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Towards Human-Level 3D Relative Pose Estimation:
Generalizable, Training-Free, with Single Reference

Yuan Gao*, Yajing Luo*, Junhong Wang, Kui Jia, Gui-Song Xia

Abstract—Humans can easily deduce the relative pose of a
previously unseen object, without labeling or training, given only
a single query-reference image pair. This is arguably achieved by
incorporating i) 3D/2.5D shape perception from a single image,
ii) render-and-compare simulation, and iii) rich semantic cue
awareness to furnish (coarse) reference-query correspondence.
Motivated by this, we propose a novel 3D generalizable relative
pose estimation method by elaborating 3D/2.5D shape perception
with a 2.5D shape from an RGB-D reference, fulfilling the
render-and-compare paradigm with an off-the-shelf differentiable
renderer, and leveraging the semantic cues from a pretrained
model like DINOv2. Specifically, our differentiable renderer takes
the 2.5D rotatable mesh textured by the RGB and the semantic
maps (obtained by DINOv2 from the RGB input), then renders
new RGB and semantic maps (with back-surface culling) under
a novel rotated view. The refinement loss comes from comparing
the rendered RGB and semantic maps with the query ones, back-
propagating the gradients through the differentiable renderer
to refine the 3D relative pose. As a result, our method can
be readily applied to unseen objects, given only a single RGB-
D reference, without labeling or training. Extensive experiments
on LineMOD, LM-0O, and YCB-V show that our training-free
method significantly outperforms the state-of-the-art supervised
methods, especially under the rigorous Acc@5/10/15° metrics
and the challenging cross-dataset settings. The codes are avail-
able at https://github.com/ethanygao/training-free_generalizable_
relative_pose.

Index Terms—3D Relative Pose Estimation, Differentiable
Renderer, Zero-Shot Unseen Generalization, Single Reference,
Label/Training-Free Refinement.

I. INTRODUCTION

ECENT years have witnessed great progress in 3D object

pose estimation [12, 13, 14, 22,43, 44, 64, 67, 77, 78],
which estimates the 3D rotation of an object depicted in
a query RGB image. As a key to facilitating interaction
with real-world objects, 3D object pose estimation attracts
increasing attention from various areas including computer vi-
sion, virtual/augmented reality, robotics, and human-computer
interaction [I, 50, 59]. To date, the community shows great
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The different reference information used in generalizable object pose estimation
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Fig. 1. Generalizable object pose estimation with different references, i.e.,
a CAD model, multiple images, or a single image. CAD models and multi-
view references offer rich geometry details, however, scanning the precise
CAD model and/or calibrating dense views for multiple images are laborious
or even impossible for unseen objects in practice, such as augmented reality.
We thus focus on estimating the relative pose w.r.t. a single-view reference
following [77, 78], i.e., the relative pose between a reference-query pair, where
we treat the reference pose as canonical without any calibration.

interest in generalizable 3D object pose estimation [17, 44, 57,

, 77, 78] owing to its wide applicability, which focuses on
the generalization to previously unseen objects, preferably in
a zero-shot manner'.

Existing generalizable 3D object pose estimation methods
can be categorized according to how they exploit the reference
information, i.e., using a CAD model, multiple images, or a
single image as references, as shown in Fig. 1. Specifically,
most existing methods leverage a 3D CAD model [7, 26, 44,

, 55] or multiple images [17, 19, 34, 40, 48, 57, 76] for
template matching or feature extraction, while the requirement
of laborious 3D scanning (for the CAD-based methods) or
multiple-image pose labeling (for most multi-image methods)
severely limits their applicability.

On the other hand, recent methods propose to reframe
the generalizable object pose estimation task as relative pose
estimation between a query and a reference image from an
unseen object, which is termed as generalizable relative object
pose estimation [77, 78]. By treating the reference pose as
canonical, estimating the relative pose between the reference-
query pair successfully bypasses the laborious 3D scanning
(of the CAD reference) or dense views calibration (of the
multiple-image reference). However, existing methods rely
on a large amount of well-labeled poses between the query-
reference pairs to effectively train a neural network, thereby
imposing the challenge of acquiring high-quantity training
data [34, 76, 77, 78]. Moreover, the generalizability of some
network-based methods may be impeded by the training data.
Our empirical findings suggest that after pretrained on an

'We discuss the relatively easier instance- or category-level object pose
estimation in the Related Work Sect. II-A and II-B, respectively.
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TABLE I
THE TAXONOMY OF OUR METHOD IN GENERALIZABLE POSE ESTIMATION. FOR EACH COLUMN, WE ILLUSTRATE THE APPLICABILITY IN DESCENDING
ORDER USING THE TEXT OF BOLD, UNDERLINED, AND NORMAL. WE ALSO INCLUDE THE HUMAN INTELLIGENCE AS A REFERENCE. THE
STATE-OF-THE-ART METHODS USED IN OUR EXPERIMENTS ARE HIGHLIGHTED WITH THEIR NAME.

Method Training Label Reference Query
Modality  #Instance  Modality  #Instance
Human Intelligence training-free label-free RGB single RGB single
[7, 35, 45] supervised pose CAD multiple RGB-D single
[26, 42, 44, 47, 55] supervised @ CAD multiple RGB single
[19, 48] supervised pose RGB-D multiple RGB-D single
RelPose++ [34], [17, 40, 57, 76] supervised pose RGB multiple RGB single
LoFTR [58] supervised  pose+depth RGB single RGB single
3DAHV [78], DVMNet [77] supervised pose RGB single RGB single
ZSP [16] training-free label-free RGB-D single RGB-D multiple
Ours training-free label-free RGB-D single RGB single

external large-scale dataset such as Objaverse [10], the current
state-of-the-art methods [77, 78] require in-dataset finetuning?
before testing on unseen objects within the dataset, which
might potentially hinder their cross-dataset generalizability.

In this context, we work towards universally applicable
zero-shot 3D generalizable relative pose estimation, where 1)
the object is agnostic/unseen from a cross-dataset, ii) only
a single RGB-D image is available for reference without a
3D CAD model or multi-view images, and iii) the ground-
truth (relative) pose label is not available. In other words, we
aim to establish a novel 3D generalizable (in terms of both
objects and datasets) relative pose estimation method given
only one reference and one query image, without labeling
or training. This is extremely challenging due to the mixture
of incomplete shape information and missing reference-query
correspondence, which leads to a severely degraded optimiza-
tion problem.

Our method is inspired by the fact that humans can easily
infer the relative pose under the aforementioned rigorous
setting, even with large pose differences or severe occlu-
sions. We hypothesize that such intelligence is accomplished
through 1) perceiving 3D/2.5D shapes from a single image, ii)
conducting render-and-compare simulations via imagination,
and iii) understanding rich semantic cues of the object. For
example, given two viewpoints of an unseen animal, humans
are able to infer the 3D/2.5D shape of that animal, then identify
the correspondences of the animal eyes, noses, ears, etc, and
finally rotate and render the 3D/2.5D model until its projection
matches the other view. Note that the semantic cues have the
potential to deal with the (self-) occluded missing parts, thus
enhancing the comparison process, e.g., an animal tail can
be simply ignored in the render-and-compare simulations if it
only appears in one image and is (self-) occluded in the other.

The above analysis motivates us to break down our dif-
ficulties and fulfill those three requirements. Concretely, we
achieve this by formulating a label/training-free framework
through an off-the-shelf differentiable renderer following the
render-and-compare paradigm. Our input shape to the differ-
entiable renderer is an RGB- and semantic-textured 2.5D mesh
of the reference (avoiding the difficult 3D hallucination of an

>The in-dataset finetuning denotes that the finetune set comes from the
same dataset with the testing set, while not including the testing objects.

unseen object). Based on this, we construct a pose refinement
framework, where the differentiable renderer takes an initial
pose to render projections, then back-propagates the gradients
from the projection loss (between the rendered and the query
images) to refine the initial pose.

Specifically, our method starts with an RGB-D reference and
an RGB query, where their semantic maps can be obtained by
leveraging an advanced pretrained model DINOv2 [46] with
the RGB inputs®’. We leverage an easy-to-use differentiable
renderer nvdiffrast [27], which takes the RGB- and semantic-
textured 2.5D mesh of the reference as input, then renders new
RGB and semantic maps (with back-surface culling) under
a novel rotated view. The pose refinement loss comes from
comparing the rendered RGB and semantic maps with the
query ones, which flows the gradients through the differen-
tiable renderer to refine the 3D relative pose. As a result,
our method can be readily applied to unseen objects from
an arbitrary dataset without labeling or training, and naturally
generalizes to cross-dataset scenarios.

In summary, we propose a novel 3D generalizable relative
pose estimation method, which takes only an RGB-D reference
and an RGB query pair, without requiring the ground-truth
pose labels or training. We achieve this by formulating a
pose refinement framework via an off-the-shelf differentiable
renderer under the render-and-compare paradigm. Our method
does not involve training a network, which naturally possesses
zero-shot generalizability in terms of both unseen objects and
datasets. We conducted extensive experiments on LineMOD
[20], LM-O [2] and YCB-V [70] datasets. The results from our
training-free method exhibit significant improvement over the
state-of-the-art supervised methods, e.g., for Acc@15° metric
on the LineMOD dataset [20] and the YCB-V dataset [70],
our label- and training-free method outperforms the supervised
state-of-the-art results by 29.98% and 14.28 %, respectively.
Our contributions are three-fold:

e« We propose a novel and simple relative pose estima-
tion method that naturally generalizes to unseen objects,

3Note that our method possesses the potential of using only an RGB
reference, please see the discussion in Sect. [-A (Applicability) and Sect. VI
(Limitations and Future Works) for more details. Moreover, our method works
reasonably well even without the DINOv2 semantic maps on the LineMOD
dataset, as illustrated in Table V.
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without the need for ground truth pose labels or neural
network training.

e Our method is optimized by an off-the-shelf differen-
tiable renderer and thus training-free. This eliminates the
training-data dependency in supervised CNN/ViT-based
methods, thus ensuring inherently robust generalizability.

¢ Our method employs a render-and-compare framework
leveraging 2.5D meshes, thereby avoiding the challenging
3D hallucination of unseen objects. Building upon this,
semantic features (such as those from DINOvV2) can
be integrated as texture maps (via PCA dimensionality
reduction) into the render-and-compare process.

A. Taxonomy and Applicability of Our Method

Taxonomy. The taxonomy of our methods in generalizable
pose estimation, in terms of training, labeling, as
well as the modality and the number of required
instances of the reference and the query images, is il-
lustrated in Table I. Our method falls under the category of
label/training-free with a single RGB query and a single RGB-
D reference.

