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Why is attention all we need?

Current Al scaling laws are
showing diminishing returns,
forcing Al labs to change
course
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What does scale means mathmetically?
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What is Scaling Law?

Chinchilla scaling law: Training compute-optimal large language models. Neurips, 2022.

Neurips 1993
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How does academia consider an algorithm to be good?

Fix a comput budget
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3.2 . We may consdier new methods is best
g 3.0 {Worse
T, Better@
uwl - °
2.6 .
2.4 A
2.2 Z
107" 10° * 10’ 102 103
ExaFlops

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.



How does industry consider an algorithm to be good?

Test performance at small scale
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Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.



Imagine what happens at co Compute?

3.6
T Baseline
3.4 . —— New Methods
3.2 . We may publish a paper here
o 3.0 . Transformer
S
L% 2.8 HNN .
2.6 .
:  <--- Crossover
2.4 . =
2.2 .
107" 10° * 10’ 102 10°
ExaFlops

Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.



Imagine what happens at co Compute?
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Imagine what happens at co Compute?

3.6
- Baseline
3.4 . —— New Methods
3.2 . We may publish a paper here
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Xiao L. Rethinking conventional wisdom in machine learning: From generalization to scaling. arXiv:2409.15156, 2024.



Scaling at Training Time




Is there an optimal scaling law?

Limit 1: Informational limit

( )

Toy Example: Let’s assume we work with a function £,
We can evaluate the function at a grid point f(x,), f(x5), *--, f(x{,,)

What is the error of best possible guess of [ ?
_
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Toy Example: Let’s assume we work with a function £,
We can evaluate the function at a grid point f(x,), f(x5), *--, f(x{,,)

What is the error of best possible guess of [ ?
_ D

- Dimension of collocation points
- Smoothness of f € C°
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Is there an optimal scaling law?

Limit 1: Informational limit

-

Toy Example: Let’s assume we work with a function £,
We can evaluate the function at a grid point f(x,), f(x5), *--, f(x{,,)

What is the error of best possible guess of [ ?

Y,
' Extend to PDE problems?

PDE Problem: Au = f, with collocation points f(x;), ---, f(x{) - Dimension of collocation pointe
Information theoretically best f leads to the best u - Smoothness of f € C*
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Machine learning for elliptic PDEs: Fast rate generalization
bound, neural scaling law and minimax optimality ICLR 2022
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Information Limit for Scientific Computing

Machine learning for elliptic PDEs: Fast rate generalization

PDE Problem: Au :f, with randomxcollocation points f(xl), ’f(xn) bound, neural scaling law and minimax optmality IQR 2022
Information theoretically best f Ieadg} oL ‘s

o the best u

p. ‘;»‘., ‘ ia p ,?‘\\‘ ) : \ :
I § i \ 1 » S % -
: 1 - : o7 A, ~
| | ? i N -
= | , ‘ - ' i X
| j w 7 / | B ‘ \l ‘3

quan Ch'en, Jiani‘eng Lu, Lexing Ying, Jose Blanchet

[Algorithm insight: Integral by parts leads to suboptimal variance ]

1
Eigenvalue Problem: —V - (p2Vu) = Au,

_ _ _ p m Optimal Spectral Convergence of High-Order Graph Laplacians
with collocation points x;, ---, x,, sample fromp € C under Smooth Densities (arXiv soon

Information theoretically best p leads to the best u?

( )

-'-) i

Algorithm insight: New Kernel Selection for Graph Laplacian [K(u)usds =0 Weizhong Wang, Ruiyi Yang

\. J

Quadrature Rule: J f(l/t)dl/l, f e Cm, with collocation points f(xl)a coe, f(xl/h) When can a regression-adjusted control variate help? Rare events,
[0,1]¢ , ,

Later today
Algorithm insight: Quadrature rule+MC is better than Quadrature rule/MC

.




