- 博客(151)
- 资源 (30)
- 收藏
- 关注
原创 JAR逆向工程实战对比:传统工具 vs 自动化解决方案
本文对比了传统JadGUI工具与自研自动化逆向工具在Java项目逆向工程中的表现。JadGUI导出的代码存在283个错误,包括包缺失、序列化失败、格式混乱等11类问题,修复耗时1-2天。而自研工具通过自动化处理,10分钟内完成逆向,错误修复率达92.23%,解决了包导入、实体类重写、Lombok表达式等核心问题,代码可读性显著提升。未来计划引入AI技术,将错误解决率提升至95%以上,为开发者提供更高效的逆向工程体验。
2025-11-16 21:28:26
1599
原创 Linux云服务器搭建SFTP服务器图片服务器
首先大家可以先了解一下SFTP和FTP协议的区别,这里我就不熬诉了。Sftp 默认监听端口22 Ftp协议默认监听端口21 本质没什么区别都是基于文件传输协议。前者安全性能高,后者效率高。下面进入正题:一,确保你的Linux 账号能连接,sftp默认就是Linux root账号密码这里就是你的管理员账号用户名和密码。一般这个密码Sftp就直接连就行了不用改的都...
2019-08-06 23:04:41
885
1
原创 云服务器下centos7.3 nginx动态负载均衡
nginx动态负载均衡什么是nginx动态负载均衡呢?传统的负载均衡,如果Upstream参数发生变化,每次都需要重新加载nginx.conf文件,因此扩展性不是很高,所以我们可以采用动态负载均衡,实现Upstream可配置化、动态化,无需人工重新加载nginx.conf。这类似分布式的配置中心什么是consul?...
2019-06-12 16:07:02
515
原创 数据泄漏的三大隐形陷阱:如何避免模型“作弊“与实际部署的惨痛教训
摘要:数据泄漏是机器学习中的隐形陷阱,会导致模型训练时表现优异但实际部署时失效。本文剖析了三种常见泄漏场景:1)目标泄漏(特征包含预测答案信息);2)训练-测试分割污染(预处理顺序错误);3)时间序列中的时间泄漏(使用未来数据预测过去)。防范策略包括严格特征审查、正确处理流程顺序、时间序列时序验证,以及建立自动化检测机制。关键要记住:模型评估不能只看验证分数,必须确保数据处理流程与真实场景一致。(149字)
2025-12-13 13:10:43
932
原创 基于Pydantic的LLM输出结构化验证实战指南
摘要:本文探讨了如何利用Pydantic为大型语言模型(LLM)输出构建可靠的数据验证体系。针对LLM输出常见的结构化数据问题(如字段缺失、类型错乱等),文章提出采用Pydantic建立多层防御机制,包括基础类型验证、自定义验证器和复杂业务逻辑验证。通过电商商品信息提取等实战案例,展示了Pydantic与LangChain框架的深度集成方案,并提供了性能优化建议和错误监控体系。文章强调"信任但要验证"原则,指出Pydantic既能保持LLM的创造力,又能确保系统稳定性,是LLM应用开发中
2025-12-07 18:54:36
783
原创 JavaScript代码混淆加密系统:全方位保护你的前端代码安全
摘要:本文介绍自主研发的JavaScript代码混淆加密系统,针对前端代码易被逆向分析的安全隐患,提供多重保护方案。系统采用控制流混淆、字符串加密、变量名替换等技术,支持批量处理文件,平衡性能与安全。适用于商业Web应用、金融电商等场景,保护核心业务逻辑和知识产权。系统具有高性能算法、多层安全防护和易用界面,建议配合HTTPS加密等措施全面提升Web安全。该方案帮助开发者有效抵御代码盗用和逆向工程风险。(149字)
2025-11-30 19:14:31
503
原创 图解Transformer:一个Token的完整旅程与底层原理
本文通过流程图详细解析了Transformer架构中数据从输入到输出的完整处理过程。首先介绍了文本分词、嵌入表示和位置编码等输入预处理步骤;然后深入讲解了多头注意力机制、残差连接和前馈网络等核心组件的工作原理;最后阐述了输出生成阶段的概率计算和解码策略。文章揭示了Transformer通过自底向上的信息流动模式,逐步建立从词汇到语义的层次化理解,其成功源于自注意力机制、残差架构和并行计算等精巧设计。该解析为理解大型语言模型内部机制提供了清晰的技术视角。
