an algorithm to be good?

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.

Test performance at small scale

Baseline

New Methods

Predict the performance at larger scale

Chinchilla Scaling Law



Imagine what happens at  Compute?∞

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.

We may publish a paper here 

RNN

Transformer

Baseline

New Methods



Imagine what happens at  Compute?∞

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.

We may publish a paper here 

SGD

Adam

Baseline

New Methods



Imagine what happens at  Compute?∞

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.

We may publish a paper here 

FEM
SciML

Baseline

New Methods



Scaling at Training Time



Is there an optimal scaling law? 
Limit 1:  Informational limit

Toy Example: Let’s assume we work with a function ,

We can evaluate the function at a grid point 


What is the error of best possible guess of  ?

f
f(x1), f(x2), ⋯, f(x1/h)

f

x1 x2 x1/hxi xi+1
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Is there an optimal scaling law? 
Limit 1:  Informational limit

Toy Example: Let’s assume we work with a function ,

We can evaluate the function at a grid point 


What is the error of best possible guess of  ?

f
f(x1), f(x2), ⋯, f(x1/h)

f

x1 x2 x1/hxi xi+1 1/h

- Dimension of collocation points

- Smoothness of f ∈ Cs

1/hs

PDE Problem: , with collocation points   

Information theoretically best  leads to the best 

Δu = f f(x1), ⋯, f(x1/h)
f u

Extend to PDE problems?

Haoxuan Chen, Jianfeng Lu, Lexing Ying, Jose Blanchet

Machine learning for elliptic PDEs: Fast rate generalization 
bound, neural scaling law and minimax optimality ICLR 2022

With n observations 


No algorithm can better than 


- we want to evalue  in 

- It’s a -order PDE  (much simplified)

(xi, yi = f(xi) + noise)n
i=1

O (n− 2(s−t1)
d + 2s−t2 )

u ∈ Ws Wt1

t2



Information Limit for Scientific Computing
PDE Problem: , with random collocation points   

Information theoretically best  leads to the best 

Δu = f f(x1), ⋯, f(xn)
f u

Haoxuan Chen, Jianfeng Lu, Lexing Ying, Jose Blanchet

Eigenvalue Problem: , 


with collocation points   sample from  

Information theoretically best  leads to the best ?

1
p

∇ ⋅ (p2 ∇u) = λu

x1, ⋯, xn p ∈ Cm

p u

Algorithm insight: Integral by parts leads to suboptimal variance

Algorithm insight: New Kernel Selection for Graph Laplacian ∫ K(u)usds = 0

Machine learning for elliptic PDEs: Fast rate generalization 
bound, neural scaling law and minimax optimality ICLR 2022

Weizhong Wang, Ruiyi Yang

Optimal Spectral Convergence of High-Order Graph Laplacians 
under Smooth Densities (arXiv soon)

Quadrature Rule: , with collocation points   ∫[0,1]d

f(u)du, f ∈ Cm f(x1), ⋯, f(x1/h)

Algorithm insight: Quadrature rule+MC is better than Quadrature rule/MC
Haoxuan Chen, Lexing Ying, Jose Blanchet

When can a regression-adjusted control variate help? Rare events, 
Sobolev embedding, and minimax optimality Neurips 2023

Later today



Information Limit for Scientific Computing

Linear Operator Learning: recover operator  using 𝒜 ( f1, 𝒜f1), ⋯( fn, 𝒜fn)

Jikai Jin, Jose Blanchet, Lexing Ying

Algorithm insight: learning an Infinite-dimensional operator is different from 
learning finite finite-dimensional matrix. It naturally need multiscale 
regularization on different spectral.

Minimax optimal kernel operator learning via multilevel training 
ICLR 2023 Spotlight

Similar as MLMC

Algorithm insight: solving a PDE at a single point converges faster than 
approximating the PDE solution over the entire domain

Solve PDE at a single point : , with designed collocation points   

Aim: recover 

Δu = f f(x1), ⋯, f(xn)
u(x)

Later today



Is there an optimal scaling law? 
Limit 1:  Computational (Optimization) limit

GP

FEM

PINN

A.There is not a scaling law for NN that 
can’t be optimized to high precision


B. They don’t have enough GPUs



Is there an optimal scaling law? 
Limit 1:  Computational (Optimization) limit

Rathore P, Lei W, Frangella Z, et al. Challenges in training pinns: A loss landscape perspective

Loss = Approximation Error + Generalization/MC Error + Optimization Error
Provable optimal with global optimization

Only thing can’t scale!
Larger networks


are harder to optimize !

