Python学习笔记——Python开发中的控制语句

本文详细介绍了Python中的循环控制语句和条件语句,包括if语句、if-else语句、if-elif-else语句、嵌套if语句、以及for和while循环的使用方法和注意事项。
部署运行你感兴趣的模型镜像

其他语言中都有循环控制语句,今天学习一下python中的循环控制等语句

一、条件语句

1、if语句
if(a > b):#注意冒号
    print a, " > ", b
2、if else语句
if(a > b):
    print a, " > ", b
else:
    print a, " < ", b
3、 if…elif…else语句
if(score >= 90) and (score <= 100):#注意冒号
    print "A"
elif(score >= 80) and (score < 90):#注意冒号
    print "B"
elif(score >= 60) and (score < 80):#注意冒号
    print "C"
else:
print "D"
4、if语句的嵌套
嵌套就和c中类似了,不过写法上不一样,c中作用域或者说条件执行的语句包含在大括号{中,而python则使用冒号:和缩进来进行分割
5、一些判断的情况
两个不同的名字关联的对象,具有相同的值
两个不同的名字与同一个对象(具有相同ID的对象)关联==检查两个名称引用的对象是否具有相同的值,is检查两个名字是否引用同一个对象
比较两个浮点数是不是相等应该用(x-y)< 1.0000001,而不能用x==y,否则可能会得到错误的结果
python的牛叉之处:比较X是不是大于等于A小于等于B的时候用 A <= X <= B;这一点和其他的编程语言不同

二、循环语句

循环语句for while等
1、for循环
for <> in <对象集合>:
... if <条件>:
... break
... if <条件>:
... continue
... <其他语句>
...else:
... <>
...


for语句是python中的循环控制语句。可用来遍历某一对象,还具有一个附带的可选的else块,主要用于处理for语句中包含的break语句。


如果for循环未被break终止,则执行else块中的语句。


break 在需要时终止for循环


continue 跳过位于其后的语句,开始下一轮循环。
注:如果for循环没有被终止,那么就去执行else部分,否则就不会去执行else部分。
附带说明一下range函数
range([start,] stop [, step])


    # start  可选参数,起始数


    #stop   终止数,如果 range 只有一个参数x,则产生一个包含 0 至 x-1 的整数列表


    #step   可选参数,步长


for i in range(0,100,1)


2、while循环
while <test>:
    <statements1>
else:
    <statements2>
首行以及测试表达式,有一列或多列缩进语句的主体以及一个选用的else部分(控制权离开循环时而没有碰到break语句时会执行)
   
#!/usr/bin/python
count = 0
while (count < 9):
    print 'The count is:', count
    count = count + 1
print "Good bye!"


#!/usr/bin/python
count = 0
while count < 5:
    print count, " is less than 5"
    count = count + 1
else:
    print count, " is not less than 5"

类似if语句的语法,如果你的while循环体中只有一条语句,你可以将该语句与while写在同一行中, 如下所示
#!/usr/bin/python
flag = 1
while (flag): print 'Given flag is really true!'
print "Good bye!"






您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

(Kriging_NSGA2)克里金模型结合多目标遗传算法求最优因变量及对应的最佳自变量组合研究(Matlab代码实现)内容概要:本文介绍了克里金模型(Kriging)与多目标遗传算法NSGA-II相结合的方法,用于求解最优因变量及其对应的最佳自变量组合,并提供了完整的Matlab代码实现。该方法首先利用克里金模型构建高精度的代理模型,逼近复杂的非线性系统响应,减少计算成本;随后结合NSGA-II算法进行多目标优化,搜索帕累托前沿解集,从而获得多个最优折衷方案。文中详细阐述了代理模型构建、算法集成流程及参数设置,适用于工程设计、参数反演等复杂优化问题。此外,文档还展示了该方法在SCI一区论文中的复现应用,体现了其科学性与实用性。; 适合人群:具备一定Matlab编程基础,熟悉优化算法和数值建模的研究生、科研人员及工程技术人员,尤其适合从事仿真优化、实验设计、代理模型研究的相关领域工作者。; 使用场景及目标:①解决高计算成本的多目标优化问题,通过代理模型降低仿真次数;②在无法解析求导或函数高度非线性的情况下寻找最优变量组合;③复现SCI高水平论文中的优化方法,提升科研可信度与效率;④应用于工程设计、能源系统调度、智能制造等需参数优化的实际场景。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现过程,重点关注克里金模型的构建步骤与NSGA-II的集成方式,建议自行调整测试函数或实际案例验证算法性能,并配合YALMIP等工具包扩展优化求解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值