2025-11-30 14:37:59
656
原创 使用LangGraph构建ReAct智能代理:从基础循环到LLM驱动实战
什么是ReAct模式?ReAct(推理+行动)是构建AI智能体的核心模式,它模拟人类解决问题的思维过程。该模式通过三个步骤的循环迭代来完成任务:推理:智能体分析当前情况,决定下一步行动行动:执行具体操作(如搜索、查询等)观察:检查行动结果,为下一轮推理提供依据这种循环持续进行,直到智能体收集到足够信息来回答用户问题。为什么选择LangGraph?LangGraph是基于LangChain的框架,专门用于构建智能体工作流。它将流程建模为图结构:节点:代表流程中的各个步骤边:定义
2025-11-21 11:16:51
76
原创 掌握 LLM 的 JSON 提示:构建可靠生产系统的关键技术
摘要:本文探讨了JSON提示技术在大型语言模型(LLM)生产部署中的应用,旨在解决模型输出随机性和格式不稳定的问题。通过强制结构化输出,JSON提示能显著降低不确定性,简化下游解析流程。文章详细介绍了JSON模式设计原则、Python实现方案,以及验证修复机制,包括与函数调用的结合应用。特别强调了"提示-生成-验证-修复-解析"的工作流程和Pydantic模型验证等最佳实践,为开发者提供了将LLM可靠集成到生产环境的技术框架。
2025-11-16 09:03:36
729
原创 逆向工程师的救命稻草:彻底解决IDEA反编译代码的“100错误循环地狱“
摘要:逆向工程中的编译错误解决指南 本文分享了逆向工程中处理反编译代码编译错误的实用方法。作者首先指出了IDEA默认只显示前100个编译错误的"陷阱",并揭示了错误不断出现的真相。随后提供了两种解决方案:1) 修改编译器参数显示全部错误;2) 正确配置Eclipse编译器以避免模块级覆盖问题。文章还推荐了组合配置方案,并介绍了自动化修复工具的优势,包括90%的错误修复率和大幅节省时间。通过这些方法,逆向工程师可以将精力集中在逻辑分析上,而非语法错误修复。
2025-11-12 20:08:16
1215
原创 减少大模型幻觉的7个提示工程技巧,让你的AI回答更可靠!
摘要:本文针对大语言模型易产生虚假信息("幻觉")的问题,提出7个有效的提示工程技巧:1)鼓励模型承认"不知道";2)采用结构化思维链推理;3)明确标注信息来源;4)对RAG系统施加上下文约束;5)限制输出格式和长度;6)建立RAG自校正循环验证机制;7)在专业领域设置安全护栏。这些方法通过调整提示策略,能显著提升回答的可靠性和准确性,适用于独立LLM和RAG系统。
2025-11-05 14:29:29
820
原创 2026年机器学习领域脱颖而出的7个实战项目
摘要:2026年机器学习就业市场将更看重项目经验而非证书,因项目能展示实际解决问题的能力。7个高质量项目方向包括:物联网预测性维护系统、AI简历筛选系统、个性化学习推荐系统、实时交通预测系统、深度伪造检测系统、多模态情感分析系统和金融预测AI智能体。这些项目融合前沿技术与实际应用,帮助求职者展示数据处理、模型构建到部署落地的全流程能力。通过实践这些项目,开发者能从学习者转型为能解决真实问题的实践者,在竞争激烈的就业市场中建立优势。
2025-11-03 09:31:44
543
原创 用于生成时间序列特征的 10 个 Python 单行
本文介绍了10种Python单行代码方法,用于增强时间序列数据特征工程,帮助构建更有效的预测模型。这些方法包括:1)滞后特征捕捉时间依赖性;2-3)滚动均值和标准差平滑短期波动;4)扩展均值分析长期趋势;5)差分消除趋势;6)提取时间成分;7)滚动相关性检测行为变化;8)傅里叶变换识别季节性;9)指数加权平滑优先近期数据;10)滚动熵评估信息复杂度。这些技术可以单独或组合使用,揭示数据演变、波动和趋势等时间行为特征。
2025-10-28 11:49:09
734
原创 Python数据验证神器:Pydantic完全指南
本文介绍了Python数据验证库Pydantic的核心功能。通过Python类型提示,Pydantic能自动验证、解析和序列化数据。文章详细讲解了基础模型定义、可选字段处理、自定义验证器实现、嵌套模型构建、API数据处理、错误处理机制以及数据序列化方法。Pydantic简化了传统数据验证过程,使开发者能明确定义数据结构并自动执行验证规则,特别适合处理API、配置文件和用户输入等场景。该库通过类型系统提供运行时保证,同时保持代码清晰可读,是Python开发中提升数据可靠性的重要工具。
