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Machine learning has yet to meet the precision required for rigorous scienftific and engineering ap-
plications, where success depends on combining principled model-based structure—such as physical laws,
financial constraints, and operational models—with scalable data-driven inference. At the same time, re-
cent advances in large language models reveal that model performance improves predictably as we scale
fraining resources. Empirically, the generalization risk—measured as validation loss, perplexity, or prediction
error—follows a power-law decay with respect to data size and compute:
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where:

Risk is the model’s error on the target distribution.

Data denotes the effective number of training examples (e.g., number of high-quality text tokens).
Compute quantifies the training budget (e.g., total FLOPS).

a, B > 0 are the scaling exponents that determine how efficiently adding more data or more compute
reduces error and C,, Cg > 0 are problem-dependent constants.

* snoor IS The irreducible error floor, representing noise, ambiguity, or intrinsic difficulty of the task.

The predictability in (1) fundamentally changes how we design learning systems: instead of guess-
ing whether larger models will help, we can forecast performance and allocate resources optimally. Yet,
despite the success of scaling laws in language models, current scienfific and engineering machine learn-
ing systems do not exhibit the same predictable improvement when scaled. These systems must intfegrate
model-based knowledge—such as physical laws, financial constraints, or operational models—with data-
driven statistical learning. However, without a reliable scaling law, increasing model size or data does not
guarantee improved accuracy or stability; performance often plateaus due to optimization difficulty, stiff
constraints, or limited signal in the data.
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This gap motivates my research: | aim to build the next generation of scientific machine learning systems
whose accuracy scales predictably with resources, just as modern language models do. By combining
principled model-based structure with scalable data-driven inference, my work seeks to ensure that “more
compute, more data, more model capacity” reliably leads to better predictive accuracy. Specifically, this
vision crystallizes info the following research thrusts.

* Sample Complexity of Machine Learning with Model-based Structure. Direct application of machine
learning methods is often highly data-intensive. However, data may not always be available due to
privacy concerns, changing environments, or other limitations. In contrast, structural models typically
encode fundamental laws—often expressed as high-dimensional differential equations—which are gen-
erally difficult to solve. Machine learning offers a promising approach to solving these structural models,
with the potential to break the curse of dimensionality via Monte Carlo methods. Moreover, structural
models are transparent and reliable for counterfactual prediction. A central question is: how can we
combine structural modeling with machine learning to simultaneously improve sample efficiency and
overcome the curse of dimensionality in high-dimensional problems?

¢ Scaling Language Model Optimizer. Large-scale neural networks often lead tfo ill-posed optimization
problems and complex loss landscapes. A key question is how optimization behaves as network width
and depth scale to infinity—i.e., in the mean-field or infinite-width limit—and how to design optimizers
whose performance and convergence are independent of network size.

¢ Inference-time Scaling Via Stochastic Simulation. | also investigate a new scaling paradigm called
inference-time scaling, which aims to improve model performance via allocating more resource at infer-
ence rather than during training. The key insight is that, at inference, we have access o structural mod-
els, simulation technigques, or partial observations that were not fully utilized during training. By leveraging
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structural models and simulation-based techniques, we aim to correct model outputs during inference,
enabling faster and more optimal convergence. The goal is to construct inference-time scaling methods
that achieve both efficiency and accuracy.

Below are the directions | am pursuing to build such scalable systems—capable of reaching the level of
precision demanded by science, finance, and operations research.

Scaling the Approximation: Statistical Complexity Scaling an ML system first requires a scalable
approximation ansatz. Scaling SciML requires identifying the right function spaces—along with their intrinsic
complexity—to ensure models remain computationally efficient while expressive enough to capture the
underlying physics and structure of scientific systems.