GP

FEM

PINN



Power of Scaling PINN

Wang S, Sankaran S, Stinis P, et al. Simulating three-dimensional turbulence with physics-informed neural networks. arXiv preprint arXiv:2507.08972, 2025.

7.45 hour on a single NVIDIA H200 GPU

Key Component: SOAP Optimizer

comparable to 8-th order finite difference on 256x256x256 with Δt = 10−3



Optimizers Today

Approximate Newton MethodsApproximate Gauss-Newton Methods

Approximate Adagrad

Steepest Descent in New Norm
Maddison C J, Paulin D, Teh Y W, et al. Dual space preconditioning for 
gradient descent. SIAM Journal on Optimization, 2021

Old Days: BFGS, L-BFGS,

Recently: Kron (low rank approximation+online linear regression)

K-FAC (tensor approximation)

Adam （diag approximation)

Shampoo (tensor approximation)

SOAP (Adam in spectral space)

One-side shampoo ….

Today



Steepest Descent in Different Norms

• SignSGD: 


• MUON: 


• Where 


• MatrixSign can be approximated by Newton-Schulz 


• Ours: 


•

xt+1 = xt − λSign(∇f(xt)),∥G∥? = ∥G∥∞

xt+1 = xt − λMatrixSign(∇f(xt)),∥G∥? = ∥G∥op
MatrixSign(UΣV⊤) = UV⊤

Xk+1 = 1
2 Xk (3I − X⊤

k Xk)

xt+1 = xt − λRowL2Norm(∇f(xt)),∥G∥? = ∥G∥ℓ2→ℓ∞

RowL2Norm(G)[i, :] =
G[i, :]

∥G[i, :]∥2

Update Direction:  arg max
X

⟨G, X⟩ + λ∥G∥?



The Norm We Select
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Scaled MUON

MUON

Hidden Layer

m × m

m × m

d × m

m × 1

RMS RMS Norm→

RMS RMS Norm→

RMS Normℓ2→

RMS  Norm→ℓ∞

∥x∥RMS =
1
n

n

∑
i=1

x2
i

Learning rate scales 
1

m

Learning rate scales m



AIM of our paper
A Numiercal Scaling Law for PINN Sifan Wang (Yale) Chunmei Wang (UF)Jasen Lai (UF)

Key Component: MUON Optimizer
Different line means different widths


Use small scale to estimate the scaling law

We can predict the behaviour of larger networks
 Error  1/∝ Compute

All Equation 2 dim in space and 1 dim in time



Sclae leads to better results



The Norm is Good for Approximation

m × m

m × m

d × m

m × 1

RMS RMS Norm→

RMS RMS Norm→

RMS Normℓ2→

RMS  Norm→ℓ∞

∥x∥RMS =
1
n

n

∑
i=1

x2
i Smaller norm is always better?

Input index

Compute out the N grids

Builds Spline

Function value

Scaled Norm: O(1) 

F Norm: O(m)


 Norm: O(m)ℓ∞



Trade-off: Approximation vs Optimization
• Optimization Theory:


• If we need Steepest Descent in , we need relative smoothness∥ ⋅ ∥?
∥f(X) − f(Y) − ∇f(Y)(X − Y)∥ ≤ L∥Dh(X) − Dh(Y) − ∇Dh(Y)(X − Y)∥

Larger norm is always better? Larger nomr -> better relative smoothness



Optimization and approximation Trade-off

Norm 1

Norm 2

constraints your 
model that is 
easy to optimize,

But the constrain 
is bad for 
approximation


Approximation
Ability

Optimization
Hardness

∥θ0 − θ*∥?

Jiajin Li (UBC)

Norm-Constrained  Approximation Theory Optimization Theory A New Computable Norm !

Ask me 1 month later!

50% smaller memory use

Faster than Adamw on CIFAR

Better with MUON on PINN


Same computational cost as Adamw

Theoretically “width” free in 


approximation and optimization



Tons of chances and the unreasonable effectiveness of mathematics

Think in a limiting way: what would happen if we had  compute∞

Scaling learning rate schleuder: Schaipp F, Hägele A, Taylor A, et al. The surprising agreement between convex 
optimization theory and learning-rate scheduling for large model training. arXiv:2501.18965

Scaling Weight Decay achieves 17.5x more data efficiency: Kim K, Kotha S, Liang P, et al. Pre-training under infinite 
compute. arXiv:2509.14786, 2025.