2025-10-27 10:14:17
705
原创 机器学习从业者微调语言模型完全指南:2025年实战策略与最佳实践
大型语言模型微调实战指南(2024-2025) 本文系统阐述了当前LLM微调的技术体系与实践方法。核心观点包括:1)微调应是最后选择,推荐提示工程→RAG→微调的三级决策流程;2)参数高效微调(PEFT)成为主流,重点解析LoRA、QLoRA和Spectrum三大技术;3)指令调优与DPO对齐构成现代训练范式;4)数据质量决定成败,1000高质量样本优于10万普通样本;5)提供完整工具栈配置与分阶段学习路径。当前技术已能在消费级GPU上微调130亿参数模型,使定制化AI更易实现。
2025-10-24 19:47:02
1028
原创 无需额外GPU,加速模型训练的3种核心技术详解
本文介绍了三种优化模型训练速度的方法,无需增加GPU硬件:1)混合精度训练,利用FP16/BF16加速计算,结合FP32保持稳定性;2)梯度累积技术,通过累积多个小批次梯度模拟大批次训练效果;3)ZeRO分片技术,智能卸载模型参数到CPU内存。这些方法可单独或组合使用,显著提升训练效率2-4倍,特别适合内存受限的大型模型训练场景。实施时需进行基准测试和渐进优化,确保在提升速度的同时不牺牲模型精度。
2025-10-17 11:05:06
869
原创 双退火算法原理详解与Python实战:全局优化的利器
双退火算法是一种改进的全局优化算法,结合了模拟退火的全局搜索能力和局部优化算法的精确性。本文首先介绍了双退火算法的原理,包括其创新的快速退火调度、Tsallis统计接受准则和局部搜索机制。通过Python的SciPy库实现,详细解析了dual_annealing()函数的参数配置和使用方法。以经典的Ackley多模态函数为例,展示了双退火算法在复杂优化问题中的优异表现。文章还提供了参数调优策略、高维问题处理技巧以及与其他算法的对比分析。最后总结了双退火算法的适用场景、常见问题解决方案及未来发展方向。该算法特
2025-10-15 10:54:41
929
原创 构建推理缓存以节省高流量 LLM 应用程序的成本
文章摘要:大型语言模型(LLM)推理缓存技术可显著降低API成本,通过存储重复查询结果实现90%的调用节省。文章详细对比了精确匹配缓存(处理完全相同查询)和语义缓存(识别语义相似查询)两种方案,后者通过文本嵌入和余弦相似度计算实现更高命中率。测试显示语义缓存可将响应时间从秒级降至毫秒级,建议生产环境结合向量数据库、缓存过期策略和分层架构优化。该技术特别适用于客户支持、代码助手等高重复查询场景,能减少60-90%的API调用并降低80%以上延迟,是构建高效LLM应用的关键优化方案。
2025-10-14 10:37:05
906
原创 从传统机器学习到智能体AI系统:从业者实战指南
本文介绍了从业者如何从传统机器学习转向智能体AI系统的开发,涵盖核心概念、架构模式、框架选择和实践项目。智能体AI通过自主规划、工具使用和记忆能力实现复杂任务,正在重塑机器学习领域。文章详细解析了ReAct、计划与执行、反思三种核心架构模式,比较了LangGraph、CrewAI和AutoGen三大框架的适用场景,并提供了从初级到高级的实践项目建议。同时探讨了记忆系统设计、智能体RAG等高级主题,以及该领域的职业发展前景,为从业者提供了系统的学习路径和资源推荐。
2025-10-11 11:36:43
942
原创 ChatGPT-5 高等数学推理能力深度实测:从基础解题到复杂证明的全面分析
ChatGPT-5在数学推理方面取得显著进步,能够处理从基础代数到高等数学的各类问题。测试显示其在方法选择、证明构建和概念理解方面接近人类专家水平,尤其在标准问题解决中表现优异。然而,与人类专家相比,在数学直觉、创新思维和表达自然度上仍有差距。该模型可作为数学教育和研究的辅助工具,但需理性认识其局限性。未来人机协作模式可能成为数学领域的重要发展方向,AI技术的持续进步将为数学研究和教育带来新的可能性。
2025-10-09 10:50:21
1070
原创 5个高效数据清理的DIY Python函数,提升你的数据处理能力!