* Scaling Physics-inspired Architecture Design My initial research interpreted popular neural networks as nu-
merical discretizations of (stochastic) differential equations. The connection between differential equa-
tion and neural network reveals a promising but underexplored opportunity—the integration of physics pri-
orsinto the ansatz space to enhance approximation quality. My research intfroduces a unifying dynamical-
systems viewpoint for modern neural architectures. In one of the first works to make this connection ex-
plicit [20], we show that a ResNet block is exactly the forward Euler discretization of an ODE, where depth
corresponds to time and skip connections implement the identity-plus-residual update; stability heuristics
such as step-size tuning or Lipschitz regularization naturally emerge from numerical time-stepping. Ex-
tending this idea to CNNs, we interpret convolutions as finite-difference stencils approximating differen-
fial operators. By enforcing moment-matching constraints on filters [ 13, 12], our PDE-Net simultaneously (i)
predicts the dynamics of complex systems and (ii) discovers the underlying governing PDE. More recently,
we further generalize this ODE-PDE perspective to Transformers: viewing tokens as particles evolving in
confinuous “layer time,” self-attention becomes the velocity field of a mean-field interacting parficle sys-
tem [17, 7]. This dynamical interpretation explains emergent clustering, attractors, and token collapse,
and provides principled tools—ODE theory, stability analysis, and mean-field PDEs—for understanding
depth, robustness, and generalization in large-scale language models.

* Optimizing Physics-Inspired Neural Architectures via Optimal Control Building on this viewpoint, we de-
veloped new optimization methods by formulating the training of infinitely deep networks as an optimal
control problem [29, 19], and further established a new generalization theory based on this continuous-
depth perspective [4].

- Fast Training via Pontryagin’s Maximal Principle. A key perspective in my research is to interpret deep
neural networks as discretized dynamical systems. A residual network corresponds to a time-discretized
ODE, where the weights {6;} act as conftrol variables that steer the state z;1 = f(x4,6;). Training
therefore becomes an optimal control problem. The Pontryagin Maximum Principle (PMP) provides:
() a forward state equation, (i) a backward costate (adjoint / backpropagation) equation, and (iii)
a Hamiltonian maximization rule to update 6;. [29] shows that applying PMP leads to training updates
that maximize the Hamiltonian at each layer, resulting in an optimizer that is only a slight modification
of standard SGD. This perspective enables principled optimizer design that combines control-theoretic
updates, structure, and preconditioning.

- Mean-Field Limit of ResNet. We extend the differential-equation viewpoint by deriving a mean-field
limit for deep residual networks [19]. When both the number of residual blocks and the width grow to
infinity under proper scaling, the ResNet converges to a continuous-fime “shallow ensemble” model
in which every local minimizer becomes global. This reduces the analysis of deep ResNets to classical
mean-field theory for two-layer networks and yields one of the first global convergence guarantees for
multilayer architectures without assuming convexity. Moreover, this continuum limit enables us to an-
alyze how different width-depth scaling laws [5] affect the speed of convergence toward the infinite-
width/depth regime, providing principles for designing extremely deep yet optimizable architectures.

* Sample Complexity of Scaling Scientific Machine Learning We develop optimal sample complexity results
for scientific machine learning [16, 8], enabling scalable learning as data increases.

- Statistical and Computational Analysis for ML Based PDE Solver In [16, 15], we focus on a profotype
elliptic PDE Lu = f. We aim fo build an estimaotr for u from random observations {(z;, f(z;) + n)}*,
of right hand side function f. We establish the information theoretical lower bounds for learning the
equation’s solution from sampled data and the first matching upper bound for both (modified ver-
sion of) Deep Ritz Method (DRM) and Physics Informed Neural Network (PINN). We observed that
DRM enlarge the variance of sampling a high-frequency single and a modification is needed to
achieve optimal rate. In [15], we explain an implicit acceleration of using a Sobolev norm as the
objective function for training. While DRM and PINN can achieve statistically optimality, the proper
number of epochs of DRM is larger than the number of PINN when both the data size and the hard-
ness of tasks increase in low dimension.

- Statistical Analysis for Operator Learning In [8], we consider the optimal learning rate for learning a
linear operator between two infinite dimensional Hilbert spaces. We provided a novel lower bound



to the literature and showed that multi-level machine learning is essential to achieve an optimal
learning rate. This example showed a fundamental difference between infinite dimension machine
learning and finite dimension one both in sample complexity and algorithmic design.