Information Limit for Scientific Computing

Linear Operator Learning: recover Operator ﬂ using (]Cl’ ﬂﬂ), (ﬁl’ ‘Q{frz) Minimax optimal kernel operator learning via multilevel training

Algorithm insight: learning an Infinite-dimensional operator is different from
learning finite finite-dimensional matrix. It naturally need multiscale

regularization on different spectral. — Jikai Jin, Jose Blanchet, Lexing Ying
) Similar as MLMC

Solve PDE at a single point : Au = f, with designed collocation points f(x;), -+, f(x,)
Aim: recover u(x)

Algorithm insight: solving a PDE at a single point converges faster than

approximating the PDE solution over the entire domain
|




Is there an optimal scaling law?

Limit 1: Computational (Optimization) limit
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A.There is not a scaling law for NN that
can’t be optimized to high precision

B. They don’t have enough GPUs




Is there an optimal scaling law?

Limit 1: Computational (Optimization) limit
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Rathore P, Lei W, Frangella Z, et al. Challenges in training pinns: A loss landscape pers

Larger networks
are harder to optimize !

Only thing can’t scale!
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H
Power Of Scal I n g PI N N comparable to 8-th order finite difference on 256x256x256 with At = 1073

7.45 hour on a single NVIDIA H200 GPU

a t=0 t=2 t=4
s ~ Kolmogorov flow Taylor-Green vortex Turbulent channel flow
Incompressible Navier—-Stokes equation _ i e, 0
du 1, )
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Dense layer B
. : Adaptive skip connection ! Time d
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Input — Fourier | X o) 10) Referance
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| : Z | g £ NV
Dense layer '\ _____________________________________________ -_[fff/' ___E 3 0.10 :-9: 5 =
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0
(0 5 10 -2 (0 2
t 2
= Reference  =e= (4’ grd o= 1287 grid == 2567 grid = =e= 512%grid == PINN
Ke C ombohne nt . SO AP O ti m iZ er Figure 3. Taylor-Green Vortex (Re=1600). (a) Evolution of the iso-surfaces of the Q-criterion (Q = 0.1) at different time
y p . p snapshots, predicted by PINNSs and colored by the non-dimensional velocity magnitude. (b-c) Temporal evolution of spatially

averaged kinetic energy and enstrophy, comparing PINN predictions against a pseudo-spectral DNS (resolution 512%) and
8th-order finite difference solvers at various resolutions (64°~512%). The PINN achieves accuracy comparable to high-order
solvers at moderate resolution and captures key dynamical features of the flow. (d) Comparison of the iso-contours of the
dimensionless vorticity norm on the periodic face x = —mw at¢ = 8.

Wang S, Sankaran S, Stinis P, et al. Simulating three-dimensional turbulence with physics-informed neural networks. arXiv preprint arXiv:2507.08972, 2025.



Optimizers Today

Approximate Gauss-Newton Methods Approximate Newton Methods

K-FAC (tensor approximation) Old Days: BFGS, L-BFGS,
Recently: Kron (low rank approximation+online linear regression)

Approximate Adagrad

Adam (diag approximation)
Shampoo (tensor approximation)
SOAP (Adam in spectral space)

One-side shampoo ... Steepest Descent in New Norm

Maddison C J, Paulin D, Teh Y W, et al. Dual space preconditioning for
gradient descent. SIAM Journal on Optimization, 2021



Steepest Descent in Different Norms

Update Direction: arg max (G, X) + A||G||

» SignSGD: x,, | = x, — ASign(Vf(x)),||G||» = |G|
« MUON: x,, | = x; — AMatrixSign( 'V f(x),||G ||, = HGHop

. Where MatrixSign(UXV') = UV

. MatrixSign can be approximated by Newton-Schulz X, ; = %Xk (3] — XkTXk)



The Norm We Select

1

Learning rate scales
\/ m
Burgers

RMS—¢_, Norm mX 1 | Scaled MUON

RMS—RMS Norm mxXm

RMS—RMS Norm mxXm |
fz—?'RMS Norm d XxXm \ 10—8_ | | | | | | |
. 16 32 04 128 256 512 1024
- Learning rate scales \/% Width
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Final Loss




PINN Loss

AIM of our paper

A Numiercal Scaling Law for PINN

Burgers (VIS26.7)

Allen-Cahn (VIS27)

-

Jasen Lai (UF)