本文介绍了5个实用的Python数据清理函数,涵盖文本处理、日期标准化、缺失值处理、异常值检测和文本标准化等常见任务。这些函数包括:智能空格清理、日期格式统一化、缺失值智能填充、基于IQR的异常值检测移除以及文本标准化处理。每个函数都配有详细说明和使用示例,具有类型提示、灵活参数和错误处理机制,可单独使用或组合应用于数据预处理流程。这些工具函数能显著提高数据清理效率,建议保存为可重用模块。
2025-10-06 12:17:06
911
原创 Logstash 启动内存持续飙升排查实录:一次完整的排障与思维训练
摘要: 客户反馈Logstash启动后内存飙升,2G配置仍爆满。排查发现JVM参数(-Xmx2g)足够,但年轻代持续增长,老年代稳定,表明短生命周期对象过多。优化方向包括:降低pipeline并发(workers=1,batch.size=50)、简化配置(仅input/output测试)、检查插件(如grok/ruby)内存占用。最终发现根因是系统服务配置错误(Restart=always导致无限重启),修正为Restart=on-failure后问题解决。经验: 内存问题需结合JVM、配置、系统层面全面
2025-10-06 11:50:15
882
原创 机器学习中算法与模型的本质区别:从理论到实践的全面解析
摘要:机器学习中算法与模型是核心但易混淆的概念。算法是创建模型的过程(如线性回归、决策树等),本质是数据处理的步骤;模型是算法运行后产生的成果,包含学习到的知识(如系数、规则等)和预测机制。两者的关系可框架化为"算法+训练数据→模型=模型数据+预测算法"。理解这种区别对实践至关重要:算法侧重优化过程,模型侧重应用部署。这种自动编程范式使开发者能构建传统方法难以实现的智能系统,如图像识别和自然语言处理。
2025-10-05 10:16:43
944
原创 使用 Python 进行自然语言处理的完整初学者指南
本文介绍了Python中NLTK库在自然语言处理(NLP)中的应用,从基础环境搭建到高级文本处理技术。主要内容包括:1) 开发环境配置与NLTK资源下载;2) 文本预处理核心技术如文本清洗、标记化、停用词处理及词干提取;3) 高级语言处理技术包括词性标注、命名实体识别;4) 构建完整NLP处理流程;5) 性能优化方法;6) 实际应用案例如文本分类。文章还提供了进阶学习路径建议和相关资源推荐,帮助读者系统掌握NLP技术并应用于实践项目。
2025-10-04 11:19:48
1751
原创 Claude API 完全上手指南:从零开始构建智能应用
摘要:本文全面介绍了Anthropic的Claude API,从注册配置到实战应用。Claude API提供三大模型(Opus、Sonnet、Haiku)满足不同需求,具有成本优势、优质文档和活跃社区。文章详细解析了Python环境搭建、API密钥管理、计费策略,并提供了智能客服和文本分析等实用代码示例。同时介绍了性能优化、错误处理等高级技巧,帮助开发者高效集成这一AI工具。通过对比主流替代品,突出Claude API在上下文理解和伦理对齐方面的优势,为开发者选择合适的AI解决方案提供参考。
2025-10-02 10:02:53
1171
原创 机器学习模型选择的六个关键考量:从理论到实践的最佳路径
机器学习模型选择需基于明确目标和实际重实战约束进行理性决策。文章提出六个关键考量:1)明确业务目标,定义评估标准;2)从简单基线模型开始;3)选择反映业务价值的评估指标;4)采用交叉验证确保结果可靠性;5)根据业务场景平衡模型复杂度与解释性;6)在真实环境进行测试验证。模型选择不是追求先进算法的竞赛,而是让解决方案精准匹配特定问题的系统工程。
2025-10-01 13:27:25
540
原创 机器学习从业者必知的10大MLOps工具:从实验管理到生产部署