- Statistical Analysis for Unsupervised Learning One of the most powerful tools in unsupervised learn-
ing—including spectral clustering, diffusion maps, and many manifold-learning methods—is fo com-

pute eigenvectors of differential operators (e.g., the Laplace-Beltrami operator). Despite their widespread

use, existing work rarely analyzes the optimal statistical rate for estimating these eigenvectors from
randomly sampled data. In this research thread, we develop new estimators of the Laplacian based
on graph Laplacians with higher-order kernels and an RKHS-based approximation of Laplace op-
erators on manifolds. Our theoretical analysis [22] shows that these constructions achieve strictly
improved, fully adaptive, and in fact minimax-optimal convergence rates for eigenvector estima-
tion—closing the gap between empirical graph-based methods and the information-theoretic limits

of manifold learning.

In parallel, we establish a novel connection between feature geometry and hypothesis space complexity
[18]. bridging functional analysis and information theory. This provides a theoretical foundation for scaling
laws and guides the search for efficient and expressive ansatz spaces in scientific machine learning. We
are currently establishing optimality results in PDE simulation, eigenvalue problems, and operator learning,
which in turn inspire the development of new algorithms guided by these optimality principles.

Scaling the Optimization: Structure-aware Geometry
As networks become wider, the geometry of the loss land-
scape changes in ways that often worsen its smoothness prop-
erfies—making gradients sharper and optimization more sensi-
tive to step sizes. A central question is therefore how the land-
scape geometry scales with network width, and how this scal-
ing franslates into computational effort. Empirically, the opti-
mal learning rate depends strongly on model width [26, 27, 28]:
a rate tuned for a network with 5§12 hidden units can lead
fo divergence or severe slow-down when width increases to
2048. This sensitivity reveals that standard optimizers do not nat-
urally respect architectural scaling. To fully harness the ben-
efits predicted by scaling laws, my research aims to design
scaling-aware optimizers whose tuning—especially the learn-
ing rate—varies only weakly with width. In other words, | seek
algorithms whose optimal hyperparameters transfer robustly
across model scales.
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Figure 1: Our optimiz%ela (row-wise normal-
ization only) has the same per-step compu-
tational cost as Adam on GPT2-Large, yet
converges significantly faster per iteration,
matching MUON’s convergence rate without
requiring spectral computations.

* Selecting the Descent Geometry:We answer this question in the affirmative by viewing existing neu-
ral network opfimizers, including SignSGD [ 1], Adamw [10, 14] and MUON[3, 9], in a unified framework as
instances of steepest descent under different norms. pecifically, we consider the optimization prob-
lem minw (W), where W denotes the network parameters. Steepest descent can be defined with
respect to an arbitrary norm || - || with dual || - ||.. At iterate Wy, a steepest-descent direction is any
Dy € argminp < (Vf(Wy),D) = —9|Vf(Wi)|,, where 9] - |.. denotes the subdifferential of the
dual norm, which is known Qs linear minimization oracle (LMO). In [23], we consider the steepest
descent under (p,mean) — (g,mean) geometry ||D||(,nean)—(gmean) = SUD | () moumy =1 D[ (4mean), Where

2| (pmean) = (= D0y ‘mp)l/lﬂ = n~1/P||z||,. First of all, we want closed form computable linear mini-
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mization oracle which focus our attention to
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Under (p,mean) — (¢,mean) geometry, the L-smoothness constant is widfth-insensifive precisely when
q > 2p. Otherwise, any residual width dependence is governed by the term 3 — % which determines
the rate at which the smoothness constant increases with the layer width w. In particular, (1, mean) —
(p, mean) with p > 2 and (¢, mean) — oo both yield smoothness that does not grow with width. By contrast,
(2, mean) — (2, mean) (MUON) exhibits L-ssnoothness scaling as /w.

