数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、同じ記号に見えても内容が異なっているということがあれば、逆に、異なって見える記号が同じ対象を示しているということもある[注 1]。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。
A MOOC on convex optimization, CVX101, was run from 1/21/14 to 3/14/14. If you register for it, you can access all the course materials. More material can be found at the web sites for EE364A (Stanford) or EE236B (UCLA), and our own web pages. Source code for almost all examples and figures in part 2 of the book is available in CVX (in the examples directory), in CVXOPT (in the book examples direc
python での行列・ベクトル数値計算 python で行列ベクトル演算が可能です。でも、実際に行列ベクトル計算をしようとしたとき戸惑わされました。python での行列ベクトル演算について手頃な解説がありませんでした。コード例も殆どなく、試行錯誤で使う必要がありました。回り道をしました。特に Matrix と array の使い分けに戸惑いました。結論は「慣れるまでは Matrix を使わずに array の範囲だけで使っとけ。」です。慣れた後でも Matrix を使うメリットは限られます。array だけで済ましたほうが余分なことを考えずに済みます。 このような遠回りをすることなく python での数値計算を手っ取り早く始められるようにように、この Web page を書きました。C 言語や数値計算についての素養はあるが python は使い始めの方、早急に行列 ベクトル演算を行う
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く