Applicability. Among Table I, the proposed method shares
the closest setting to the human intelligence on relative pose
estimation that is able to generalize to unseen objects from an
arbitrary dataset, with only an additional one-time-collection
depth map for the reference image.

Our method arguably possesses better applicability com-
pared to the state-of-the-art methods summarized in Table I,
as i) unlike supervised in-dataset state-of-the-art methods, our
method does not require ground truth (GT) pose annotations
for training, where obtaining a large number of GT poses is
arguably more challenging than acquiring a single reference
depth map. ii) Our method requires only a one-time reference
depth annotation, which can be collected and fixed in advance.
Moreover, depth sensors are commonly used in our primary
application domain, i.e., robotics. We have testified in supple-
mentary material Table S1 that our method can still deliver
good estimations with an imprecise depth map, simulating
noisy depth sensors. iii) Our training-free method naturally
generalizes to unseen objects because it does not involve train-
ing a neural network, and thus is training-data independent. In
contrast, supervised state-of-the-art methods typically perform
less satisfactorily in cross-dataset scenarios, as they suffer
from training-data dependency, leading to generalization issues
given different training and evaluation datasets.

To further examine the potential of fully distilling human
intelligence, we conducted ablation experiments in the supple-
mentary material by substituting the GT depth with predictions
from the state-of-the-art Depth Anything v2 [73]. We note that
to preserve the object shape, our method requires the metric
depth, meaning the estimated depth z and spatial dimensions
z,y should share the same unit of measurement (e.g., both in
meters). However, as shown in Table S2-S4 in supplementary
material, the off-the-shelf metric depth estimator occasionally
fails to generalize across different datasets, likely due to an
imprecisely recovered depth scale caused by varying camera
parameters and/or diverse objects across different training
and evaluation datasets. We note that a generalizable metric

depth estimator would alleviate this issue, but training a
generalizable metric depth estimator is beyond the scope of,
and may introduce distractions to, our current focus.

Finally, our method also incorporates the segmentation maps
of both query and reference objects as input, which can be
obtained by pretrained segmentation models such as SAM
[25], FastSAM [80] and Grounded SAM [52]. We chose not
to delve into these segmentation techniques extensively either,
for the same sake of minimizing potential distractions.

II. RELATED WORK

A. Instance-level 6D Pose Estimation

Current object pose estimation can be categorized into
instance-level, category-level, and generalizable methods
based on different problem formulations. For instance-level
methods, there are roughly three categories: direct regression-
based, correspondence-based, and refinement-based. Direct
regression-based methods [3, 23, 51, 60, 70] predict the object
pose directly through a neural network. Correspondence-based
methods [11, 18, 21, 32, 33, 49, 56, 65, 72, 74] estimate the
2D-3D/3D-3D correspondence between the 2D images and
3D object models, followed by PnP solvers [30] to calculate
6D poses. Additionally, refinement-based methods [31, 39, 71]
incorporate refinement-based steps to improve the prediction
performance. However, instance-level methods are trained on
instance-specific data and rely heavily on CAD models to
render numerous training data. Consequently, their application
is limited to the objects on which they were trained.

B. Category-level 6D Pose Estimation

In category-level methods, the test instances are not seen
during training but belong to known categories. Most meth-
ods achieve this by either alignment or directly regressing.
Alignment-based methods [8, 29, 36, 61, 63, 66] first propose a
Normalized Object Coordinate Space (NOCS) [66] as a canon-
ical representation for all possible object instances within a
category. A network is then trained to predict the NOCS maps
and align the object point cloud with the NOCS maps using the
Umeyama algorithm [62] to determine the object pose. This
method typically constructs the mean shape of specific cate-
gories as shape priors using offline categorical object models,
and the networks are trained to learn deformation fields from
the shape priors to enhance the prediction of NOCS maps. In
contrast, directly regressing methods [6, 9, 37, 38, 41] avoid
the non-differentiable Umeyama algorithm and often focus on
geometry-aware feature extraction. For instance, CASS [0]
contrasts and fuses shape-dependent/pose-dependent features
to predict both the object’s pose and size directly. Fs-net [9]
leverages 3D Graph Convolution for latent feature extraction,
and designs shape-based and residual-based networks for pose
estimation. However, while category-level methods strive to
address different instances within the same category, their
capacity to predict the poses of objects from entirely new
categories remains limited, highlighting the ongoing need to
broaden the scope of object pose estimation to encompass
unfamiliar objects.
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C. Generalizable 6D Pose Estimation

Generalizable algorithms aim to enhance the generaliz-
ability of unseen objects without the need for retraining or
finetuning. Methods in this category can be classified as CAD-
based [4, 7, 26, 42, 44, 45, 47, 55] or multi-view reference-
based [17, 19, 40, 48, 57, 68].

For CAD-based approaches, CAD models are often used
as prior knowledge for direct feature matching or template
generation. In particular, ZeroPose [7] performs point feature
extraction for both CAD models and observed point clouds,
utilizing a hierarchical geometric feature matching network
to establish correspondences. Following ZeroPose, SAM-6D
[35] proposed a two-stage partial-to-partial point matching
model to construct dense 3D-3D correspondence effectively.
Instead, Template-Pose [44] utilizes a CAD model to generate
a collection of templates and selects the most similar one for
a given query image. Similarly, OSOP [55] renders plenty of
templates and estimates the 2D-2D correspondence between
the best matching template and the query image to solve
the object pose. MegaPose [20] proposed a coarse network
to classify which rendered image best matches the query
image and generate an initial pose. Subsequently, multi-view
renderings of the initial pose are produced, and a refiner is
trained to predict an updated pose.

Multi-view reference-based methods can be further di-
vided into feature matching-based and template matching-
based approaches. For the former, multi-view reference-based
feature matching methods mainly aim to establish 2D-3D
correspondences between the RGB query image and sparse
point cloud reconstructed by reference views or 3D-3D corre-
spondences between the RGB-D query and RGB-D reference
images. For instance, FS6D [19] designed a dense prototype
matching framework by extracting and matching dense RGBD
prototypes with transformers. After the correspondence is
established, Umeyama [62] algorithms are utilized for pose
estimation. OnePose/OnePose++ [17, 57] apply the Structure
from Motion (SfM) method to reconstruct a sparse point cloud
of the unseen object using all reference views. They then
employ an attention-based network to predict the correspon-
dence between 2D pixels and the reconstructed point clouds to
estimate the object pose. For the latter, multi-view references
can be reviewed as templates for retrieval when plenty of views
exist, or used to reconstruct the 3D object models for template
rendering, similar to the CAD-based methods. Gen6D [40]
selects the closest reference view for the query image, and then
refines the pose through the 3D feature volume constructed
from both the reference and query images. Notably, Gen6D
requires more than 200 reference images for initial pose
selection. On the contrary, LatentFusion [48] reconstructs a
latent 3D representation of an object to present an end-to-end
differentiable reconstruction and rendering pipeline, and then
estimates the pose through gradients update. Since a 3D object
representation can be reconstructed utilizing the multi-view in-
formation, FoundationPose [69] proposed a unified framework
to support both CAD-based and multi-view supported setups.
When no CAD model is available, they leverage multi-view
references to build a neural implicit representation, which is
then used for render-and-compare.

D. Generalizable Relative Pose Estimation

Recent methods [34, 76, 77, 78] highlight the importance
of formulating object pose estimation as a relative pose
estimation problem. Specifically, [77, 78] address situations
where only a single-view reference image is available. [78] ev-
idence that some state-of-the-art feature matching approaches
[16, 54, 58] fail to generate reliable correspondence between
the reference-query pair, while energy-based methods [34, 76]
struggles to capture 3D information. Instead, 3DAHV [78]
introduces a framework of hypothesis and verification for
generating and evaluating multiple pose hypotheses. Based
on that, DVMNet [77] directly lifts the 2D image features to
3D voxel information in a hypothesis-free way, computing the
relative pose estimation in an end-to-end fashion by aligning
the 3D voxels.

III. METHOD

Following the render-and-compare paradigm, current gen-
eralizable pose estimation methods often rely on rotatable 3D
CAD models or well-calibrated multi-view images, imposing
challenges to acquire the 3D CAD models or expensive
pose calibration, especially for previously unseen objects. We
instead focus on the generalizable relative pose estimation
formulated in the pioneering works [77, 78], which aims to
estimate the relative pose between a reference-query pair, us-
ing only a single reference with an arbitrary pose as canonical
(without calibration). Our method differs from [77, 78] in not
requiring labeled relative pose to train an estimation network.

A. Overview

Taking an RGB query and an RGB-D reference as input, our
method establishes a refinement optimization under the render-
and-compare framework, by leveraging a 2.5D (i.e., RGB-D)
shape of the reference, a pair of semantic maps for both the
query and the reference acquired by a pretrained DINOv2
model [46] along with the corresponding RGB maps, and a
differentiable renderer to backpropagate the gradients. Note
that the 2.5D shape is exploited due to the inherent difficulty
of accurately hallucinating the 3D shape of unseen objects
when relying solely on a single RGB-D image. This challenge
further complicates the task of relative pose estimation, as the
hallucinated 3D shape must align precisely with the query to
achieve a successful estimation.

Formally, by using subscript to denote query or reference,
our method starts with an RGB pair I,- and I, for both refer-
ence and query, as well as a depth map D, for the reference.
We proposed to estimate the relative pose between I,. and [,
assisted by D,. To this end, we first infer the semantic maps
Sy and S, from I, and I, exploiting a pretrained DINOv2
model [46]. Then, we construct a 2.5D mesh model M, for
the reference object based on D,., to formulate an RGB and
semantic maps textured 2.5D mesh M, = {M,, I, S,}.
Subsequently, the textured 2.5D reference mesh M, is ro-
tated with an (arbitrary) initial pose P by a differentiable
renderer [27] to generate novel I,.(P) and S, (P). Finally, the
generated I,.(P) and S, (P) are compared with the query I,
and S, producing a refinement loss and consequently back-
propagate gradients to P through the differentiable renderer.
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Fig. 2. The overview of the proposed method. Given an RGB-D reference and an RGB query, we extract the semantic maps from a pretrained DINOv2

model [

subsequently texture-mapped by its RGB and semantic images. By leveraging a differentiable renderer [

] for both reference and query. Then, the reference 2.5D front-surface mesh is reconstructed by the depth input without hallucination, which is

], we generate the rendered RGB and semantic maps

using the textured 2.5D reference mesh under a novel view/pose. Finally, the rendered RGB and semantic maps are compared to their query counterparts,
producing losses and back-propagating the gradients through the differentiable renderer to refine the relative pose.