Sifan Wang (Yale)

Chunmei Wang (UF)

All Equation 2 dim in space and 1 dim in time

Kolmogorov Flow (VIS28)
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Compute = params X steps

Different line means different widths
Use small scale to estimate the scaling law
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Compute = params x steps
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We can predict the behaviour of larger networks
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Key Component: MUON Optimizer
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Method

Vanilla PINN (Raissi et al., 2019)
Fourier PINNs (Wang et al., 2021)
FBPINNs (Moseley et al., 2023)
SPINN (Cho et al., 2023)

Causal PINNs (Wang et al., 2024b)

SA-PINNs (McClenny & Braga-Neto, 2023)
RBA-PINNs (Anagnostopoulos et al., 2023)
Curriculum training (Krishnapriyan et al., 2021) :
Natural gradient descent Miiller & Zeinhofer (2023); Chen et al. (2024)
SSBroyden (Urban et al., 2025; Kiyani et al., 2025)

SOAP (Wang et al., 2025)

2040

} 128-256 i

16-64

i 32256
i 128-256
P 50-128 i
P 128-256

50

1-3
2-6
6-12

----------------

Table 1: Representative PINN methods and typical network architectures (width = neurons per
: hidden layer, depth = number of hidden layers). Exact sizes may vary per problem; ranges indicate
: commonly reported configurations.



The Norm is Good for Approximation

‘ Function value
RMS—7_, Norm m X 1 T
S—
RMS—RMS Norm m X m R
.

Scaled Norm: O(1)
F Norm: O(m)

£, Norm: O(m)

RMS—RMS Norm mxXm

£ >,—RMS Norm dXxXm T

1 n
Ixllrpms = ;inz
=1

Smaller norm is always better?



Trade-off: Approximation vs Optimization

* Optimization Theory:

+ If we need Steepest Descent in || - |5, we need relative smoothness
[AX) = f(Y) = VAYX = V)] < L|D,X) — DY) = VD, (Y)(X = V)]

Larger norm is always better? Larger nomr -> better relative smoothness




Optimization and approximation Trade-off

Norm-Constrained Approximation Theory 4 Optimization Theory

Norm 1 50% smaller memory use
Faster than Adamw on CIFAR
g _ Better with MUON on PINN
Same computational cost as Adamw
Theoretically “width” free In
approximation and optimization

. A New Computable Norm !
Ask me 1 month later!

constraints your
model that is
easy to optimize,

But the constrain
IS bad for
approximation

Jiajin Li (UBC)



Tons of chances and the unreasonable effectiveness of mathematics

Think in a limiting way: what would happen if we had co compute

® @
@ How to combine every @
@ [ scaling to achieve the best I &

® convergence rate and

® convergent limit?
®

Scaling learning rate schleuder: Schaipp F, Hagele A, Taylor A, et al. The surprising agreement between convex
optimization theory and learning-rate scheduling for large model training. arXiv:2501.18965

Scaling Weight Decay achieves 17.5x more data efficiency: Kim K, Kotha S, Liang P, et al. Pre-training under infinite
compute. arXiv:2509.14786, 2025.

Training precision: Kumar T, Ankner Z, Spector B F, et al. Scaling laws for precision. arXiv preprint arXiv:2411.04330
Scaling Depth: Dey N, Zhang B C, Noci L, et al. Don't be lazy: CompleteP enables compute-efficient deep
transformers arXiv:2505.01618

Scaling Batch size: Bergsma S, Dey N, Gosal G, et al. Power lines: Scaling laws for weight decay and batch size in lIm
pre-training. arXiv preprint arXiv:2505.13738, 2025.



Scaling at Inference Time



Consider How you use ChatGPT...

~N
What is the most efficient route from Times Square

to Chelsea Market that minimizes walking?

J

-
Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the
Times Sq—42nd Street station.

2. Board the E Train: Catch an E train heading
downtown (toward World Trade Center).

3. Ride to 8th Avenue—14th Street Station: Get off at
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk
east on 14th Street for a few blocks until you reach
Chelsea Market at 75 9th Avenue.

