力扣的买卖股票的最佳时机 III之解法(Python3)

本文探讨了在给定股票价格序列下,如何通过最多两笔交易获取最大利润的问题。通过动态规划算法,详细解析了算法设计与实现过程,提供了两种不同实现方式的Python代码,并展示了运行结果。

力扣的买卖股票的最佳时机 III之解法

题目描述:
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
参考程序1:

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        max_s = 2
        n = len(prices)
        dp = [[[0 for _ in range(2)] for _ in range(max_s + 1)] for _ in range(n)]
        
        for i, price in enumerate(prices):
            for k in range(max_s, 0, -1):
                if i == 0:
                    dp[0][k][0] = 0
                    dp[0][k][1] = -price
                else:
                    dp[i][k][0] = max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])
                    dp[i][k][1] = max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
                
        return dp[n - 1][max_s][0] if prices else 0

运行结果1:
在这里插入图片描述
参考程序2:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        max_k = 2
        n = len(prices)
        dp_j_1_0 = 0
        dp_j_1_1 = -prices[0]
        dp_j_2_0 = 0
        dp_j_2_1= -prices[0]
        for j in range(1,n):
            dp_j_1_0 = max(dp_j_1_0,dp_j_1_1 + prices[j])
            dp_j_1_1 = max(dp_j_1_1,-prices[j])
            dp_j_2_0 = max(dp_j_2_0,dp_j_2_1 + prices[j])
            dp_j_2_1 = max(dp_j_2_1,dp_j_1_0 - prices[j])
        return dp_j_2_0

运行结果2:
在这里插入图片描述

力扣四数之和的问题是一个经典的编程挑战,目标是找出数组中是否存在四个元素,它们的和恰好等于给定的目标值。这个问题可以用多种Python解决方案,包括但不限于: 1. **哈希表法**(两指针法): 使用两个指针i和j遍历数组,同时记录当前和s,将每次遇到的元素a[i]加到s中,并检查是否能在剩余元素中找到一对(a[j], target-s)。可以使用字典或集合来存储已经遇到过的和,如果找到匹配则返回。 2. **排序法**: 先对数组进行排序,然后使用双指针技术,一个指向数组开始,一个指向结束,计算两个指针之间的元素差的绝对值,看是否有三个数的组合等于目标值减去这个差。 3. **暴力搜索法**: 遍历所有可能的四元组,计算每个四元组的和,如果等于目标值就找到了。但这是一种时间复杂度较高的解决方案,通常不适合大规模数据。 以下是哈希表法的一个简单示例: ```python def fourSum(nums, target): nums.sort() n = len(nums) res = [] if n < 4: return [] seen = {0} for i in range(n - 3): val = nums[i] if val in seen: j = i + 1 while j < n and nums[j] == val: j += 1 complement = target - (val * 4) if complement >= val: seen = {complement} | seen else: break complement = target - val seen.add(val) left, right = j, n - 1 while left < right: curr_sum = nums[left] + nums[right] if curr_sum == complement: res.append([nums[i], nums[j], nums[left], nums[right]]) while left < right and nums[left] == nums[left + 1]: left += 1 while left < right and nums[right] == nums[right - 1]: right -= 1 left += 1 right -= 1 elif curr_sum < complement: left += 1 else: right -= 1 return res ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值