The mean-norm operator allows us to express the geometry of a weight matrix W ¢ R**4 in terms
of classical ¢; — ¢, matrix norms. In particular, for the (1, mean) — (p, mean) operator norm we have
Wl (1, mean) — (p,mean) = w =P [W ||, -, , whichimplies that a gradient update must be scaled by w—1+1/r



to keep the step size invariant under width scaling. Similarly, for the (¢, mean) — oo operator norm we
obtain [[W|| (gmean)—oo = WP [W]|g, ¢, , SO the corresponding update requires a scaling of w=1/¢. Be-
cause smoothness (L-smoothness) of the loss requires p > 2, the exponent 1/p becomes small and
thus the scaling factor w=1/¢ produces larger update magnitudes than w=1+1/?, Consequently, the
(¢,mean) — oo geometry yields stronger and more effective updates, especially in wide networks,
while still maintaining width-invariant optimization behavior. In Figure 1, on GPT-2 Large, our optimizer
achieves MUON-level convergence while having the same per-step compute as Adam (row-wise normal-
ization only), resulting in faster iteration-wise progress without spectral computations.

* Understanding Decoupled Weight Decay: We study the role of decoupled weight decay through the
lens of the Norm-Constrained Linear Minimization Oracle (LMO) framework. When the constraint set is
chosen as a norm ball that matches the geometry of the LMO oracle, an interesting phenomenon
emerges: decoupled weight decay effectively enforces all iterates to remain within a fixed-radius
norm ball—equivalently, it tfransforms the original problem into a constrained optimization problem
whose radius is governed by the decay rate. In contrast, applying standard L, regularization (defined
in Euclidean geometry) introduces a geometric mismatch between the regularizer and the LMO ge-
ometry. This misalignment degrades the smoothness properties of the network and exacerbates the
width-dependent scaling behavior. Understanding and correcting such geometric inconsistencies is
key to designing optimizers that scale reliably with model size.

Algorithm 1: Weight Decay (WD) Algorithm 2: Decoupled WD
Input: Initial parameters 6y, learning Input: Initial parameters 6y, learning
rate 7, weight decay A rate 7, weight decay A
fort=0,1,2,...,7 do fort=0,1,2,...,7 do
Compute gradient of loss: Compute gradient of loss:
9t = VoL(0:) 9t = VoL(0:)
Weight Decay: Parameter update:
gt = gt + A0y 0141 = 0, —nLMO(g:)
Parameter update: Decoupled Weight Decay:
0t+1 = 0 — nLMO(g:) Orp1 = (1 = n\) Orpa
Applications:

* Large Scale Neural Physic Simulator Larger PINNs are generally harder to frain, which hinders their scaling
behavior. In [11], we address this challenge by infroducing a scale-aware preconditioner that unlocks
the scaling behavior of PINN training and achieves machine-precision accuracy. With the scaling law
unlocked, we are now scaling PINN computation to 3D turbulence with complex boundaries—settings
where fraditional finite element and spectral methods often fail.

* (Online) Low-Rank Approximation via Randomized Preconditioning In many scientific and engineering
applications, the central computational task is to extract the dominant eigenmodes of a (potentially
infinite-dimensional) operator—for example, the generator of a dynamical system, or the Hamiltonian in
quantum chemistry.

In [24]. we introduce a randomized preconditioning strategy for computing eigenvectors of a large op-
erator A € R™*™ using only matrix-vector products. Given a target eigenvalue A, we study the fixed-point
iteration z,41 = (A — A)~1(A — A)z;, where A is a randomized low-rank sketch of A, constructed from
a small number of matrix-vector evaluations. The sketch A acts as an effective preconditioner for the
shiffed-inverse problem: we prove that every eigenvector v satisfying Av = Av is a fixed point of the itera-
tion, regardless of how A is chosen. Moreover, the quality of A directly controls the convergence speed:
a more accurate sketch reduces the spectral radius of (AT — A)~1(A— A), accelerating contraction toward
the desired eigenvector, analogous fo classical preconditioned Krylov methods. When A is chosen to be
low rank, (\I — A) can be inverted efficiently using the Sherman-Morrison-Woodbury formula, enabling
each iteration to be performed using only cheap linear algebra without ever forming or factorizing the
full operator A.