\_

>©®

double-check

with a map

2 stops for A
3 stops for C/E

1. At Times Square: Enter the Times Square—42nd Stree?
station.

2. Board the 1 Train: Hop on a downtown 1 train (the
red line).

3. Ride to 14th Street: Stay on until you reach the 14th
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th
Avenue —this drop-off point is just a short walk from
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Use verifier to
select best
final answer

Best-of-N

[ Math |

kProuem

= Rejecteo! by verifier

Beam Searcl«

g Math A

Use verifier problem
to seleet
top N/M steps

/\ /\Beam width M

A/ L:e_o«w\s

Inference Time Computing in LLM

Diverse Verifier Tree Search

[ Math |

kprouemj

problem

Spht beams into N/M
?nolepenole,nt subtrees

= Selected by verifier <> = Intermediate step O = Full solution
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How can we perform Inference-Time Scaling for
Scientific Machine Learning?




Physics-Informed Inference Time Scaling

. R . Evaluate the error R
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This Position Paper:
Aggregate step 1 and step 2
via First-Principle

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model
—

Step 2. Correct with a Trustworthy Solver

Step 1. Train a Surrogate (ML) Model
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The 101 Example

Haoxuan Chen, inng Ying, Jose Blénchet

Scientific Machine Learning Downstream application
Example 6 = X. = (x..f(x.
Machine Learning: 0 = f . D) = J f(x)dx vaimp-so-n,s .Rulel
When f is piecewise poly

f




The 101 Example

{Xl’ ...,Xn} ~ [FDH—)é
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Fxample ORP A G o0 - | (s
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Machine Learning: 0 = f > (D(é) = Jf (x)dx

f +
D(A) — D(B) = J(f(x) — f(x))dx
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Using Monte Carlo Methods to approximate
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Upper Bound

Smoothness s

& SCaSML

Truncate Monte Carlo Regression-adjusted Control Variate

Minimax
Convergence rate



] Analysis of Error propagation {® SCaSML

{® SCaSML estimate of Epf7, f € WP ,{??
Using half of the data to estimate f &y

|E Pfq — [E P(fq) —|— [E P How does step?2 variance
Hardness = The variance of the debasing step

depend on estimation error?
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] Analysis of Error propagation {® SCaSML

1

{® SCaSML estimate of Epf9, f € WP "

Using half of the data to estimate f
|E Pfq — [E P(]?q) -+ [E P (m How does step2 variance

depend on estimati ?
Low order term pend on estimation error

[N = DIHE =)

“influnce function” (gradient) Error propagation
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] Analysis of Error propagation {® SCaSML

{® SCaSML estimate of Epf?, f € W*?

Using half of the data to estimate f
Epf? = Ep(f7) + Epf? = /7

Low order term

—]
f= )t
“inﬂ/uu(e function” (gradieN‘or ¢ How to select the

A Sobolev emebedding?
Embed f7~! and f — f into “dual” space
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] Selecting the Sobolev Embedding & SCasmL

Easiest Sobolev
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] Selecting the Sobolev Embedding & SCasniL

Largest possible
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When can Regression-Adjusted Control Variates Help?
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PDE Solver



Let’s consider Au = f

The PDE Example

(X, X} ~P,— 0 é)

Scientific Machine Learning Downstream application
0 = u, Xi — (xiaf (xi)) D(0) = u(x)
N ——— ——

\ 4

What is ®(0) — ®(0) = u(x) — i(x) ?

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
0=u - D(0) = ux)




Let’s consider Au = f

The PDE Example

{Xla "'9Xn} ~ [FDH — é é)

Scientific Machine Learning Downstream application
Au =f 0 = u, Xi — (xiaf(xi)) D(O0) = u(x)

' \ 4

Va\

Al = f FEM/PINN/DGM/Tensor/Sparse Grid/...:
o= - D) = )

Aw—i)=f~]

What is ®(0) — ®(0) = u(x) — i(x) ?




