タグ

algorithmと*wikipediaに関するrekramkoobのブックマーク (3)

  • ミニマックス法 - Wikipedia

    思考プログラムの基は、局面がどの程度自分にとって有利か点数を付ける(評価する)ことである。局面の有利度を適切に評価することができれば、自分の打てる手のうち、最も評価の高い局面を出現させるような手を選択すればよいことになる。 局面に置かれている駒の位置・数などだけから算出した評価値を静的評価値、算出する関数を静的評価関数と呼ぶ。「静的」とはここでは先読みをしていないことを意味する。通常、静的評価関数だけで適切な局面評価を行うことは困難である。そのため、先読みを実現するのがこのミニマックス法である。 先を読んだ上で、ある局面がどの程度有利であるかを評価するには、以下の考え方を用いればよい。 読みたい局面が相手の番であれば、その局面の次に出現するすべての局面のうち最も悪い(不利な)、つまり相手にとって最も有利な(評価値が最小)手を相手は打ってくるはずである。そこで、次に出現するすべての局面の評

  • ビンパッキング問題 - Wikipedia

    ビンパッキング問題(ビンパッキングもんだい)とは、離散数学の組合せ論の中のNP困難問題で、与えられた「荷物(重さや個数がついている)」をつめる「箱(ビンやコンテナなど)」の最小数を見つけるものである。問題を解くためにビン型(筒状型)の模型を使うのでこのように呼ばれる。 様々な解決方法(アルゴリズム)が考案されているが、あらゆる場合の箱の最小数を効率的に見つけることができるような万能なアルゴリズムはない(NP困難問題)。 ゲイリー、ジョンソンによる著書『Computers and Intractability(英語版)』で記述されているビンパッキング問題の定義を以下で説明する[1]:226。 入力:有限個のアイテム集合 、およびアイテム ごとのサイズ 、および容量 をもつビンおよび正の値をとる が与えられる。 問い:集合 を素集合 に分割して、それぞれの部分集合 に含まれるアイテムのサイズの

  • 遺伝的アルゴリズム - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2025年8月) 遺伝的アルゴリズム(いでんてきアルゴリズム、英語:genetic algorithm、略称:GA)とは、1975年にミシガン大学のジョン・H・ホランド(John Henry Holland)によって提案された近似解を探索するメタヒューリスティックアルゴリズムである。人工生命同様、偶然の要素でコンピューターの制御を左右する。4つの主要な進化的アルゴリズムの一つであり、その中でも最も一般的に使用されている。 遺伝的アルゴリズムはデータ(解の候補)を遺伝子で表現した「個体」を複数用意し、適応度の高い個体を優先的に選択して交叉・突然変異などの操作を繰り返しながら解を探索する。適応度は適応度関数によって

    遺伝的アルゴリズム - Wikipedia
  • 1