Leveraging this property, we extend the method to an online setting: when A represents the Koopman
generator of a dynamical system, streaming trajectory data continuously updates A,, and the same pre-
conditioned iteration produces the eigenmodes (dynamic modes) in real fime. This yields an online ver-
sion of Dynamic Mode Decomposition (DMD) that computes the eigenmodes of the generator directly
from data, rather than requiring a full reconstruction of the operator. Finally, this framework naturally ap-
plies fo quantum systems. | also extend this preconditioned solver—via quantum embedding—toward
large-scale quantum chemistry, where the “wavefunction” is precisely the eigenfunction of interest.



Scaling at Inference Time: Simulation-based Calibration Inspired by the recent progress of inference-
fime scaling in large language models—where models improve simply by allocating more computation at
inference (e.g., generating multiple reasoning paths or performing deeper search) without changing model
parameters—we advocate a similar principle for scientific simulation: think longer, perform better. Instead of
retraining or enlarging the model, we leverage additional computation during inference tfo refine, correct,
and calibrate the model’s prediction. In language models, inference-time scaling means letting the model
“think longer” (sample more trajectories, perform self-consistency, use Monte-Carlo search), which naturally
produces higher-quality outputs. Analogously, in simulation, we let the simulator “work longer” by exploring
multiple futures and resampling them according to scientifically grounded criteria. This perspective shifts
the focus from model capacity to compute allocation, establishing inference-time computation as a new
scaling axis alongside data and parameter scaling. A natural research question comes out

How can we improve the accuracy and reliability of machine-learned simulator at inference
time—without any fine-tfuning or refraining?

In [6], we improve the accuracy and reliability of a machine-learned (semi-linear) PDE solver at inference
fime through iterative refinement—without any retraining or fine-tuning—simply by allocating more com-
putation during inference. We infroduce a new PDE, the Law of Defect, which quantfifies the residual er-
ror in the learned surrogate model. Using the Feynman-Kac representation, we launch Monte-Carlo tro-
jectories to estimate this defect and apply corresponding corrections to the model’s prediction. From a
decision-theoretic perspective, a correct decision should incur zero Bellman error; our algorithm leverages
this fact by using the future Bellman error discovered along simulated trajectories to correct the current de-
cision, enabling inference-time correction. Rather than committing to the surrogate model’s initial output,
the method adaptively improves the solution using compute-scaling rollouts, yielding higher accuracy and
greater reliability at deployment time. Here are some application examples:

* Online Debiasing Neural Controller. Building on our recent framework for physics-informed inference-
time refinement [6], we propose an online debiasing neural controller that treats the learned policy
not as an oracle but as a proposal to be calibrated. At each space-time point, the controller only
needs access to the local solution of the HJB equation to propose a control; rather than executing
it blindly, we perform short-horizon rollouts under the learned dynamics to forecast the downstream
value and compute the Bellman residual as a principled error signal. This residual exposes where the
conftroller’s value approximation violates optimality and, crucially, how to fix it. We then correct the
control online by solving a lightweight simulation-time calibration problem: particle rollouts propagate
multiple futures, Bellman-error identifies bias, and a small compute budget adjusts the action before it
is committed. This design inherits the advantages of inference-time scaling—leveraging extra compute
at decision time to buy accuracy—while adding closed-loop reliability: as real observations arrive, a
data-assimilation step updates the frajectory weights so that the controller remains robust to model
drift and partial observability. In benchmarks on high-dimensional control/PDE tasks, this “simulate-
then-correct” loop consistently reduces sub-optimality without refraining, offering a practical path to
safe, precise neural control.