Let’s consider Au = f

The PDE Example

(X, X} ~P,— 0 é)

Scientific Machine Learning Downstream application
Au =f 0 = u, Xi — (xiaf(xi)) D(O0) = u(x)

' \ 4

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
o= - D) = )

Au-iy=f-7 T gy - i) = | (- o

What is ®(0) — ®(0) = u(x) — i(x) ?
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Inference-Time Scaling

Shihao Yang
=) ) (Gatech)
O O exp(T + ). x;
—Uu + gzu —_——— — (V : I/t) + — Au = () have closed-form solution g(x) = P+ 2,
d 2 2 I +exp(T+ 2, x)
Method Convergence Rate
_40.2% -40.7%
—s/d
—— Improvement (%) 0.25 - PINN On™")
£ 0,20 - MLP O(n="?)
2 0.15 - ScaSML O(n~12=5/d)
2
— 0.10 - ‘
g Solving a PDE at a single point
0.05 - converges faster than approximating
the PDE solution over the entire
o 0.00 - | domain
101! MLP SCaSML L

Evaluation Numbers



Pre-training
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Inference time scaling

New scaling law: why OpenAl’s ol model matters

Before OpenAl ol Alter OpenAl ol

don’t fine-tune/retrain/add a new surrogate model

M%

The first Inference-Time Scaling for Scientific Machine Learni=

“Physics-informed”



Works for Semi-linear PDE

oU Can .
you do simulation
a (.X t) +AU(X ....... t) +f( U(x t)) T ? for nonlinear equaﬂgn’?

Keeps the structure to enable brownian motion simulation
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Works for Semi-linear PDE

------------------------------------------------------
* 03

—(x, 1) + AU(x, 1) + (U(x, 1) =0

Keeps the structure to enable brownian motion simulation

ol @ P — | A
— (. ) HADO D) + A0, 1) = g0x, 1)



Works for Semi-linear PDE

------------------------------------------------------
K .

oU
a—(x 1)+ AU +AU(x, 1) =

Subtract two equations

a(U _ U) ..........................................................................
)+ AL = D)0+ 0, 05,1+ UG, = 00, = 08, 05, 0) = ¢G50

~

(t, (U - U)x. r))



Numerical Results

Time (S) Relative L? Error L°° Error L' Error

SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML

10d | 2.64 11.24 23.75 5.24E-02 2.27E-01 2.73E-02 | 2.50E-01 9.06E-01 1.61E-01 | 343E-02 1.67E-01 1.78E-02

al | 20d | 1.14 7.35 17.59 9.09E-02 2.35E-01 4.73E-02 | 4.52E-01 1.35E+00 3.28E-01 | 947E-02 2.37E-01 4.52E-02
S 30d | 1.39 7.52 25.33 2.30E-01 2.38E-01 1.84E-01 | 4.73E+00 1.59E+00 1.49E+00 | 1.75E-01 2.84E-01 1.91E-01
60d | 1.13 7.76 35.58 3.07E-01 2.39E-01 1.32E-01 | 3.23E+00 2.05E+00 1.55E+00 | 5.24E-01 4.07E-01 2.06E-01

- 20d | 1.15 7.05 13.82 1.17E-02 8.36E-02 3.97E-03 | 3.16E-02 2.96E-01 2.16E-02 | 5.37E-03 3.39E-02 1.29E-03
Z | 40d | 1.18 7.49 16.48 3.99E-02 1.04E-01 2.85E-02 | 8.16E-02 3.57E-01 7.16E-02 | 1.97E-02 4.36E-02 1.21E-02
g 60d | 1.19 7.57 19.83 3.97E-02 1.17E-01 2.90E-02 | 8.10E-02 3.93E-01 7.10E-02 | 1.95E-02 4.82E-02 1.24E-02
> 80d | 1.32 7.48 21.99 6.78E-02 1.19E-01 5.68E-02 | 1.89E-01 3.35E-01 1.79E-01 | 3.24E-02 4.73E-02 2.49E-02
20d | 1.97 10.66 65.46 1.47E-01 8.32E-02 5.52E-02 | 3.54E-01 2.22E-01 2.54E-01 | 7.01E-02 3.50E-02 1.91E-02