Our method operates the render-and-compare procedure in a
self-supervised and network-free manner, without labeling or
training.

The overview of the proposed method is illustrated in Fig.
2. We detail the comprising elements of our method in the
following sections, i.e., semantic map estimation in Sect.
III-B, textured 2.5D mesh reconstruction in Sect. III-C, and
label/training-free refinement via differentiable renderer in
Sect. III-D.

B. Semantic Map Estimation

In order to estimate the relative pose, human intelligence
may unconsciously infer the semantics of the reference-query
pair. Subsequently, coarse correspondence can be established
with those semantics, resulting in three-fold benefits: 1) it helps
to filter out the large non-overlapped part under a substantial
pose difference, ii) alleviates the influence of occlusions,
and iii) eases the degraded optimization of the relative pose
estimation.

Benefit from the rapid development of large pretrained
models, an elegant off-the-shelf semantic feature extractor is
available as DINO/DINOv2 [5, 46], which shows great zero-
shot generalizability to diverse (even texture-less) objects (see
Fig. 3 for some examples). We thus incorporate the off-the-
shelf DINOv2 model [46] to acquire the rich semantics of the
input unseen objects.

Specifically, we utilize DINOv2 [46] as the semantic feature
extractor ®(x), which takes an RGB image I to produce a set
of semantic features F' € R¥*"*4 _Tn order to texture F to the
2.5D model and facilitate the novel pose rendering, we use the
principal component analysis (PCA) to reduce the dimension
of F' from d to 3, obtaining a semantic map S

S =PCA(®(I)), PCA:Rwxhxd 5 Ruwxhx3 (1)

By feeding Eq. (1) with I, and I,., we can obtain the semantic
maps for the query and the reference, S, and S, respectively.
To ensure the semantic consistency between reference and

query images, we first calculate and fix the PCA transforma-
tion using the reference image, then apply this transformation
to all the query images.

C. Textured 2.5D Mesh Reconstruction

In this section, we reconstruct a rotatable 2.5D model of
the reference given its depth map D,, which is subsequently
used to generate novel renderings through the differentiable
renderer. Note that our design avoids the challenging 3D
hallucination of an unseen object from the depth map, as the
hallucinated 3D shape must consistently align with the query
for relative pose estimation.

Specifically, given the depth map D, of the reference, we
lift the coordinates of the image plane into the 3D space and
obtain the front surface 2.5D point clouds X, € RV*3, We
then reconstruct the corresponding 2.5D mesh M, from X, to
facilitate the rasterization in the renderer. Since the xy coor-
dinates of X, are sampled regularly from the 2D grids, recon-
structing M, from X, can be easily achieved by the Delaunay
triangulations [28]. Finally, we texture M, with both color and
semantic maps, obtaining M, = TextMap(M,, I, S,) for
rendering under novel poses.

Note that as discussed in Sect. I-A (Applicability), our
method possesses the potential of using only an RGB reference
and estimating an imprecise depth map exploiting an off-
the-shelf generalizable depth estimator. Good estimation is
validated in Sect. S2 of the supplementary material given an
imprecise and noisy depth. We leave training a generalizable
depth estimator as our future work to avoid possible distrac-
tions in this paper.

D. Label/Training-Free Refinement via Differentiable Ren-
derer

Our last module of label/training-free refinement is con-
structed by a differentiable renderer, which takes the textured
2.5D reference mesh M, and a pose P as input, then renders
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Fig. 3. Illustration of the semantic maps estimated by DINOv2 [46], demonstrating promising zero-shot performance even for texture-less objects.

a novel RGB image and a novel semantic map under the view
P. By implementing the pose P as a random variable, the
render-and-compare/reprojection loss can be back-propagated
directly to P, ensuring the label/training-free and zero-shot
unseen generalization merits of our proposed method.

Formally, by assuming a perspective camera, we leverage
a recent differentiable renderer nvdiffrast [27], denoted
as R, to generate novel RGB and semantic maps, I.(P)
and S, (P), from the textured 2.5D reference mesh M., an
arbitrary pose P, and the camera intrinsic K*:

L«(P),ST(P) = R(P7Ml’,K) (2)

Back Surface Culling. As the reconstructed mesh is only
2.5D representing the front surface, it is crucial to conduct
the back-surface culling during the rendering to filter out the
incorrect back-facing polygons. Specifically, for every triangle
of the mesh, we first calculate the dot product of their surface
normal and the camera-to-triangle (usually set to [0,0, 1]) and
then discard all triangles whose dot product is greater or equal
to 0 [75]. Please also see the ablation with and without the
back-surface culling in Table V.

Finally, the pose P can be optimized to align the rendered
I.(P) and S,(P) with the query I, and S,, with the re-
projection loss calculated by:

L(P) =1 {IT(P)§IQ}+L2 {ST(P)QSq}, 3)

where L(P) is the final loss to optimize the pose P, and we
implement both losses by the multi-scale structural similarity
(MS-SSIM) [79] as the following:

Ly =1—ms-ssim{I.(P); I}, )
Ly =1 —ms-ssim {S,(P); S;}, (5)

Equation (3) enables us to optimize P simply by gradient
descent.

Initialization. As revealed in the majority of prior arts
[26, 31, 44, 48], a good initialization significantly boosts the
performance of the render-and-compare framework.

To this end, we implement our initialization by evenly
sampling candidate poses on a sphere and chasing the best
one. Specifically, we first sample m viewpoints (azimuth and
elevation angles) uniformly using a Fibonacci lattice [15], then
uniformly sample n in-plane rotation angles for each view-
point, producing ¢ = m=*n poses as the initializing candidates.

4The camera intrinsic K can be obtained from the image EXIF information.

Algorithm 1 Generalizable Label/Training-Free Refinement
Input: Reference RGB and depth I,.,D,; query RGB I ;
differentiable renderer R; pretrained DINOv2 model P,
iteration quota NV, learning rate «, camera intrinsic K.
1: Sy < PCA(®(1,)), S, < PCA(®(I},))
2: M, < DelaunayTriangulations([,,D,)
3: M, « TextMap(M,, I, S,)

> Sampling Poses for Initialization

{Pl,Pz, ...7P"} < Uniformly_sampling/()

P= {PI,P2, ...,P"}

I.(P),S.(P) + R(P,M,, K)

P = argminpicp Ly {1, (P%); I} + Lo {S(P"); Sq }

> Label/Training-Free Refinement via Diff. Renderer
8 P <« piit
9: for i < N do

10:  I.(P),S.(P) <+ R(P,M,,K)

11:  L(P) =L {I,(P); I} + L {S-(P); S}

122 P+ GradientDescent(L(P),«)

13: end for

QOutput: P

Nk

By rendering both RGB and semantic maps of those candidate
poses, we are able to calculate the re-projection loss by Eq.
(3) (without back-propagation in this phase) and choose the
pose with the minimal loss as our initialization P™

Given the initialized pose P™!, we perform N iterations
with gradient back-propagation to carry out the label/training-
free refinement via the differentiable renderer. Our algorithm
is detailed in Algorithm 1.

IV. EXPERIMENTS

In this section, we extensively validate our method on
benchmark datasets including the LineMOD [20], YCB-V
[70], and LineMOD-Occlusion (LM-O) [2] datasets. We detail
the experimental setup in the following.

A. Experimental Setups

State-of-the-art Methods for Comparison. As shown in
Table I, there does not exist a method applying the challenging
setting of label/training-free and a single reference-query pair
like ours. Therefore we choose the state-of-the-art methods
that share the closest experimental setups, which are ZSP [16],
LoFTR [58], RelPose++ [34], 3DAHYV [78], and DVMNet
[77]. Specifically, for ZSP, though it was originally proposed
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Fig. 4. Histograms of the geodesic distance between the sampled reference-query pairs. The in-plane rotation is included in calculating the histograms.

to process multiple queries, it is able to accept one RGB-
D query as input. We report its performance based on the
single RGB-D query and single RGB-D reference pair. For
LoFTR, we use its pretrained weights released by the authors
[58]. The weights of DVMNet, 3DAHYV, and RelPose++ are
retrained on-demand to achieve their best performance (for
the details, see the following Benchmark Experiments, and the
table captions of Table II, Table III and Table V).

Datasets. The experiments are carried out on three benchmark
object pose estimation datasets, i.e., LineMOD dataset [20]
comprises 13 real objects, each depicting a single low-textured
object on varying lighting conditions with approximately 1,200
images. LineMOD-Occlusion (LM-O) [2] consists of 1,214
images of the 8 occluded objects, extracted from the LineMOD
dataset, the average visible fraction of objects in LM-O is
79.45%. YCB-V [70] encompasses over 110,000 real images
featuring 21 objects characterized by severe occlusion and
clutter, it exhibits an average visible object fraction of 87.15%.
Evaluation Metric. Following [77, 78], we report mean
angular error across sampled reference-query pairs. We
also evaluate on important metrics of Acc@5/10/15/30°,
i.e., the percentage of the predictions that are within
5/10/15/30°, which can be more rigorous (e.g., Acc@5°) and
better characterize the performance. The degree of the pose
difference between the ground truth Ry, and the predictions
R is calculated by the geodesic distance D:

D = arccos ((tr(AR;AR) - 1)/2) /T (6)

Benchmark Experiments. The in-dataset networks of the
state-of-the-art DVMNet, 3DAHYV, and RelPose++ methods
need to be trained on the leave-out subset which comes
from the same dataset as the testing subset but does not
include the testing objects. For a fair comparison, on the
LineMOD dataset, we follow the experiments in DVMNet
[77] and 3DAHV [78] to evaluate 5 objects (i.e., benchvise,
camera, cat, driller, duck). For the YCB-V experiments, we
design a similar training protocol to enable the comparison
with DVMNet, 3DAHYV, and RelPose++, where we randomly
sample 8 objects (i.e., tuna_fish_can, pudding_box, banana,
pitcher_base, mug, power_drill, large_clamp, foam_brick) for
evaluation, leaving the remaining 13 objects to train these
three methods. Following DVMNet [77], we evaluate 3 unseen
objects on the LM-O dataset (i.e., cat, driller, and duck).
Since the challenging LM-O dataset is typically used solely
for evaluation, we directly use the same weights for DVMNet
and 3DAHYV that were trained in the LineMOD experiments.

Since the results on the rigorous metrics of Acc@5/10° are
not reported in the 3DAHV [78] and DVMNet [77] paper, we
thus retrain them using their official codes for the Acc@5/10°
evaluation.