* Posterior Sampling of Diffusion Model. Recent diffusion and flow-based generative models can be

interpreted as simulating a stochastic dynamical system. However, existing “guidance” techniques—
such as classifier guidance, classifier-free guidance, and energy-based steering—modify the drift of
the diffusion process without correcting the induced measure mismatch, offen leading to biased and
unstable sampling. In our recent work [21], we propose URGE (Unbiased Resampling via Girsanov
Estimation), the first inference-fime scaling method that provides unbiased sampling when guiding
a pretrained diffusion model toward a task-specific objective. The key idea is to view generation as
sampling a path measure and continuously evaluate a “Bellman style error” that detects when the
model’s predicted trajectory deviates from the desired distribution. Instead of retraining or modifying
the score network, URGE performs particle filtering (Sequential Monte Carlo) on diffusion trajectories:
particles that accumulate higher reward are resampled, while low-performing particles are pruned.
This yields an online, inference-time correction loop—"detect error, resample, correct”’—that preserves
unbiasedness of the target posterior distribution.
This framework turns diffusion models into a flexible world simulator: they can simulate forward dynamics
while confinuously assimilating new observations through particle filtering. This makes it possible to
infegrate real-time data streams into a diffusion-based simulator for decision making or forecasting.
enabling applications such as model-predictive control, weather prediction, robotics, and scientific
data assimilation—all without retraining the base diffusion model.

* Backtracking Language Model Reasoing via metropolis hastings. A major challenge in test-time scal-
ing for multi-step reasoning is that current methods rely on a verifier (or reward/value model) o guide
infermediate steps. However, verifier errors accumulate: a small overestimate early in the chain can



push the reasoning path into an irrecoverable failure mode. | develop a new inference-time correction
mechanism [25] that treats reasoning as sampling from a posterior distribution and performs Metropolis-
Hastings backtracking to retroactively fix earlier mistakes. The key insight is to use the Bellman error—the
mismatch between the predicted value of the current step and the expected value of its continua-
tion—to detect when the verifier is wrong. If the Bellman error indicates overconfidence, we reject the
step and roll back to an alternative reasoning frajectory, analogous to backtracking in dynamic pro-
gramming. The result is an inference-time decoding procedure that suppresses error propagation and
ensures that cumulative reasoning quality depends primarily on later (more informed) evaluations of
the verifier, rather than compounding errors across the entire chain. Empirically, this leads to significant
gains in complex reasoning tasks, even with imperfect reward models.

e Statistical Optimality. Statistically, in the most stylized setting—computing the mean of an unknown
distribution—our analysis in [2] proves that this inference-time correction strategy is minimax optimal,
achieving the best possible estimation accuracy given a fixed computational budget, so long as the
system does not exhibit rare-event behavior that induces infinite variance. Building on this theorefical
foundation, we extend the framework to large-scale machine learning systems. These results reveal a
unifying principle: instead of spending more compute in training, we can spend it strategically during
inference, correcting errors adaptively based on the real-time signal. | am now pushing this program
further—generalizing the statistical theory, developing new sequential estimators for path-space ob-
jectives such as diffusion models and scientific simulators, and designing inference-time algorithms that
are both theoretically optimal and practically scalable.

My long-term research agendais o establish a theory of scalable scientific machine learning grounded
in optimization, complexity, and resource allocation. | view scaling not as an engineering artifact, but as
a fundamental operations research problem: given limited computational budget, data, and model co-
pacity, how do we adllocate resources to achieve the maximal statistical gain? This perspective leads to a
unifying framework where (i) approximation theory determines what can be learned, (ii) optimizer geome-
fry determines how efficiently we approach the optimum, and (iii) inference-fime computation provides an
adaptive correction mechanism to guarantee reliability when models deviate from optimality. By treating
compute, data, and simulation as decision variables in an optimization problem with provable statistical
objectives, | aim to build ML systems whose accuracy is not only high, but predictable and certifiable. Ul-
fimately, | seek to develop a mathematical foundation in which scientific ML behaves like a well-designed
OR systemn—scalable, resource-efficient, and performance-guaranteed.
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