import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 追記 【2020年版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメのAI勉強方法 また、Pythonや機械学習がオンライン上で学べるAI Academyをnoteでも書きましたが、3/17日からほとんどのコンテンツを永続的に無料で利用できるよう致しましたので、是非使って頂けますと幸いです。 AI Academy Bootcamp 我々が提供している個人向けオンラインAIブートキャンプのご紹介です。 AI Academy Bootcamp AI
こんにちは。久々の投稿です。 僕のTwitterをフォローしてくれている方はご存知かと思いますが、4月から機械学習エンジニア/データサイエンティスト(見習い)として働く事が決まりました。 今日六本木の某社から正式に内定を頂きましたが、間違いなくTwitterのおかげでありTwitterこそ就活の全てであると確信した次第でございます— マスタケ (@MATHETAKE) 2017年2月23日 良い区切りですので今回はタイトルの通り、ただの純粋数学の学生だった僕がデータサイエンスの勉強を何故/どのようにしてきたのか、についての思い出せる範囲で書こうと思います。 Disclaimer: この記事は基本的に、"What I did" に関する記事であって決して "What you should do" についての記事ではありません。そんな勉強方法おかしいとか、こうすべきだ、みたいなマサカリは一切受
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く