Training precision: Kumar T, Ankner Z, Spector B F, et al. Scaling laws for precision. arXiv preprint arXiv:2411.04330

Scaling Depth: Dey N, Zhang B C, Noci L, et al. Don't be lazy: CompleteP enables compute-efficient deep 
transformers arXiv:2505.01618

Scaling Batch size: Bergsma S, Dey N, Gosal G, et al. Power lines: Scaling laws for weight decay and batch size in llm 
pre-training. arXiv preprint arXiv:2505.13738, 2025.

Learning rate

Weight decay

#data

Network Width

Network Depth

Epochs

Batch size

Precision

How to combine every 
scaling to achieve the best 

convergence rate and 
convergent limit?



Scaling at Inference Time



Consider How you use ChatGPT…

What is the most efficient route from Times Square 
to Chelsea Market that minimizes walking?

Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the 
Times Sq–42nd Street station.

2. Board the E Train: Catch an E train heading 
downtown (toward World Trade Center).

3. Ride to 8th Avenue–14th Street Station: Get off at 
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk 
east on 14th Street for a few blocks until you reach 
Chelsea Market at 75 9th Avenue.

double-check 

with a map

15-th street

2 stops for A

3 stops for C/E

Port Authortiy

1/2/3+L line is 
best choice

1. At Times Square: Enter the Times Square–42nd Street 
station.

2. Board the 1 Train: Hop on a downtown 1 train (the 
red line).

3. Ride to 14th Street: Stay on until you reach the 14th 
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th 
Avenue—this drop-off point is just a short walk from 
Chelsea Market (located at 75 9th Ave).



Inference Time Computing in LLM

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute



How can we perform Inference-Time Scaling for 
Scientific Machine Learning?

With trustworthy garuntee



Physics-Informed Inference Time Scaling
f

̂f

Evaluate the error

f

̂f

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model

This Position Paper: 
 Aggregate step 1 and step 2 

via First-Principle

 

Step 1. Train a Surrogate (ML) Model
Step 2. Correct with a Trustworthy Solver

Finite Element

Optimizer

Correction enables
Inference Time Scaling

Simulation



The 101 Example

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example  θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ ( f(x))dx

Machine Learning: ̂θ = ̂f Φ( ̂θ) = ∫ ̂f(x)dx

̂f

f

Simpson’s Rule

When  is piecewise polŷf

Haoxuan Chen, Lexing Ying, Jose Blanchet



The 101 Example

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example  θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ ( f(x))dx

Machine Learning: ̂θ = ̂f Φ( ̂θ) = ∫ ̂f(x)dx
+

=

Φ(θ) − Φ( ̂θ) = ∫ ( f(x) − ̂f(x))dx

Using Monte Carlo Methods to approximate

̂f

f

Faster and Optimal convergence than both 
qudrature rule and Monte Carlo



Lower Bound
Smoothness s

Minimax 
Convergence rate

max {( 1
p

−
s
d ) q − 1, −

1
2

−
s
d }

Random flip

A single spike

Magnitude of the spike

Estimate ∫ | f(x) |q dx, f ∈ Ws,p



Lower Bound
Smoothness s

max {( 1
p

−
s
d ) q − 1, −

1
2

−
s
d }A single spike

Random flip

Magnitude of the bump

Minimax 
Convergence rate

Estimate ∫ | f(x) |q dx, f ∈ Ws,p



Upper Bound

−1/2

Smoothness s

Truncate Monte Carlo

1
p

−
s
d

=
1
2q

max {( 1
p

−
s
d ) q − 1, −

1
2

−
s
d }

Regression-adjusted Control Variate

finite/infinite 
variance

A different Transition Point

Minimax 
Convergence rate

Estimate ∫ | f(x) |q dx, f ∈ Ws,p



Yiping Lu yiping.lu@northwestern.edu

Analysis of Error propagation
estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq) How does step2 variance 

depend on estimation error?

Hardness = The variance of the debasing step 
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Analysis of Error propagation
estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq)

fq−1( f − ̂f ) + ( f − ̂f )q

Low order term

“influnce function” (gradient) Error propagation

How does step2 variance 
depend on estimation error?
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Analysis of Error propagation
estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq)

fq−1( f − ̂f ) + ( f − ̂f )q

Low order term

“influnce function” (gradient) Error propagation

Embed  and   into “dual” spacef q−1 f − ̂f

How to select the 
Sobolev emebedding?