Moreover, as a label/training-free method, the performance

of our method can be assessed on all the objects of LineMOD,
YCB-V, and LM-O datasets, without the need to leave out
any training data or leverage any external dataset. We report
the performance of our method on the complete LineMOD,
YCB-V, and LM-O datasets in Tables S5, S6, and S7 of the
supplementary material.
In-dataset and Cross-dataset Evaluation. Beyond the unseen
objects generalization, we also test the dataset-level general-
ization for the network-based methods including the state-of-
the-art DVMNet [77] and 3DAHV [78], reporting both the
in-dataset and the cross-dataset performance. In short, in-
dataset and cross-dataset differ in whether the network needs
to be finetuned on a subset that comes from the same dataset
with the testing set (though not including the testing objects).
Therefore, a good cross-dataset performance is desirable, as
the network only needs to be (pre-) trained once on a large-
scale external dataset without finetuning.

Specifically, for the in-dataset experiments, we follow the
exact training protocols of DVMNet [77] and 3DAHV [78],
which first pretrain on an external large-scale dataset Obja-
verse [10] then finetune on a certain dataset (e.g., LineMOD or
YCB-V). For cross-dataset experiments, we use the pretrained
weights from Objaverse directly without finetuning.

Note that our method, ZSP [16], and LoFTR [58] do
not require a finetuning phase before evaluation, suggesting
that our method, ZSP, and LoFTR naturally generalize to an
arbitrary dataset’.

Reference-Query Pair Generation. We follow DVMNet [77]
and 3DAHV [78] to generate the reference-query pairs with
sufficient overlaps for training and testing. Specifically, given
a reference rotation R, and a query rotation R,, we first
convert the rotation matrices R, and R, to Euler angles
(v, Br,vr) and (aq, Bq,7q)- Since the in-plane rotation ~y
does not influence the overlaps between the reference and
query pair, it is set to O and converted back to the rotation
matrix, i.e., B = h(a, 3,0) with h being Euler-angle to
rotation matrix transformation. The overlap between the query
and the reference is measured by the geodesic distance (i.e.,

SThis is achieved by that i) the pose estimation phase of our method, ZSP,
and LoFTR are general and do not involve learning a network, and ii) they
all use generalizable feature extractors, i.e., DINOv2 or LoFTR
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TABLE 11
EXPERIMENTAL RESULTS ON LINEMOD. WE ILLUSTRATE BOTH THE EXPERIMENTAL SETTINGS AND THE PERFORMANCE. IN THE RGB-D CATEGORY,
BOTH MEANS REQUIRING RGB-D IMAGE FOR BOTH QUERY AND REFERENCE. Acc@t® MEASURES THE PERCENTAGE OF THE ESTIMATED POSE WITHIN
t° W.R.T. THE GROUND-TRUTH.

Method Settings Error] Acc @ t° (%) T
Training Label RGB-D Mean Err 30° 15° 10° 5°
7SP X label-free both 102.33 8.20 222 0.90 0.18
LoFTR v pose+depth no 63.88 2394 1080  6.82 242
RelPose++ v pose no 46.60 4250 15.80 - -
3DAHV (cross-dataset) v pose no 69.24 21.20 5.52 2.52 0.44
3DAHV (in-dataset) v pose no 42.77 59.16 2592 1136  2.16
DVMNet (cross-dataset) v pose no 47.47 3644 13.14 5.92 1.08
DVMNet (in-dataset) v pose no 33.28 55.02 2238 10.66 2.72
Ours (init. only) X label-free reference 32.24 70.88  48.28  29.76 6.66
Ours (init. + refine) X label-free reference 29.93 72.06 5490 42.74 24.32
Reference Reference Query Query Converged Converged _ ini _
o o Ron ey el e the (pre-) training code of RelPose++ on the external large

Fig. 5. Qualitative results on LineMOD. This figure shows that our method
can handle partially occluded and texture-less objects. We use a 3D bbox to
denote poses.

the pose difference in degree) between their in-plane-omitted
rotation matrices Rq and R, using Eq. (6). Finally, following
DVMNet [77] and 3DAHV [78], we select the sampled pairs
with D less than 90°.

Following DVMNet [77] and 3DAHV [78], for each object,
we generate 1000 pairs for testing, and 20000 pairs for
training DVMNet, 3DAHYV, and RelPose++. Fig. 4 illustrates
the histograms depicting the statistics of the pairwise pose
difference (geodesic distance between rotation matrices R,
and R,) on the three datasets. All the experiments are carried
out on the same testing reference-query pairs.
Implementation Details. For semantic feature extraction, we
employ the output tokens from the last layer of the DINOv2
ViT-L model [46]. We use nvdiffrast [27] as our differentiable
renderer. We uniformly sample m 200 viewpoints and
n = 20 in-plane rotations (resulting in 4000 initialization
candidates), the maximal iteration number for differentiable
rendering is set to N = 30. To backpropagate the refinement
losses, we use an Adam optimizer [24] of 0.01 initial learning
rate and decay by a ReduceLROnPlateau scheduler. All
the experiments are conducted on a single NVIDIA 4090 GPU.

B. Experimental Results on the LineMOD Dataset

The results on the LineMOD dataset are illustrated in
Table II. We paste the performances of RelPose++ from the
3DAHV paper [78]. We leave the Acc@5/10° performance
of RelPose++ blank as those were not reported in [78] and

scale Objaverse dataset is not available. Table II shows that
our label and training-free method significantly outperforms
the supervised state-of-the-art DVMNet w.r.t. all the metrics.
In addition, the experimental results show that the performance
of DVMNet and 3DAHYV decreases when facing cross-dataset
scenarios. In contrast, without training a network, our approach
inherently generalizes across diverse datasets. Especially, our
method significantly outperforms DVMNet (in-dataset) for
21.6% and 32.08% w.r.t. the rigorous Acc@5/10°. The
qualitative results of our method are shown in Fig. 5, and
comparisons with different methods are presented in Fig. S3
of the supplementary material. Our results on all the LineMOD
objects are detailed in Table S5 of the supplementary material.

C. Experimental Results on the YCB-V Dataset

To compare with the state-of-the-art DVMNet [77], 3DAHV
[78] and RelPose++ [34], we follow the protocols discussed in
Sect. IV-A (In-dataset and Cross-dataset Evaluation) to obtain
the in-dataset and cross-dataset performance of DVMNet [77]
and 3DAHV [78], while RelPose++ is trained on the YCB-
V dataset only. The performance on the YCB-V dataset is
reported in Table III, where our method exhibits a signifi-
cant improvement of 11.02% and 17.83% w.r.t. the state-of-
the-art DVMNet (in-dataset), respectively on the challenging
Acc@5/10° metrics. We showcase the qualitative results of
our method on the YCB-V dataset in Fig. 6, and those across
different methods can be found in Fig. S5 of the supplementary
material. Our results on all the YCB-V objects are shown in
Table S7 of the supplementary material.

D. Experimental Results on the LM-O Dataset

Finally, we carry out the experiments on the challenging
LM-O Dataset with severe occlusions. Following DVMNet
[77], we conduct the experiments on three unseen objects
of the LM-O dataset, i.e., cat, driller, and duck. We note
that the LM-O dataset is typically used solely for evaluation.
Therefore, the results of DVMNet and 3DAHV are evaluated
utilizing the weights finetuned on LineMOD. Nevertheless,
since the weights of RelPose++ for the LineMOD dataset
have not been released yet and LM-O (with only 8 objects)
cannot provide sufficient leave-out data to train RelPose++,
we thus do not include RelPose++ for comparison. The results
from Table IV demonstrate the promising performance of our
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TABLE III
EXPERIMENTAL RESULTS ON YCB-V. THE PERFORMANCE OF DVMNET, 3DAHV, AND RELPOSE++ IS OBTAINED BY TRAINING ON A LEAVE-OUT
SUBSET OF 13 OBJECTS. OTHER PARAMETERS/SYMBOLS ARE THE SAME AS THOSE IN TABLE II.

Settings Error) Acc @ t° (%) T

Method Training Label RGB-D Mean Err | 30° 15° 10° 5°

ZSP X label-free both 88.65 15.63 582 2.89 0.65
LoFTR v pose+depth no 68.65 29.45  13.56 79 3.19
RelPose++ v pose no 57.41 23.60 7.13 3.28 0.76
3DAHV (cross-dataset) v pose no 66.61 35.06 16.18 8.28 1.50
3DAHV (in-dataset) v pose no 69.48 4454  28.41 16.29 3.59
DVMNet (cross-dataset) v pose no 54.12 4128 17.11 9.35 2.53
DVMNet (in-dataset) v pose no 48.88 51.71  27.04 14.03 3.16
Ours (init. only) X label-free reference 48.65 56.59 35.68 21.86 5.36
Ours (init. + refine) X label-free reference 47.09 56.63 42.69 31.86 14.18

TABLE IV

EXPERIMENTAL RESULTS ON LM-O. LM-O IS TYPICALLY USED SOLELY FOR TESTING WITH ONLY 8 OBJECTS UNDER SEVERE OCCLUSIONS. THE
RESULTS OF DVMNET AND 3DAHV ARE TESTED DIRECTLY USING THE WEIGHTS TRAINED ON LINEMOD. SINCE THE MODEL WEIGHTS OF
RELPOSE++ USED IN TABLE Il WERE NOT RELEASED, WE DO NOT COMPARE OUR METHOD WITH RELPOSE++ IN THIS EXPERIMENT. OTHER

PARAMETERS/SYMBOLS ARE THE SAME AS THOSE IN TABLE II.

Method Settings Error] Acc @t° (%) T

Training Label RGB-D Mean Err 30° 15° 10° 5°

ZSP X label-free both 103.70 7.10 1.67 0.60  0.07

LoFTR v pose+depth no 68.15 20.63 9.00 4.87 1.87

3DAHV (cross-dataset) v pose no 55.05 32.83 9.47 4.40 0.53

3DAHV (in-dataset) v pose no 62.30 40.29  10.57 3.84 0.57

DVMNet (cross-dataset) v pose no 51.75 3552 1294 5.30 1.33

DVMNet (in-dataset) v pose no 48.55 38.62 14.14 7.37 1.87

Ours (init. only) X label-free reference 55.94 53.80 3172 17.18 2.80

Ours (init. + refine) X label-free reference 55.09 5450 3497 23.00 6.83
Reference Reference Query Query Converged Converged Reference Reference Query Query Converged Converged
RGB Semantic RGB Semantic RGB Semantic RGB Semantic RGB Semantic RGB Semantic
@ »

Fig. 6. Qualitative results on YCB-V. This figure shows that our method
can handle partially occluded and texture-less objects. We use a 3D bbox to
denote poses.

method on the severely occluded LM-O dataset. We showcase
our performance on the LM-O dataset in Fig. 7, and those
across different methods are illustrated in Fig. S4 of the
supplementary material. Our results on all the LM-O objects
can be found in Table S6 of the supplementary material.