25 40d | 1.68 10.14 49.38 1.81E-01 1.05E-01 7.95E-02 | 4.01E-01 347E-01 3.01E-01 | 9.19E-02 4.25E-02 3.43E-02
§ 60d | 1.01 7.25 35.14 2.40E-01 2.57E-01 1.28E-01 | 3.84E-01 9.50E-01 7.10E-02 | 1.27E-01 9.99E-02 6.11E-02
80d | 1.00 7.00 38.26 2.66E-01 3.02E-01 1.52E-01 | 3.62E-01 1.91E+00 2.62E-01 | 1.45E-01 1.09E-01 7.59E-02

100d | 1.54 8.67 26.95 7.96E-02 5.63E+00 5.51E-02 | 7.78E-01 1.26E+01 6.78E-01 | 1.40E-01 1.21E+01 8.68E-02

Q| 120d | 1.25 8.17 27.46 9.37E-02 5.50E+00 6.64E-02 | 9.02E-01 1.27E+01 8.02E-01 | 1.73E-01 1.22E+01 1.05E-01
S 140d | 1.80 8.27 29.72 9.79E-02 5.37E+00 6.78E-02 | 1.00E+00 1.27E+01 9.00E-01 | 1.91E-01 1.23E+01 1.11E-01
160d | 1.74 9.07 32.08 1.11E-01 5.27E+00 9.92E-02 | 1.38E+00 1.28E+01 1.28E+00 | 2.15E-01 1.23E+01 1.79E-01

100d | 1.62 7.75 60.86 9.52E-03 8.99E-02 8.87E-03 | 7.51E-02 6.37E-01 6.51E-02 | 1.13E-02 9.74E-02 1.11E-02

| | 120d | 1.26 7.28 65.66 1.11E-02 9.13E-02 9.90E-03 | 7.10E-02 5.74E-01 6.10E-02 | 1.40E-02 997E-02 1.23E-02
= 140d | 2.38 7.82 76.90 3.17E-02 8.97E-02 2.94E-02 | 1.79E-01 8.56E-01 1.69E-01 | 3.96E-02 9.77E-02 3.67E-02
160d | 1.75 7.42 82.40 3.46E-02 9.00E-02 3.23E-02 | 2.08E-01 8.02E-01 1.98E-01 | 4.32E-02 9.75E-02 4.02E-02




@ SCaSML

Simulation-Calibrated
Scientific Machine Learning

Physics-Informed Inference Time Scaling via
Simulation-Calibrated Scientific Machine Learning

Zexi Fan!, Yan Sun 2, Shihao Yang?®, Yiping Lu**

! Peking University 2 VisaInc. ° Georgia Institute of Technology * Northwestern University

fanzexi_francis@stu.pku.edu.cn,yansun414Qgmail.comn,
shihao.yang@Qisye.gatech.edu,yiping.lu@northwestern.edu

https.//2prime.github.io/files/scasml techreport.pdf




A multiscale view

Capture via surrogate model _/\ FuEr:t?on

Coarse Scale
- —
Capture via Monte-Carlo

Fine Scale



More Examples...

Scientific Machine Learning Downstream application
Example 1 O=f X =(@x,fx)) PO = [ f1(x)dx
Example 2 0=A"Y X =(x,f(x)) d(0) = O(x)
Example 3 0=A, X =(x;,Ax) D(0) = tr(A)
Estimation A via Randomized SVD Estimate tr(A — A) via Hutchinson's estimator

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20

Application in graph theory, guantum ...



Eigenvalue Problem

Example 4 0=A, X = (x;,Ax)



Eigenvalue Problem

Example 4

_ Sketching a Matrix Approximation
Randomized SVD ~ ~ A A~
- 0=A > D(0) = eign(A)



Eigenvalue Problem

Scientific Machine Learning Downstream application

Example 4 0=A, X =(x,Ax) d(0) = eigen(A)
\ 4

Randomized SVD Sketching a Mgtrlx AAQproxmatlon X | X
> D(0) = eign(A)

What is ©(6) — ©(6)? ’ Taylor Expansion

* *
. .
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----------------------------------------------------------------------------------
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A new Preconditioned Power method + Enable Online Updates



Relationship with Inverse Power Methods

(Approximate)

Inverse Power Method Our Method

IIIIIIIIIIIIIIIIIIIIIIIIIIII
0

X1 =AU -A)Ky X, =0 -A)TA-A)X,

. 0
lllllllllllllllllllllllllll

/ N —— ——
Replace with an approximate Ture eigenvector is the fix point
solver A changes the fixed point or every approximate solver A

Easy to compute when A is low rank

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Another Supersing Fact...

