数据分析电商数据采集API接口及应用
目录
1.项目背景
2.数据集介绍
3.技术工具
4.导入数据
5.数据可视化
5.1分析性别比例
5.2年龄分布
5.3购物种类分析
5.4产品型号分析
5.5其他分析
6.总结
1.项目背景
随着现代电子商务的飞速发展,顾客购物数据量也在飞速增长。这些数据包含了丰富的信息,如消费者的购买习惯、喜好、趋势等。然而,如何有效地处理和利用这些数据,使其为商业决策提供有价值的洞见,成为了一个重要的问题。为此,通过数据可视化技术,将复杂的数据转化为直观、易理解的图形,可以帮助企业更好地理解市场和消费者行为,进一步优化商业决策。
顾客购物数据的可视化具有广泛的应用场景。例如,商家可以通过对顾客的购买历史进行分析,了解顾客的购买习惯和喜好,从而为他们推荐更符合其需求的产品或服务。此外,商家还可以通过数据可视化来识别销售趋势,预测未来的销售情况,从而制定更有效的销售策略。
本项目旨在通过数据可视化技术,对顾客购物数据进行深入挖掘和分析,为商家提供全面的市场分析和商业洞察。通过使用先进的数据可视化工具和技术,我们将从大量的顾客购物数据中提取有价值的信息,并通过直观的图形展示出来,帮助商家更好地理解市场和消费者行为,优化商业决策。
2.数据集介绍
该数据集来源于kaggle,原始数据集共有3900条,18个特征变量,各变量含义解释如下:
Customer ID- 每个客户的唯一标识符
Age- 顾客的年龄
Gender- 顾客的性别(男/女)
Item Purchased- 客户购买的商品
Category- 购买商品的类别
Purchase Amount (USD)- 以美元计的购买金额
Location- 购买地点
Size- 购买商品的尺寸
Color- 购买商品的颜色
Season- 购买的季节
Review Rating- 客户对所购买商品的评分
Subscription Status- 指示客户是否有订阅(是/否)
Shipping Type- 客户选择的运输类型
Discount Applied- 指示购买时是否应用折扣(是/否)
Promo Code Used- 指示购买时是否使用了促销代码(是/否)
Previous Purchases- 客户先前购买的次数
Payment Method- 客户最喜欢的付款方式
Frequency of Purchases- 客户购买的频率(例如每周、每两周、每月)
3.技术工具
Python版本:3.9
代码编辑器:jupyter notebook
4.导入数据
首先导入本次实验用到的可视化第三方库,并加载数据集
-
import matplotlib.pyplot as plt -
data=pd.read_csv("shopping_trends_updated.csv")
接着查看一下数据集的基本信息
-
print(f'data shape : {data.shape}') -
sum=pd.DataFrame(data.dtypes,columns=['data type']) -
sum["Missing"]=data.isnull().sum() -
sum["%Missing"]=(data.isnull().sum()/len(data))*100 -
sum['#unique']=data.nunique().values -
desc=pd.DataFrame(data.describe(include="all").transpose())</


最低0.47元/天 解锁文章
3181

被折叠的 条评论
为什么被折叠?