We observe that our results in terms of Mean Err are inferior
to the in-dataset results of the state-of-the-art DVMNet and
3DAHV (though our method exhibits better Acc@t° results).
This can be attributed to the extensive occlusions presented
in the LM-O dataset, which lead to numerous testing pairs
lacking adequate overlap. Consequently, those testing pairs are
difficult to handle by all the methods (and also challenging
for humans). We show those samples as failure cases in Fig.
11 of Sect. V-F, as well as investigating the angle error
distribution (ranging from 0 to 180 degrees) on the LM-

Fig. 7. Qualitative results on LM-O. This figure shows that our method
can handle severely occluded and texture-less objects. We use a 3D bbox to
denote poses.

O dataset in Fig. S1 of the supplementary materials. The
statistics reveal that at lower angle error thresholds (e.g., for
t < 10,20 in Acc@t°), our approach substantially outperforms
both DVMNet and 3DAHYV. This indicates that for test pairs
with sufficient overlaps (i.e., match-able testing pairs), our
method delivers superior performance compared to the state-
of-the-art DVMNet and 3DAHV.

V. ABLATION ANALYSIS

We carefully investigate the following issues by ablation: i)
the contribution of each comprising element of our method,
including the back-surface culling, and the usage of RGB or
semantic modality in Sect. V-A; ii) the ablations on different
semantic features in Sect. V-B; iii) the effects of different
initialization strategies in Sect. V-C; iv) the effects of different



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, 2025 10

TABLE V
THE CONTRIBUTIONS OF THE PROPOSED COMPRISING ELEMENTS ON
THE LINEMOD DATASET.

TABLE VII
EFFECTS OF DIFFERENT INITIALIZATION STRATEGIES USING THE
LINEMOD DATASET.

Metrics Mean Err] Acc @30°T Acc @15°1T Acc @10°T  Acc @5°71

w/o culling 38.09 67.46 52.32 40.82 23.58

only RGB 36.26 67.42 50.40 37.70 19.62

only semantic 31.31 69.32 50.86 38.80 19.22

Ours 29.93 72.06 54.90 42.74 24.32
TABLE VI

ABLATION ANALYSIS OF DIFFERENT SEMANTIC FEATURES ON THE
LINEMOD DATASET.

Metrics Mean Err]  Acc @30°T  Acc @15°1T  Acc @10°T  Acc @5°7
RGB 36.26 67.42 50.40 37.70 19.62
LoFTR 54.23 46.62 25.00 15.26 5.24
RGB + LoFTR 39.63 64.30 45.14 3242 14.80
SD 38.45 57.94 37.28 26.32 12.12
RGB + SD 33.78 65.72 47.56 36.76 19.90
DINOv2 31.31 69.32 50.86 38.80 19.22
RGB + DINOv2 29.93 72.06 54.90 42.74 24.32
RGB LoFTR Stable Diffusion =~ DINOv2
Query * % . ? *

Fig. 8. Illustration of different semantic features as texture maps.

refinement iterations in Sect. V-D; v) the inference time
statistics of our method and comparison with other baselines
in Sect. V-E; and vi) the failure cases illustrations from the
LM-O dataset in Sect. V-F.

A. The Contributions of the Proposed Comprising Elements

Despite the simplicity of our method, we are interested
in investigating the influences for each of our comprising
elements, namely the back-surface culling, and the usage of
RGB or semantic modality. We perform those ablations on the
LineMOD, and the results are reported in Table V.

As expected, removing each of our comprising elements
results in a decreased performance, because all of them are
exploited with clear motivations. Nonetheless, the encouraging
observation is that our method is able to deliver promising
results using only the RGB modality without the semantic
map, which already outperforms the state-of-the-art DVM-
Net (in-dataset) [77] in Table II across the rigorous Acc
@5°,10°,15°, and 30°. This further illustrates the good ap-
plicability of our method when the pretrained DINOv2 model
is not available.

B. Ablation on Semantic features

To further investigate the performance incorporating alter-
native semantic feature representations, we tested semantic
features from LoFTR [58] and Stable Diffusion (SD) [53].
Table VI shows that i) LoFTR and SD features are inferior
to DINOV2 for this task; ii) RGB-only performance surpasses
the results based solely on LoFTR or SD features; iii) com-
plementing LoFTR, SD, or DINOv2 with RGB improves the
final performance.

Table VI reveals a significant performance gap among DI-
NOvV2, SD, and LoFTR features. To further investigate this, we

.. . Error] Acc @ t° (%) 1

Initial Strat Sampl Numbers

nitial Strategy ampling Numbers Moon Enr 30° 15 00 5

Random Init. 4000 31.73 70.90 52.66 40.88  23.08

Uniform Init. 4000 29.93 72.06 5490 4274 2432
Mean Err ¢
Acc @10°1

0 5000 10000 15000 20000 25000 30000

Fig. 9. Ablation analysis on different number of uniformly initialized
samples. We tested sampling numbers of 500, 1000, 2000, 4000, 10000,
16000, 32000 on Mean Error and Acc @ 10°.

Mean Err ¢
Acc @10°1

0 20 40 60 80 100 120 140

Fig. 10. Performance trend w.r.t. number of refining iterations. We tested
iteration numbers of (5, 10, 20, 30, 50, 80, 100, 120, 150) on Mean Error
and Acc @ 10°.

visualize these features in Fig. 8, where the last three columns
are dimensionality-reduced texture maps using PCA. Figure
8 shows that the DINOv2 feature maps best characterize the
semantic cues, well complementing the RGB appearance, thus
explaining its superior performance.

C. Effects of Different Initialization Strategies

The pose estimation performance under the render-and-
compare paradigm is largely affected by the initialization
[26, 31, 39, 44, 48, 71]. In the following, we investigate dif-
ferent initializations including: i) random initialization, where
we randomly sample candidate poses and choose the best
one; and ii) uniform initialization, where the candidate poses
are uniformly sampled from a Fibonacci lattice with in-plane
rotations [15], as detailed in Sect. III-D (Initialization). Table
VII shows the performance of different initialization strategies
using the LineMOD dataset, which demonstrates that the
uniform initialization outperforms the random initialization.

Moreover, we also perform extensive ablations on the sam-
pling densities using uniform initialization. As shown in Fig.
9, the performance boosts from 0 to 4000 samples, marginally
improves from 4000 to 16000, and saturates after 16000 sam-
ples. In our experiments, we choose uniform initialization with
4000 samples to balance the performance and the efficiency.

D. Effects of Different Refinement Iterations.

Figure 10 illustrates the impact of the iteration numbers for
our label/training-free refinement using the LineMOD dataset,
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TABLE VIIL
INFERENCE TIME STATISTICS OF OUR METHOD ON LINEMOD.
Semantic Fea. Extraction  Pose Initialization = Refinement  Total
0.11s 1.18s 1.02s 2.52s
TABLE IX
INFERENCE TIME COMPARISON ON LINEMOD.
Method ZSP RelPose++ LoFTR 3DAHV  DMVNet Ours
Time 1.72s 0.69s 0.30s 0.04s 0.04s 2.52s

which demonstrates that the performance boosts from 0 to 30
iterations, marginally improves from 30 to 120, and saturates
after 120 iterations. We thus set the iteration number to
30 in our main experiments to achieve a balance between
performance and efficiency.

E. Analysis on the Inference Time

We collect the inference time per reference-query pair,
averaged across the LineMOD datasets on a single 4090 GPU.
We report the runtime for each stage of our method in Table
VIII. Note that the initialization is efficient with much more
candidate samples than the refinement, because those initial-
izing candidate samples can be evaluated in parallel without
backpropagation. Table VIII demonstrates the efficiency of our
method with a per-pair runtime of 2.52 seconds in total.

We also present comparisons of our approach with the
baseline methods, in terms of the inference time, in Table
IX. While our method is slower in inference than the state-of-
the-art feedforward models, our render-and-compare paradigm
is training-free. This eliminates the numerous training hours
required by the state-of-the-art feedforward methods, and
ensures inherent generalization to unseen objects (i.e., training-
free brings desirable training-data independence).

FE. Illustrations of the Failure Cases

We show our failure cases on the LM-O dataset in Fig. 11,
where there do not exist sufficient overlaps between the query
and the reference. We note such an extremely degraded case
as our limitation and discuss it in Sect. VI (Limitations and
Future Works).

VI. DISCUSSIONS AND CONCLUSIONS

Limitations and Future Works. Our method has the follow-
ing two limitations. Firstly, our method necessitates the depth
information of the reference object as an input. To acquire the
metric depth of the reference image, we evaluated a state-of-
the-art monocular depth estimation algorithm [73]. The results
and discussions in Sect. S3 of the supplementary shows that
the metric depth estimation occasionally fails to generalize
across different datasets, primarily stemming from the inherent
metric scale ambiguities under varying camera parameters
and diverse objects. This suggests that the current limitations
are likely to be overcome once a generalizable metric depth
estimator becomes available. Despite this, we note that depth
sensors are commonly used in our primary application domain,
i.e., robotics. Our empirical results, presented in Table S1
of the supplementary materials, demonstrate that our method

Reference  Query Pred pose  GT pose

Fig. 11. Failure cases of our method on the LM-O dataset, where there
do not exist sufficient overlaps between the query and the reference due to
severe occlusions.

remains robust with imprecise depth obtained by a noisy depth
sensor (simulated by adding noise to the ground-truth depth).
Secondly, our method is likely to fail in the severely
degraded scenario where there do not exist adequate overlaps
between the query and the reference (possibly caused by
occlusions, e.g., Fig. 11). Future research with simultaneous
render-and-compare and object completion (with minimal in-
consistent hallucination) is a promising direction to explore.
We also note an additional future direction about adaptively
determining the loss weights of the RGB pair and the semantic
pair in Eq. (3) (preferably adapting in each refinement step),
though we empirically showed that simply using equal weights
(i.e., both set to 1) leads to promising results.
Conclusions. In this paper, we addressed the challenging
generalizable relative pose estimation under a rigorous circum-
stance with only a single RGB-D reference and single RGB
query pair as input, and the pose label is not a priori. We estab-
lish our label- and training-free method following the render-
and-compare paradigm, by exploiting i) the 2.5D (i.e., RGB-D)
rotatable reference mesh, ii) the semantic maps of both query
and reference (extracted by a pretrained large vision model
DINOV2), and iii) a differentiable renderer to produce and
back-propagate losses to refine the relative pose. We carried
out extensive experiments on the LineMOD, LM-O, and YCB-
V datasets. The results demonstrate that our label/training-
free approach surpasses the performance of state-of-the-art
supervised methods, particularly excelling under the rigorous
Acc@5/10/15° metrics.