Yiping Lu yiping.lu@northwestern.edu

Selecting the Sobolev Embedding

40

Smoothness s

Truncate Monte Carlo

max {( 1
p

−
s
d

)) q − 1, −
1
2

−
s
d }

1
p

=
s
d

1
p

−
s
d

=
1
2q

Embed to L∞Embed to L
pd

d − sp

Minimax rate

CV in L
2p*

p* + 2 − 2q CV in L2

−1/2

Lp

L
2pq − 2p

p − 2

Choose an embedding both good for evaluating the 
semi-parametric hardness and function estimation

Regression-adjusted Control Variate

 dominatesf q−1( f − ̂f )

Easiest Sobolev 
embedding for estimation

Select Sobolev embedding
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Selecting the Sobolev Embedding

41

Smoothness s

Truncate Monte Carlo

max {( 1
p

−
s
d

)) q − 1, −
1
2

−
s
d }

1
p

=
s
d

1
p

−
s
d

=
1
2q

Embed to L∞Embed to L
pd

d − sp

Minimax rate

CV in L
2p*

p* + 2 − 2q CV in L2

−1/2

Lp

L
2pq − 2p

p − 2

Choose an embedding both good for evaluating the 
semi-parametric hardness and function estimation

Regression-adjusted Control Variate

Select Sobolev embedding

Largest possible 
Sobolev embedding

 dominates( f − ̂f )q



Neurips


2023
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PDE Solver



The PDE Example

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

 θ = u, Xi = (xi, f(xi)) Φ(θ) = u(x)

FEM/PINN/DGM/Tensor/Sparse Grid/…: 

̂θ = ̂u

Let’s consider Δu = f

Φ( ̂θ) = ̂u(x)

What is  ?Φ(θ) − Φ( ̂θ) = u(x) − ̂u(x)



The PDE Example

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

 θ = u, Xi = (xi, f(xi))

FEM/PINN/DGM/Tensor/Sparse Grid/…: 

̂θ = ̂u

Let’s consider Δu = f

Φ( ̂θ) = ̂u(x)

What is  ?Φ(θ) − Φ( ̂θ) = u(x) − ̂u(x)

Δu = f

Δ ̂u = ̂f

Δ(u − ̂u) = f − ̂f

-
=

Φ(θ) = u(x)



The PDE Example

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

 θ = u, Xi = (xi, f(xi))

FEM/PINN/DGM/Tensor/Sparse Grid/…: 

̂θ = ̂u

Let’s consider Δu = f

Φ( ̂θ) = ̂u(x)

What is  ?Φ(θ) − Φ( ̂θ) = u(x) − ̂u(x)

Δu = f

Δ ̂u = ̂f

Δ(u − ̂u) = f − ̂f

-
=

(u − ̂u)(x) = 𝔼∫ ( f − ̂f )(Xt)dt

Φ(θ) = u(x)



Inference-Time Scaling
∂
∂t

u + [σ2u −
1
d

−
σ̄2

2 ](∇ ⋅ u) +
σ̄2

2
Δu = 0 have closed-form solution  g(x) =

exp(T + ∑i xi

1 + exp(T + ∑i xi)

Method Convergence Rate

PINN

MLP

ScaSML

O(n−s/d)

O(n−1/2)

O(n−1/2−s/d)

Shihao Yang 
(Gatech)

Solving a PDE at a single point 
converges faster than approximating 
the PDE solution over the entire 
domain



Inference time scaling

The first Inference-Time Scaling for Scientific Machine Learning?

With trustworthy garuntee

don’t  fine-tune/retrain/add a new surrogate model

“Physics-informed”



Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

Can you do simulation 
for nonlinear equation?

 is linear!Δ



Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t)  is the error made by NNg(x, t)

NN



Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t)  is the error made by NNg(x, t)

NN

Subtract two equations

∂(U − Û)
∂t

(x, t) + Δ(U − Û)(x, t)) + f(t, Û(x, t) + U(x, t) − Û(x, t)) − f(t, Û(x, t))

G(t, (U − Û)(x, t))

= g(x, t) .

