这段时间在梳理这几年工作有什么沉淀下来和所得时,发现自己总是容易陷入细节,不能很好地拎出一条主线来,也不知怎么拔高一个层次或角度来梳理这几年的数据分析工作。
幸好的是当你心中有所困惑的时候,总是有优秀的前行者留下了他们的足迹和经验,可以供你借鉴和参考。《决战大数据》这本书在某种程度上就帮我规范了一个思路和框架。有很多概念帮我提升了认知角度。
【读书笔记是在Word文档中整理的,贴到博客后发现缩进和层级前的符号不能正确显示,有一点点错乱。ennnn,我就不浪费时间去修改了,逻辑结构和层级结构大致还是在的。有兴趣的还是要去读原文,不要图快餐。各人解读角度不一样,要解决的问题不一样,收获也会不一样。读书还是得要有愚公的精神,脚踏实地慢慢来。】
《决战大数据》读书笔记:
1、 忘掉大数据?什么才是大数据?
(1) 大数据的力量来自触类旁通的关联。
不是用数据来证明工作中的盲点,而是具备预测和开创新机的能力。
大数据时代,最核心的特质是“用数据寻找新机会”:赛马数据案例。
(2) 只有实效的数据才是正道。
我们要的不是数据的量,而是有“质”的量。
(3) 如何让数据成为商业的利器?
我们需要一套具有商业敏感度的数据决策框架。让企业看的准,知道做了什么是对的、什么是错的进行判断。快速的数据反馈可以让每个决策的误差得到适时地修正。
让数据真正从“看”到“用”,让用数据成为构建企业生产力的重要部分。
让DT战略深入到企业的每个角落,使数据从生产、收集、使用、分享到反馈变得简单易用。(DataTechnology)
让DT战略落地还要注意数据的稳定、准确、时效和有效实施。
阿里巴巴经验:人和事是分不开的。企业要成为数据化企业必须要构建文化。“混、通、晒”及“存、管、用”两套内功是让一家数据化企业的数据流动起来的关键。
(4) 锻造数据力和思考力的合力
很多时候,我们欠缺的不是解决问题的方式,而是定位问题的能力;
我们应该思考,有没有数据可以改善我们的盲点;我们该如何学会用‘假定数据是可以获取的’来重新思考周围的一切。
当这种数据化思考成为你的‘直觉’时,就能够把数据的力量和思考的力量融合在一起,产生出新的无与伦比的合力了。
2、 如何从数据化运营到运营数据?
(1) 数据十诫:
好的问题,答案就在里面。
让数据(Data)成为科技(Technology),惠及更多人。
以‘假定数据是可获取的’去思考问题
建立数据的数据,才有进步。
利用数据拿到更有用的数据。
让人做人擅长做的事,让机器做机器擅长做的事。
(2) 为什么很多人只会谈大数据,而不会做大数据?
从收集到使用的大数据价值链出现了问题。
从收到用的螺旋式循环,只有先数据化运营,才能运营数据。
用数据的人不知道大数据从哪里来,做数据的人不知道大数据如何使用。用的人不敢用,因为大数据的真实性;做的人不知道怎么用,因为大数据的复杂性。结果导致,数据量越来越大,却越来越无法有效的使用。
(3) 大数据从来不是免费的午餐
大数据的来源是多种渠道的,偏倚、随机的误差总是存在的。大数据也会夹杂着虚假信息,大数据的量很大,但有用的信息不一定多,甚至还会破坏核心信息。而且大数据的情况下,会把一些问题或噪音放大。
数据的存储、备份和管理是需要成本代价的。
就算数据已经成功应用起来,形成了一条商业链条,但是随着科技的发展,不能保证后续还会有这样的数据来源供其持续发展,可能数据链消失了、断了、失效了。比如从Web时代到手机时代的数据主要来源变化,比如手机系统升级对数据获取的权限要求更严格了。
(4) 人才的断层
(1) 大数据面临的最大问题,就是人。人才的断层,收集数据的人不清楚未来使用数据的人要做什么,这是目前大数据的一大关键命门。
(2) 如何应用大数据?公司最高层管理者对大数据的期待是什么?
衡量大数据创造的价值最直接的标准就是,在经营上它为你赚了多少钱,带来了多少实际的利润提升。
但是对于公司最高层管理者,他对大数据的期望是什么呢?是对比使用了数据后,业务的转化率从%到%的提升吗?
数据建模是数据使用的关键环节。
数据建模,就是根据以往的经验,从中寻找到一些潜在的业务规则,然后把这些规则和业务经验结合起来去解决问题。(案例,基于场景的购买决策、基于搜索的商品推荐)
&n

最低0.47元/天 解锁文章
2020

被折叠的 条评论
为什么被折叠?