REFERENCES

[1] P. Azad, T. Asfour, and R. Dillmann. Stereo-based 6D object localization
for grasping with humanoid robot systems. In Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., pages 919-924, 2007.

[2] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother. Learning 6D object pose estimation using 3D object
coordinates. In Proc. IEEE Eur. Conf. Comput. Vis., pages 536-551,
2014.

[3] Y. Bukschat and M. Vetter. EfficientPose: An efficient, accurate and
scalable end-to-end 6D multi object pose estimation approach. arXiv
preprint arXiv:2011.04307, 2020.

[4] A. Caraffa, D. Boscaini, A. Hamza, and F. Poiesi. Freeze: Training-
free zero-shot 6d pose estimation with geometric and vision foundation
models. In Proc. IEEE Eur. Conf. Comput. Vis., pages 414-431, 2024.

[5] M. Caron et al. Emerging properties in self-supervised vision trans-
formers. In Proc. IEEE/CVF Int. Conf. Comput. Vis., pages 9650-9660,
2021.

[6] D. Chen, J. Li, Z. Wang, and K. Xu. Learning canonical shape space
for category-level 6D object pose and size estimation. In Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., pages 1197311982, 2020.

[7]1 J. Chen et al. Zeropose: Cad-prompted zero-shot object 6d pose
estimation in cluttered scenes. IEEE Transactions on Circuits and
Systems for Video Technology, 35:1251-1264, 2025.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

K. Chen and Q. Dou. SGPA: Structure-guided prior adaptation for
category-level 6D object pose estimation. In Proc. IEEE/CVF Int. Conf.
Comput. Vis., pages 2773-2782, 2021.

W. Chen, X. Jia, H. J. Chang, J. Duan, L. Shen, and A. Leonardis.
FS-Net: Fast shape-based network for category-level 6D object pose
estimation with decoupled rotation mechanism. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pages 1581-1590, 2021.

M. Deitke et al. Objaverse: A universe of annotated 3D objects. In
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 13142-13153,
2023.

Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab, and F. Tombari. SO-
Pose: Exploiting self-occlusion for direct 6D pose estimation. In Proc.
IEEE/CVF Int. Conf. Comput. Vis., pages 12396-12405, 2021.

Y. Gao and A. L. Yuille. Symmetric non-rigid structure from motion for
category-specific object structure estimation. In Proc. IEEE Eur. Conf.
Comput. Vis., pages 408-424, 2016.

Y. Gao and A. L. Yuille. Exploiting symmetry and/or manhattan
properties for 3D object structure estimation from single and multiple
images. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
7408-7417, 2017.

Y. Gao and A. L. Yuille. Estimation of 3D category-specific object
structure: Symmetry, manhattan and/or multiple images. Inz. J. Comput.
Vis., 127:1501-1526, 2019.

A. Gonzélez. Measurement of areas on a sphere using fibonacci and
latitude-longitude lattices. Mathematical Geosciences, 42:49-64, 2010.
W. Goodwin, S. Vaze, 1. Havoutis, and I. Posner. Zero-shot category-
level object pose estimation. In Proc. IEEE Eur. Conf. Comput. Vis.,
pages 516-532, 2022.

X. He et al. Keypoint-free one-shot object pose estimation without CAD
models. In Proc. Neural Inf. Process. Syst., volume 35, pages 35103—
35115, 2022.

Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. PVN3D: A deep
point-wise 3D keypoints voting network for 6DoF pose estimation. In
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 11632-11641,
2020.

Y. He, Y. Wang, H. Fan, J. Sun, and Q. Chen. FS6D: Few-shot 6D pose
estimation of novel objects. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 6814-6824, 2022.

S. Hinterstoisser et al. Model based training, detection and pose
estimation of texture-less 3D objects in heavily cluttered scenes. In
Proc. Asian Conf. Comput. Vis., pages 548-562, 2012.

T. Hodan, D. Barath, and J. Matas. EPOS: Estimating 6D pose of objects
with symmetries. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 11703-11712, 2020.

P. Kaushik, A. Mishra, A. Kortylewski, and A. Yuille. Source-free and
image-only unsupervised domain adaptation for category level object
pose estimation. In Proc. Int. Conf. Learn. Representations, 2024.

W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. SSD-6D:
Making rgb-based 3D detection and 6D pose estimation great again. In
Proc. IEEE/CVF Int. Conf. Comput. Vis., pages 1521-1529, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Proc. Int. Conf. Learn. Representations, 2015.

A. Kirillov et al. Segment anything. In Proc. IEEE/CVF Int. Conf.
Comput. Vis., pages 4015-4026, 2023.

Y. Labbé et al. MegaPose: 6D pose estimation of novel objects via
render & compare. In Conference on Robot Learning, pages 715-725,
2023.

S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and T. Aila.
Modular primitives for high-performance differentiable rendering. Trans.
Graph., 39(6):1-14, 2020.

D.-T. Lee and B. J. Schachter. Two algorithms for constructing a
delaunay triangulation. Int. J. Comput. Inf. Sci., 9(3):219-242, 1980.
T. Lee, B.-U. Lee, M. Kim, and I. S. Kweon. Category-level metric scale
object shape and pose estimation. IEEE Robot. Autom. Lett., 6(4):8575—
8582, Oct. 2021.

V. Lepetit, . Moreno-Noguer, and P. Fua. EPnP: An accurate O(n)
solution to the PnP problem. Int. J. Comput. Vis., 81(2):155-166, 2009.
Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. DeepIM: Deep iterative
matching for 6D pose estimation. In Proc. IEEE Eur. Conf. Comput.
Vis., pages 683-698, 2018.

Z. Li, G. Wang, and X. Ji. CDPN: Coordinates-based disentangled pose
network for real-time RGB-based 6-DoF object pose estimation. In Proc.
IEEE/CVF Int. Conf. Comput. Vis., pages 7678-7687, 2019.

R. Lian and H. Ling. CheckerPose: Progressive dense keypoint local-
ization for object pose estimation with graph neural network. In Proc.
IEEE/CVF Int. Conf. Comput. Vis., pages 14022-14033, 2023.

A. Lin, J. Y. Zhang, D. Ramanan, and S. Tulsiani. RelPose++:

[35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(51]

[52]

(53]

(54

[55]

[56]

[57]

[58]

0, NO. 0, 2025 12

Recovering 6D poses from sparse-view observations. In International
Conference on 3D Vision, pages 106-115, 2024.

J. Lin, L. Liu, D. Lu, and K. Jia. SAM-6D: Segment anything model
meets zero-shot 6D object pose estimation. In Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pages 27906-27916, 2024.

J. Lin, Z. Wei, C. Ding, and K. Jia. Category-level 6D object pose and
size estimation using self-supervised deep prior deformation networks.
In Proc. IEEE Eur. Conf. Comput. Vis., pages 19-34, 2022.

J. Lin, Z. Wei, Z. Li, S. Xu, K. Jia, and Y. Li. DualPoseNet: Category-
level 6D object pose and size estimation using dual pose network with
refined learning of pose consistency. In Proc. IEEE/CVF Int. Conf.
Comput. Vis., pages 3560-3569, 2021.

J. Lin, Z. Wei, Y. Zhang, and K. Jia. VI-Net: Boosting category-level 6D
object pose estimation via learning decoupled rotations on the spherical
representations. In Proc. IEEE/CVF Int. Conf. Comput. Vis., pages
14001-14011, 2023.

L. Lipson, Z. Teed, A. Goyal, and J. Deng. Coupled iterative refinement
for 6D multi-object pose estimation. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pages 6728-6737, 2022.

Y. Liu et al. Gen6D: Generalizable model-free 6-DoF object pose
estimation from RGB images. In Proc. IEEE Eur. Conf. Comput. Vis.,
pages 298-315, 2022.

F. Manhardt et al. CPS++: Improving class-level 6D pose and shape
estimation from monocular images with self-supervised learning. arXiv
preprint arXiv:2003.05848, 2020.

V. N. Nguyen, T. Groueix, M. Salzmann, and V. Lepetit. GigaPose:
Fast and robust novel object pose estimation via one correspondence.
In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pages 9903—
9913, 2024.

V. N. Nguyen, T. Y. Groueix, M. H. Salzmann, and V. Lepetit. Nope:
Novel object pose estimation from a single image. In Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pages 17923—-17932, 2024.

V. N. Nguyen, Y. Hu, Y. Xiao, M. Salzmann, and V. Lepetit. Templates
for 3D object pose estimation revisited: Generalization to new objects
and robustness to occlusions. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 6771-6780, 2022.

B. Okorn, Q. Gu, M. Hebert, and D. Held. Zephyr: Zero-shot pose
hypothesis rating. In Proc. IEEE Int. Conf. Robot. Automat., pages
14141-14148, 2021.

M. Oquab et al. DINOv2: Learning robust visual features without
supervision. Transactions on Machine Learning Research Journal, pages
1-31, 2024.

E. P. Ornek et al. FoundPose: Unseen object pose estimation with
foundation features. In Proc. Eur. Conf. Comput. Vis., pages 163-182,
2024.

K. Park, A. Mousavian, Y. Xiang, and D. Fox. LatentFusion: End-to-
end differentiable reconstruction and rendering for unseen object pose
estimation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
10710-10719, 2020.

S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. PVNet: Pixel-wise
voting network for 6DoF pose estimation. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 4561-4570, 2019.

L. Pérez, I. Rodriguez, N. Rodriguez, R. Usamentiaga, and D. F.
Garcia. Robot guidance using machine vision techniques in industrial
environments: A comparative review. Sensors, 16(3):335, 2016.

M. Rad and V. Lepetit. BBS8: A scalable, accurate, robust to partial
occlusion method for predicting the 3D poses of challenging objects
without using depth. In Proc. IEEE/CVF Int. Conf. Comput. Vis., pages
3828-3836, 2017.

T. Ren et al. Grounded SAM: Assembling open-world models for diverse
visual tasks. arXiv preprint arXiv:2401.14159, 2024.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-
resolution image synthesis with latent diffusion models. In Proc. [EEE
Conf. Comput. Vis. Pattern Recognit., pages 10684—10695, 2022.

P-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. SuperGlue:
Learning feature matching with graph neural networks. In Proc. [EEE
Conf. Comput. Vis. Pattern Recognit., pages 49384947, 2020.

