电商数据可视化分析(Python)||电商API接口数据采集

数据分析电商数据采集API接口及应用

目录

1.项目背景

2.数据集介绍

3.技术工具

4.导入数据

5.数据可视化

5.1分析性别比例

5.2年龄分布

5.3购物种类分析

5.4产品型号分析 

5.5其他分析

6.总结


1.项目背景

        随着现代电子商务的飞速发展,顾客购物数据量也在飞速增长。这些数据包含了丰富的信息,如消费者的购买习惯、喜好、趋势等。然而,如何有效地处理和利用这些数据,使其为商业决策提供有价值的洞见,成为了一个重要的问题。为此,通过数据可视化技术,将复杂的数据转化为直观、易理解的图形,可以帮助企业更好地理解市场和消费者行为,进一步优化商业决策。

        顾客购物数据的可视化具有广泛的应用场景。例如,商家可以通过对顾客的购买历史进行分析,了解顾客的购买习惯和喜好,从而为他们推荐更符合其需求的产品或服务。此外,商家还可以通过数据可视化来识别销售趋势,预测未来的销售情况,从而制定更有效的销售策略。

        本项目旨在通过数据可视化技术,对顾客购物数据进行深入挖掘和分析,为商家提供全面的市场分析和商业洞察。通过使用先进的数据可视化工具和技术,我们将从大量的顾客购物数据中提取有价值的信息,并通过直观的图形展示出来,帮助商家更好地理解市场和消费者行为,优化商业决策。

2.数据集介绍

该数据集来源于kaggle,原始数据集共有3900条,18个特征变量,各变量含义解释如下:

Customer ID- 每个客户的唯一标识符

Age- 顾客的年龄

Gender- 顾客的性别(男/女)

Item Purchased- 客户购买的商品

Category- 购买商品的类别

Purchase Amount (USD)- 以美元计的购买金额

Location- 购买地点

Size- 购买商品的尺寸

Color- 购买商品的颜色

Season- 购买的季节

Review Rating- 客户对所购买商品的评分

Subscription Status- 指示客户是否有订阅(是/否)

Shipping Type- 客户选择的运输类型

Discount Applied- 指示购买时是否应用折扣(是/否)

Promo Code Used- 指示购买时是否使用了促销代码(是/否)

Previous Purchases- 客户先前购买的次数

Payment Method- 客户最喜欢的付款方式

Frequency of Purchases- 客户购买的频率(例如每周、每两周、每月)

3.技术工具

Python版本:3.9

代码编辑器:jupyter notebook

4.导入数据

首先导入本次实验用到的可视化第三方库,并加载数据集

 
  1. import matplotlib.pyplot as plt

  2. data=pd.read_csv("shopping_trends_updated.csv")

接着查看一下数据集的基本信息

 
  1. print(f'data shape : {data.shape}')

  2. sum=pd.DataFrame(data.dtypes,columns=['data type'])

  3. sum["Missing"]=data.isnull().sum()

  4. sum["%Missing"]=(data.isnull().sum()/len(data))*100

  5. sum['#unique']=data.nunique().values

  6. desc=pd.DataFrame(data.describe(include="all").transpose())</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值