読み込んでいます…ログイン
さいとうさんによる第1回からのまとめ かんたんマークダウンを用いて、さいとうさんが第1回からの まとめ を作成してくださっています。是非ご覧ください! HTMLバージョン PDFバージョン さいとうさん、ありがとうございます! SNS 参加者がたくさんいらっしゃるので、ハンズオン中の個々の挙手での質問はすべてその場でお答えができないことなども想定されます。以下SNSご活用ください。 FB Group 参加申請を出していただければ、随時承認します。このグループ内で、自己紹介ですとか、ハンズオンで分からなかったところの質問や感想を書いていただいたりとか、これから学んでみたいことなどを投稿していただけたらと思います。 間違ってもいいので参加者どうしでどんどん質問に答えたり、意見を交わし合ったりして、学びとこれからの行動に繋がればと思います。 Twitter ハッシュタグ: #mpsamurai
オーソドックス な アプローチ(一般的手法) まず は、以下 が よくまとまっている。 株式会社クロスコンパス・インテリジェンス(2016.10.5)「NVIDIA GPU TECHNOLOGY CONFERENCE JAPAN 2016 Industry Deep Learning」 異常値予測 を 行う アプローチ としては、以下 が 一般的な考え方 の ようだ。 (データ量の多い)正常時のデータ挙動の特徴パターンを学ばせて、 新規データが上記の特徴パターンから乖離している場合を、異常とみなす 上記のアプローチをとる理由 は、「異常発生時のデータ」の取得可能件数 は、「正常時のデータ」 に 比べて、取得できるデータの件数 が 圧倒的に少ない から である。 上記のスライド で 挙げられている AutoEncoderモデル や LSTMモデル を 採用し、 AutoEncoderモデル
今回はGAN(Generative Adversarial Network)を解説していきます。 GANは“Deep Learning”という本の著者でもあるIan Goodfellowが考案したモデルです。NIPS 2016でもGANのチュートリアルが行われるなど非常に注目を集めている分野で、次々に論文が出てきています。 また、QuoraのセッションでYann LeCunが、この10年の機械学習で最も面白いアイディアと述べていたりもします。 “The most interesting idea in the last 10 years in ML, in my opinion.” –Yann LeCun GANは聞いたことはあるけれどあまり追えてないという人向けに基礎から解説していきたいと思います。それでは順に見ていきましょう。 目次 基礎理論 DCGAN 実装 論文紹介 まとめ 基礎理
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Deep Learning Advent Calendar 2016の20日目の記事です。 ConvNetの歴史とResNet亜種、ベストプラクティスに関連スライドがあります(追記) 背景 府大生が趣味で世界一の認識精度を持つニューラルネットワークを開発してしまったようです。 M2の学生が趣味でやっていたCIFAR10とCIFAR100の認識タスクで,現時点での世界最高性能の結果を出したそうだ…趣味でっていうのが…https://t.co/HKFLXTMbzx — ニーシェス (@lachesis1120) 2016年12月7日 府
AlexNet [A Krizhevsky, 2012] このページはDeep Learningモデルを使って画像認識をする方法を一通り学ぶ初心者向け実習教材として作られました。 ここではPython環境でCaffeフレームワークを利用して画像認識モデルを学習、評価する方法を学ぶことができます。 準備 0. Docker+Jupyter環境の構築 1. Pythonと数値計算 1a. Pythonと数値計算 練習問題解答 画像認識 2. Caffeを使った画像分類 3. 手書き文字認識モデルの学習 4. 学習済みのネットワークをマルハナバチ分類にファインチューニング その他 5. Caffeの動作環境に関して 参考 スライド資料 Caffe deep learning framework Stanford CS231n: Convolutional Neural Networks for
人工知能の未来 〜IoT時代のAIにむけて〜 東京大学 松尾 豊 1 東京大学 松尾研究室について 松尾 豊 1997年 東京大学工学部電子情報工学科卒業 2002年 同大学院博士課程修了.博士(工学) 産業技術総合研究所 研究員 2005年 スタンフォード大学客員研究員 2007年~ 東京大学大学院工学系研究科 技術経営戦略学専攻 准教授 2014年〜 東京大学 グローバル消費インテリジェンス寄付講座 主宰 ◆人工知能、ディープラーニング、Webマイニングを専門とする。 ◆論文数と被引用数に基づき科学者の科学的貢献度を示すh-Index=30(ウェブ・人工知能分野 最高水準)であり、2013年より国際WWW会議Web Mining部門のチェアを務める。 ◆世界人工知能国際会議 プログラム委員。2012年より、人工知能学会 理事・編集委員長(それ までの慣例を大幅に更新し最年少で編集委員長
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? そうだ、Deep learningをやろう。そんなあなたへ送る解説記事です。 そう言いながらも私自身勉強しながら書いているので誤記や勘違いなどがあるかもしれません。もし見つけたらご連絡ください。 Deep learningとは こちらのスライドがとてもよくまとまっています。 Deep learning つまるところ、Deep learningの特徴は「特徴の抽出までやってくれる」という点に尽きると思います。 例えば相撲取りを判定するモデルを構築するとしたら、普通は「腰回りサイズ」「マゲの有無」「和装か否か」といった特徴を定義して、それを
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く