I. Shugurov, F. Li, B. Busam, and S. Ilic. OSOP: A multi-stage one
shot object pose estimation framework. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 6835-6844, 2022.

Y. Su et al. ZebraPose: Coarse to fine surface encoding for 6DoF object
pose estimation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 6738-6748, 2022.

J. Sun et al. OnePose: One-shot object pose estimation without CAD
models. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
6825-6834, 2022.

J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou. LOFTR: Detector-free



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, 2025

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[(77]

[78]

(791

[80]

local feature matching with transformers. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 8922-8931, 2021.

D. J. Tan, F. Tombari, and N. Navab. Real-time accurate 3D head
tracking and pose estimation with consumer rgb-d cameras. Int. J.
Comput. Vis., 126:158-183, 2018.

B. Tekin, S. N. Sinha, and P. Fua. Real-time seamless single shot
6D object pose prediction. In Proc. IEEE Conf. Comput, Vis. Pattern
Recognit., pages 292-301, 2018.

M. Tian, M. H. Ang, and G. H. Lee.
categorical 6D object pose and size estimation.
Conf. Comput. Vis., pages 530-546, 2020.

S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. [EEE Trans. Pattern Anal. Mach. Intell.,
13(4):376-380, Apr. 1991.

B. Wan, Y. Shi, and K. Xu. SOCS: Semantically-aware object coordinate
space for category-level 6D object pose estimation under large shape
variations. In Proc. IEEE/CVF Int. Conf. Comput. Vis., pages 14065—
14074, 2023.

A. Wang, A. Kortylewski, and A. Yuille. Nemo: Neural mesh models of
contrastive features for robust 3D pose estimation. In Proc. Int. Conf.
Learn. Representations, 2021.

G. Wang, F. Manhardt, F. Tombari, and X. Ji. GDR-Net: Geometry-
guided direct regression network for monocular 6D object pose esti-
mation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
16611-16621, 2021.

H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas.
Normalized object coordinate space for category-level 6D object pose
and size estimation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 2642-2651, 2019.

T. Wang, G. Hu, and H. Wang. Object pose estimation via the
aggregation of diffusion features. In Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pages 10238-10247, 2024.

B. Wen et al. BundleSDF: Neural 6-DoF tracking and 3D reconstruction
of unknown objects. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 606-617, 2023.

B. Wen, W. Yang, J. Kautz, and S. Birchfield. FoundationPose: Unified
6D pose estimation and tracking of novel objects. In Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pages 17868-17879, 2024.

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A
convolutional neural network for 6D object pose estimation in cluttered
scenes. Robotics: Science and Systems, 14(19), June 2018.

Y. Xu, K.-Y. Lin, G. Zhang, X. Wang, and H. Li. RNNPose: Recurrent 6-
DoF object pose refinement with robust correspondence field estimation
and pose optimization. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 14880-14890, 2022.

H. Yang and M. Pavone. Object pose estimation with statistical
guarantees: Conformal keypoint detection and geometric uncertainty
propagation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
8947-8958, 2023.

L. Yang et al. Depth Anything v2. In Proc. Neural Inf. Process. Syst.,
volume 37, pages 21875-21911, 2024.

S. Zakharov, I. Shugurov, and S. Ilic. DPOD: 6D pose object detector
and refiner. In Proc. IEEE/CVF Int. Conf. Comput. Vis., pages 1941—
1950, 2019.

H. Zhang and K. E. Hoff III. Fast backface culling using normal masks.
In Proc. 1997 Symp. Interactive 3D Graph., pages 103—-106, 1997.

J. Y. Zhang, D. Ramanan, and S. Tulsiani. RelPose: Predicting
probabilistic relative rotation for single objects in the wild. In Proc.
IEEE Eur. Conf. Comput. Vis., pages 592-611, 2022.

C. Zhao, T. Zhang, Z. Dang, and M. Salzmann. DVMNet: Computing
relative pose for unseen objects beyond hypotheses. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pages 20485-20495, 2024.

C. Zhao, T. Zhang, and M. Salzmann. 3D-Aware hypothesis &
verification for generalizable relative object pose estimation. In Proc.
Int. Conf. Learn. Representations, 2024.

H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image
restoration with neural networks. IEEE Trans. Comput. Imag., 3(1):47—
57, Mar. 2017.

X. Zhao et al. Fast segment anything. arXiv preprint arXiv:2306.12156,
2023.

Shape prior deformation for
In Proc. IEEE Eur,

efficient deep learning.

.\

Yuan Gao (Member, IEEE) received the B.S. degree
and the M.S. degree from Huazhong University of
Science and Technology, and the Ph.D. degree from
City University of Hong Kong, in 2009, 2012, and
2016, respectively. He was a visiting graduate re-
searcher with University of California, Los Angeles
in 2015, and a senior research scientist with Tencent
Al Lab from 2017 to 2020. Currently, he is an Asso-
ciate Professor with School of Artificial Intelligence,
Wuhan University. His research interests include
3D computer vision, multi-task/modal learning, and

Yajing Luo received the B.S. degree from the
School of Computer Science, Wuhan University in
2022. She is currently pursuing the Ph.D. degree
with the School of Computer Science, Wuhan Uni-
versity. Her research interests include object pose
estimation and 3D scene understanding.

Junhong Wang received the B.S. and M.S. degrees
from Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2009 and 2012. He is now a
graphics software engineer in Tencent Games since
2012. His research interests include 3D computer
graphics and mobile rendering.

Kui Jia (Member, IEEE) received the B.E. degree
from Northwestern Polytechnic University, Xi’an,
China, in 2001, the M.E. degree from the National
University of Singapore, Singapore, in 2004, and
the Ph.D. degree in computer science from the
Queen Mary University of London, London, UK.,
in 2007. He was with the Shenzhen Institute of
Advanced Technology of the Chinese Academy of
Sciences, Shenzhen, China, Chinese University of
Hong Kong, Hong Kong, the Institute of Advanced
Studies, University of Illinois at Urbana-Champaign,

Champaign, IL, USA, the University of Macau, Macau, China, South China
University of Technology, Guangzhou, China. He is currently a Professor
with the School of Data Science, the Chinese University of Hong Kong,
Shenzhen, China. His recent research focuses on theoretical deep learning
and its applications in vision and robotic problems, including deep learning
of 3D data and deep transfer learning. He serves on the Editorial Boards
of IEEE Transactions on Image Processing, and Transactions on Machine

Learning Research.

Gui-Song Xia (Senior Member, IEEE) received
the PhD degree in image processing and com-
puter vision from CNRS LTCI, Télécom ParisTech,
Paris, France, in 2011. From 2011 to 2012, he
was a postdoctoral researcher with the Centre de
Recherche en Mathématiques de la Decision, CNRS,
Paris Dauphine University, Paris, for one and a half
years. He is currently working as a full professor in
computer vision and photogrammetry with Wuhan
University. He has also been working as a visiting
scholar at DMA, Ecole Normale Supérieure (ENS-

Paris) for two months, in 2018. He is also a guest professor of the Future
Lab AI4EO in Technical University of Munich (TUM). His current research
interests include mathematical modeling of images and videos, structure from
motion, perceptual grouping, and remote sensing image understanding. He
serves on the Editorial Boards of several journals, including ISPRS Journal of
Photogrammetry and Remote Sensing, Pattern Recognition, Signal Processing:
Image Communications, EURASIP Journal on Image & Video Processing,
Journal of Remote Sensing, and Frontiers in Computer Science: Computer

Vision.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, 2025 1

Supplementary Material for the Paper:

Towards Human-level 3D Relative Pose Estimation:
Generalizable, Training-Free, with Single Reference

Yuan Gao*, Yajing Luo*, Junhong Wang, Kui Jia, Gui-Song Xia

We address the following issues in the supplementary ma-

terial files:

1) Angle error distribution on LM-O in Sect. S1.

2) Experiments with imprecise input depth in Sect. S2.

3) Performance exploiting monocular metric depth estima-
tion from advanced Depth Anything v2 [8] in Sect. S3.

4) Our results on the LineMOD [3], LM-O [1], and YCB-V
[7] datasets w.r.t. per object in Sect. S4.

5) Qualitative Results on the LineMOD [3], LM-O [1], and
YCB-V [7] datasets for all the methods in Sect. S5.

6) We also attached a video at https://www.youtube.com/
watch?v=Ajr9ugjtoDo depicting the overview and the
label/training-free refinement procedure of our method
(i.e., the video version of Fig. 2 in the main text), as
well as the qualitative results.

S1. ANGLE ERROR DISTRIBUTION ON THE LM-O
DATASET.

Figure S1 presents the angle error distribution (ranging from
0 to 180 degrees) for all the methods on the LM-O dataset. The
statistics reveal that at lower angle error thresholds (e.g., for
t < 10,20 in Acc@t°), our approach substantially outperforms
both 3DAHV [10] and DVMNet [9].

S2. EXPERIMENTS WITH IMPRECISE INPUT DEPTH

As discussed in Sect. I.A (Applicability) in the main text,
our method has the potential to use imprecise depth. We vali-
date this on the LineMOD [3] dataset. Concretely, we simulate
the imprecise depth by adding Gaussian noise N (0, o) to the
ground-truth depth map D,., where o is set to:

o=Axd, d = max(D,) — min(D,.), (1)

where d is the maximal depth difference of the input sample.

We validate different \’s with 0.001, 0.003, and 0.005 on the
LineMOD [3] dataset, the results are shown in Table S1, which
demonstrates that our method remains robust with imprecise
depth obtained by a noisy depth sensor.
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TABLE S1
EXPERIMENTS WITH IMPRECISE DEPTH ON LINEMOD.

Metrics Mean Err] Acc@30°7T Acc@15°T Acc@10°T Acc@5°7
A = 0.005 33.10 69.52 52.66 40.16 20.64
A = 0.003 30.92 71.44 54.96 42.90 23.10
A =0.001 30.11 72.00 55.10 43.04 24.22
Ours 29.93 72.06 54.90 42.74 24.32

S3. PERFORMANCE EXPLOITING MONOCULAR METRIC
DEPTH ESTIMATION

In order to further enhance our applicability without using
reference depth as input, we further explored the advanced
Depth Anything v2 (dpav2) [8] to estimate the monocular
depth of our reference image.

To preserve the object shape, our method requires the metric
depth, meaning the estimated depth z and spatial dimensions
x,y should share the same unit of measurement (e.g., both in
meters). This is in contrast to the relative depth, where the
estimated depth and spatial appearance are subject to a scale
ambiguity. Such an ambiguous scale distorts object shapes,
e.g., given a centimeter spatial unit, an object could appear
flattened if depth is measured in meters, or elongated if depth
is in millimeters. Examples of scale-induced shape distortions
are illustrated in Fig. S2.