------------------------------------------------------------------------------------------------------------------
* L4
* .

lteration lies in the Krylov Subspace . p | |
- enable dynamic mode decomposition - Enable online update!
- Online fast update ¢

- Much better than DMD
Experiment Collect Data DMD

+ past future

t s %
A=X'Xt ¢ =
- E
- =
> = =
Regression A -
1 m it

b) Future state prediction




DMD with First-Order Feedback

S
Dynamic modes

o~
N
=)
Dynamic modes

-

!
‘;;7‘ X
4 Project to the

Reconstruction

Span of modes




DMD with First-Order Feedback

Dynamic modes

Project to the
Span of modes

-

Error Feedback at 1 + 1

e —

b) Future state prediction

N )

S
Dynamic modes

Reconstruction

Dynamic modes

Update the projection space



DMD with First-Order Feedback

Dynamic modes

Project to the
Span of modes

-

-------------------------------------------------------------------------

Error Feedback at r + 1

e

: b) Future state prediction

\.

S
Dynamic modes

Reconstruction

No matrix inverse, No SVD computation
Only a n X r QR decomposition

Dynamic modes




Im

Faster than Recomputation!
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Appendix: Suprising Pre-condition Effect

with a surprising connection with
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L LoypD N. TREFETHEN
Davip Bau, |l

Tale 2: Preconditioning

”In ending this book with the subject of preconditioners, we find ourselves at the

philosophical center of the scientiffc computing of the future.”

— L. N. Trefethen and D. Bau III, flumerical Linear Algebra |TB22

Nothing will be more central to computational
science in the next century than the art of
transforming a problem that appears intractable into
another whose solution can be approximated

rapidly.



What is precondition

lllllllllllllllllllllllllllllllllll
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hardness depend on k(A) hardness depend on

. |

Become easier when B ~ A



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b
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» Using the approximate solver to approximate x — x; via Bx, = b — Ax,



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b terative Refinement Algorithm
....................................................................................................................... O
S 2 x; satisfies the equation A(x — Z x)=b—A Z X;
=1 =1 =1

[ f :
Using the approximate solver to approximate x — Z x;viaBx;,, =b—A Z X;
=l i=1 5

L4
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A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b lterative Refinement Algorithm

Preconditioned Jacobi lteration



This Talk: A New Way to Implement Precondition
Via

 Step 1: Aim to solve (potentially nonlinear) equation A(u#) = b

use Machine Learning

 Step 2: Build an approximate solver A(if) ~ b Unrealiable approximate

solver as preconditioner

* Via machine learning/sketching/finite element....

» Step 3: Solve u — i

N

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!




Than k YOu McCORMICK SCHOOL OF
_ Northwestern | ENGINEERING
And Questions”?

Students: Haoxuan Chen, Yinuo
Ren(Stanford), Youheng Zhu, Kailai Chen
(Northwestern), Jasen Lai (UF), Zhaoyan Chen,
Weizhong Wang (FDU), Kaizhao Liu (PKU-
>MIT), Zexi Fan (PKU), Ruihan Xu (Uchicago)
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Lexing Ying (Stanford) Jose Blanchet (Stanford) Shihao Yang (Gatech) Sifan Wang (Yale) Chunmei Wang (UF) Jiajin Li (UBC)

Scaling in Training:
Jasen Lai, Sifan Wang, Chunme1 Wang, Yiping Lu. Unveiling the scaling law of PINN under Non-Euclidean Geometry
Scaling in Inference

Zex1 Fan, Yan Sun, Shihao Yang, and Yiping Lu. Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning

Eigenvector Computation:

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Inverese Power Error or Inverse Power
Estimation?