Keeps the linear structure



Numerical Results



Arxiv

https://2prime.github.io/files/scasml_techreport.pdf



A multiscale view

Capture via surrogate model

Capture via Monte-Carlo
Don’t need/use the smoothness structure 



More Examples…

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Example 3  θ = A, Xi = (xi, Axi)  Φ(θ) = tr(A)
Estimation  via Randomized SVD̂A Estimate  via Hutchinson's estimatortr(A − ̂A)

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20


Application in graph theory, quantum …

Example 2  θ = Δ−1f, Xi = (xi, f(xi))  Φ(θ) = θ(x)



Eigenvalue Problem

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 4  θ = A, Xi = (xi, Axi)  Φ(θ) = eigen(A)



Eigenvalue Problem

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 4  θ = A, Xi = (xi, Axi)  Φ(θ) = eigen(A)

Sketching a Matrix Approximation 

̂θ = ̂A Φ( ̂θ) = eign( ̂A)Randomized SVD



Eigenvalue Problem

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 4  θ = A, Xi = (xi, Axi)  Φ(θ) = eigen(A)

Sketching a Matrix Approximation 

̂θ = ̂A Φ( ̂θ) = eign( ̂A)Randomized SVD

What is ?Φ(θ) − Φ( ̂θ) Taylor Expansion

A new Preconditioned Power method + Enable Online Updates



Relationship with Inverse Power Methods

(Approximate)

Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate 

solver  changes the fixed point̂A

Ture eigenvector is the fix point 

for every approximate solver ̂A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Easy to compute when  is low rank̂A



Another Supersing Fact…

Iteration lies in the Krylov Subspace

- enable dynamic mode decomposition

- Online fast update

- Much better than DMD

Enable online update!



DMD with First-Order Feedback

Project to the

Span of modes 

r

r

Reconstruction

Update the projection space

Different Projection Space 
as DMD?

Error Feedback at t + 1



DMD with First-Order Feedback

Project to the

Span of modes 

r

r

Reconstruction

Error Feedback at t + 1

Update the projection space



DMD with First-Order Feedback

Project to the

Span of modes 

r

r

Reconstruction

Error Feedback at t + 1

Update the projection space

No matrix inverse, No SVD computation 

Only a  QR decomposition


(Everything has a closed-form solution)
n × r



Faster than Recomputation!

10 times faster!



Appendix: Suprising Pre-condition Effect

with a surprising connection with debiasing



Tale 2: Preconditioning

Nothing will be more central to computational 
science in the next century than the art of 
transforming a problem that appears intractable into 
another whose solution can be approximated 
rapidly.



What is precondition

• Solving  is equivalent to solving Ax = b B−1Ax = B−1b
hardness depend on κ(A) hardness depend on κ(B−1A)

Become easier when B ≈ A
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• Debiasing is a way of solving 


• Using an approximate solver 

Ax = b

Bx1 = b



A New Way to Implement  Precondition

• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate   via 

Ax = b

Bx1 = b

x − x1 A(x − x1) = b − Ax1
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A New Way to Implement  Precondition

Iterative Refinement Algorithm

xi+1 = (I − B−1A)xi + B−1b

Preconditioned Jacobi Iteration



This Talk: A New Way to Implement  Precondition
Via Debiasing

• Step 1: Aim to solve (potentially nonlinear) equation 


• Step 2: Build an approximate solver 


• Via machine learning/sketching/finite element….


• Step 3: Solve 

A(u) = b

A( ̂u) ≈ b

u − ̂u

Unrealiable approximate 
solver as preconditioner

Connection with control variate, doubly robust estimator, 
Multifidelity Monte Carlo

use Machine Learning

AIM: Debiasing a  Learned Solution = Using Learned Solution as preconditioner!



Thank You

And Questions?

Lexing Ying (Stanford) Jose Blanchet (Stanford) Shihao Yang (Gatech) Sifan Wang (Yale) Chunmei Wang (UF)

Students: Haoxuan Chen, Yinuo 
Ren(Stanford),  Youheng Zhu, Kailai Chen 
(Northwestern), Jasen Lai (UF), Zhaoyan Chen,  
Weizhong Wang (FDU), Kaizhao Liu (PKU-
>MIT), Zexi Fan (PKU), Ruihan Xu (Uchicago) 
…


Jiajin Li (UBC)

Scaling in Training:
Jasen Lai, Sifan Wang, Chunmei Wang, Yiping Lu. Unveiling the scaling law of PINN under Non-Euclidean Geometry
Scaling in Inference
Zexi Fan, Yan Sun, Shihao Yang, and Yiping Lu.  Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning
Eigenvector Computation:
Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Inverese Power Error or Inverse Power 
Estimation?