In the following, we employ three configurations to obtain
the metric depth from Depth Anything v2:

1) Relative depth w/ Ground Truth align: We use the
relative depth estimated from the vanilla Depth Anything
v2 model [8], and align its scale using the GT depth map.
Denoted by relative depth w/ GT align, this approach
yields the best results but is less practical as it requires
GT depth annotations for scale alignment.

2) In-dataset metric depth: Following the procedure de-
tailed in Section 7.3 of the Depth Anything v2 paper [8],
we finetune the relative Depth Anything v2 model on
the LineMOD [3] and YCB-V datasets [7], respectively,
to obtain the corresponding metric depth models. Com-
pared to relative depth w/ GT align, in-dataset metric
depth is more practical but provides inferior results.

3) Cross-dataset metric depth: For zero-shot cross-dataset
testing in our experiments, we employ the metric depth
estimation model provided by Depth Anything v2, which
was pretrained on the external Hypersim dataset [5].
This configuration fully eliminates the requirement for
in-dataset depth finetuning. However, it yields limited
accuracy, likely due to an imprecisely recovered depth
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Fig. S1. Angle Error Distribution on LM-O.
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Fig. S2. Illustration of scale-induced shape distortions. Given an input image (a), the estimated depth z should align with the spatial dimensions z, y in
scale, so as to obtain the correct shape (c). Incorrect depth scales will result in an elongated shape (d) or shortened shape (e). Subfigures (c), (d), and (e)
are from a rotated side view of (b) for clearer illustrations. We thus require the metric depth with a correct depth scale, rather than the relative depth, to
preserve the object shape.

scale caused by varying camera parameters and/or ob- TABLE S3
jects between the Hypersim pretraining set and zero-shot ABLATION OF PREDICTED DEPTH ON LM-O.

testing sets LineMOD [3], LM-O [!], and YCB-V [7]. Method Error| Acc @° (%) T
. Mean Err 30° 15° 10° 5°
The results shown in Tables S2 - S4 demonstrate that: DVMNet (cross-dataset) 35175 3552 12.94 5.30 133
. . DVMNet (in-dataset) 48.55 38.62 14.14 7.37 1.87
1) Ours, Ours (dpavZ, relative Siepth w/ GT align), and Ours (dpav2, relative depth w/ GT align) 5928 | 4770 2878 1831 550
Ours (dpav2, in-dataset metric depth) all outperform Ours (dpav2, in-dataset metric depth) 6658 | 4156 2258 1311 253
both SOTA DVMNet (in—dataset) and DVMNet (CI'OSS- Ours (dpav2, cross-dataset metric depth) 75.14 29.36  11.70 5.25 1.04
. 6 1m0 1ro Ours 5509 | 5450 3497 2300 683
dataset) [9] across the rigorous Acc @5°,10°,15°.
2) Our most applicable configuration, which is training-free TABLE S4
and requires neither depth nor pose annotations, i.e., ABLATION OF PREDICTED DEPTH ON YCB-V.
Ours (dpav2, cross-dataset metric depth), outperforms . Errorl A @ L0 (%) 1
the SOTA DVMNet (cross-dataset) on the LineMOD Mean Err | 30°  15°  10°  5°
dataset. HOWCVGI‘, it iS inferior on YCB-V and LM—O, DVMNet (Fross—dataset) 54.12 41.28 17.11 9.35 2.53
. . . DVMNet (in-dataset) 48.88 5171 27.04 14.03 3.16
hkely because that the heavy occlusions in these datasets Ours (dpav2, relative depth w/ GT align) 54.54 5321 40.19 2944 1341
lead to worse cross-dataset metric depth estimation. Ours (dpav2, in-dataset metric depth) 57.15 49.10 3371 23.64 10.05
. . . Ours (dpav2, cross-dataset metric depth) 69.90 2871 1098  6.06 1.89
Note that both the relative depth w/ GT align and in-dataset Ours 47.09 | 56.63 4269 31.86 14.18
metric finetune approaches require additional depth labels to
align or finetune a metric depth estimation model. On the other TABLE S5
hand. the cross-dataset metric depth confieuration performs OUR RESULTS ON THE LINEMOD DATASET W.R.T. PER OBJECT. THE
> P! g p OBJECTS WITH RED TEXT ARE THOSE USED FOR TESTING IN THE MAIN
suboptimally on some benchmarking datasets. Our current PAPER.
requirement for the reference depth is likely to be alleviated
q . ) P . y . Object Mean Err]  Acc@30°7T  Acc@l15°T  Acc@l0°T  Acc@5°7
once a generalizable metric depth estimator becomes available. ape 1341 76.90 26.10 17.40 5.80
benchvise 17.79 87.30 75.60 64.60 42.10
camera 24.10 73.70 58.00 46.80 27.60
ABLATL FPREDTAITBELEDS]?PTH LINEMOD can 26.49 75.00 63.20 55.00 37.80
ONO c ON LIN . cat 33.90 68.00 52.20 40.20 22.00
——— driller 35.58 76.90 59.40 44.60 23.90
Method Ecror) _Ac@BET duck 38.30 54.40 29.30 17.50 6.00
Mean Err | 30 15 10 5 eggbox 27.63 77.40 66.10 57.10 36.90
DVMNet (cross-dataset) 47.47 36.44 13.14 592 1.08 glue 46.35 55.30 38.20 28.00 13.70
DVMNet (in-dataset) 33.28 55.02 22.38 10.66 2.72 ho]epuncher 26.25 76.50 64.30 52.30 26.80
Ours (dpav2, relative depth w/ GT align) 32.04 70.34 4898 34.84 15.32 iron 33.20 73.70 58.80 48.90 29.60
Ours (dpav2, in-dataset metric depth) 41.54 59.80 34.18 217 8.38 lamp 29.28 79.30 66.20 56.20 36.90
Ours (dpav2, cross-dataset metric depth) 54.04 4322 2002 1124 352 phone 25.82 80.80 64.60 50.20 27.30
Ours 29.93 72.06 5490 4274 24.32 average 31.39 71.17 55.54 44.52 25.88
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Reference ZSP

Query

LoFTR

3DAHV  DVMNet Ours

Fig. S3. Qualitative results on LineMOD. RelPose++ [4] did not release the LineMOD weights, the results of it in our main text were pasted from the
3DAHYV paper [10], therefore the visualized results of RelPose++ are not included.

TABLE S6
OUR RESULTS ON THE LM-O DATASET W.R.T. PER OBJECT. THE
OBJECTS WITH RED TEXT ARE THOSE USED FOR TESTING IN THE MAIN

PAPER.
Object Mean Err]  Acc@30°1T  Acc@l15°T  Acc@l0°T  Acc@5°1
ape 60.85 42.10 22.40 11.60 2.10
can 38.49 63.60 53.10 41.70 19.60
cat 55.84 53.70 33.00 22.30 8.60
driller 52.29 59.10 42.20 28.50 7.30
duck 57.13 50.70 29.70 18.20 4.60
eggbox 45.94 58.90 43.40 34.50 16.00
glue 61.52 46.50 30.70 19.20 9.20
holepuncher 42.51 62.20 47.20 33.00 10.40
average 51.82 54.59 37.72 26.13 9.73

S4. PER OBJECT RESULTS ON THE LINEMOD, LM-O,
AND YCB-V DATASETS

We present our results w.r.t. per object of the full LineMOD
[3], LM-O [1], and YCB-V [7] datasets in Tables S5, S6, and
S7, respectively. The experimental settings are the same as
those in the main text, i.e., Tables II-IV.

Tables S5, S6, and S7 show that our method performs well
on all the objects of the three datasets without training, further
validating the strong zero-shot unseen-object generalize-ability
of our label/training-free method.

S5. QUALITATIVE RESULTS ON THE LINEMOD, LM-O
AND YCB-V DATASETS

Qualitative results on the LineMOD [3], LM-O [I], and
YCB-V [7] datasets are illustrated in Figs. S3, S4, and
S5, respectively. The ground truth and predicted poses are
visualized by axes and 3D bounding boxes.

As depicted in Figs. S3, S4, and S5, our method outperforms
the state-of-the-art methods [2, 4, 6, 9, 10] qualitatively in all
the three datasets.
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TABLE S7
OUR RESULTS ON THE YCB-V DATASET W.R.T. PER OBJECT. THE OBJECTS WITH RED TEXT ARE THOSE USED FOR TESTING IN THE MAIN PAPER.
Object Mean Err]  Acc@30°1T  Acc@15°T  Acc@l0°fT  Acc@5°1
002_master_chef_can 59.81 42.40 31.40 19.80 9.40
003_cracker_box 83.20 40.40 32.70 26.80 8.50
004_sugar_box 44.93 68.00 62.30 55.70 30.10
005_tomato_soup_can 61.65 36.50 25.80 19.70 9.40
006_mustard_bottle 20.76 86.40 83.30 77.80 59.70
007_tuna_fish_can 111.75 16.50 10.20 8.10 4.70
008_pudding_box 11.14 95.20 74.30 63.80 33.90
009_gelatin_box 8.13 99.50 87.20 78.30 32.40
010_potted_meat_can 99.01 26.80 22.30 13.20 4.60
011_banana 46.94 56.40 46.00 33.60 12.30
019_pitcher_base 33.43 58.60 41.40 28.50 9.50
021_bleach_cleanser 5191 55.80 41.00 29.70 12.00
024 _bowl 17.89 90.50 63.80 35.20 11.10
025_mug 43.98 40.80 22.90 15.50 3.30
035_power_drill 4245 67.60 48.90 32.50 13.10
036_wood_block 39.52 69.10 48.50 30.50 10.50
037_scissors 27.55 83.50 60.00 41.10 15.40
040_large_marker 52.96 25.40 10.00 5.00 1.80
051_large_clamp 71.20 43.10 26.60 18.80 7.70
052_extra_large_clamp 88.61 27.00 14.90 7.40 2.80
061_foam_brick 27.89 81.90 73.00 50.10 13.30
average 49.74 57.69 44.12 3291 14.55
Reference  Query ZSP LoFTR 3DAHV  DVMNet Ours

Fig. S4. Qualitative results on LM-O. LM-O is typically used solely to evaluate the models trained on LineMOD, since RelPose++ [4] have not released
the LineMOD weights, the visualized results of RelPose++ are not included.

Reference  Query ZSP LoFTR RelPose++ 3DAHV  DVMNet Ours

Fig. S5. Qualitative results on YCB-V. The predicted poses are visualized by red 3D bounding boxes while the ground truth poses are depicted by green
3D bounding boxes.
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