MLOps是现代机器学习项目中不可或缺的实践方法,它通过自动化和管理机器学习生命周期,确保模型的可重复性和可扩展性。本文介绍了10个关键MLOps工具:MLflow、Weights & Biases、Comet用于实验跟踪;Apache Airflow、Kubeflow、Metaflow负责工作流编排;DVC、Pachyderm专注于数据版本控制;EvidentlyAI提供模型监控功能;TensorFlow Extended则是一个企业级全流程平台。这些工具能帮助团队构建可靠的生产级机器学习系统,建
2025-09-30 09:36:16
597
原创 Python 中四种高级特征缩放技术详解:超越标准化的数据预处理
本文深入探讨了4种高级特征缩放技术:分位数变换通过映射分位数实现分布转换,异常值鲁棒性强;幂变换通过参数优化使数据更接近正态分布;鲁棒缩放使用中位数和四分位距,对异常值不敏感;单位向量缩放关注样本间相对关系。这些方法能有效解决标准化和归一化在处理偏斜数据、异常值、非高斯分布时的局限性。文章详细介绍了各种技术的数学原理、Python实现和应用场景,并提供了可视化比较和选型指南,强调应根据数据特性和业务需求选择最适合的缩放方法。
2025-09-28 15:44:05
1090
原创 5个适合初学者的AI代理实战项目
本文介绍了5个适合初学者的AI代理实践项目:1)使用ChatGPT代理生成图像拼贴;2)通过Langflow构建语言学习助手;3)用Flowise创建数据分析代理;4)基于Grok4开发医疗处方分析仪;5)利用LangGraph和llama.cpp搭建本地AI代理。这些项目无需高级编码技能,涵盖视觉处理、语言学习、数据分析、医疗应用等多个领域,帮助开发者快速掌握AI代理的核心技术。完成项目后可进一步优化创新,将AI代理应用于实际场景。
2025-09-27 16:22:50
820
原创 下一代 RAG 检索策略全面解析
摘要:RAG技术正通过5种前沿方法实现突破:1)GraphRAG构建知识图谱实现多跳推理;2)AgenticRAG利用智能代理动态检索;3)Self-RAG/CRAG引入自评估机制提升可靠性;4)RAPTOR采用分层树结构保持文档上下文;5)ColBERT/HyDE实现细粒度匹配。这些方法通过知识结构化、智能代理、自评估等策略,使RAG更适应复杂场景,但也带来更高的计算成本、索引体积等挑战。这些创新正推动RAG向更精准、可靠的方向发展。
2025-09-25 16:42:27
968
原创 集成学习全解析:Bagging、Boosting、Stacking原理与实战(2025版)
本文系统介绍了三种主流集成学习方法(Bagging、Boosting、Stacking)的原理与Python实现。Bagging通过并行训练多个模型降低方差,Boosting通过顺序纠错减少偏差,Stacking则融合不同算法优势。文章提供了完整的代码示例,包括随机森林、AdaBoost和堆叠分类器的实现,并对比了各方法的优缺点。实践建议指出:小数据优先Bagging,结构化数据适合Boosting,追求极致性能可尝试Stacking。集成学习能有效提升模型性能,但需根据数据特点和计算资源选择合适方法。
2025-09-24 15:54:16
1077
原创 使用FastAPI和Docker部署机器学习模型:从开发到生产的最佳实践
本文介绍了使用FastAPI和Docker部署机器学习模型的标准化方案。通过FastAPI构建高性能API接口,结合Docker容器化技术确保环境一致性。主要内容包括:1)项目结构设计;2)模型训练与保存;3)FastAPI应用开发;4)Docker镜像构建;5)API测试验证。该方案具有环境一致、易于扩展、维护简便等优势,适用于从简单到复杂的机器学习应用部署。
2025-09-22 17:51:08
886
原创 实战分享:JAR 包一键逆向成源码(自动化修复 + 收费服务)
摘要:本文介绍了一款JAR自动化逆向插件,可将JAR包一键转为可编译源码,自动修复90%以上报错。提供两种服务:自动化修复(200元起,按文件数计费)和人工深度修复(400元起)。工具支持常见框架问题修复,但不保证100%完美。联系方式及购买地址详见文末。(146字)
2025-09-21 20:12:30
969
原创 Python 如何优雅处理 100GB 数据集——实战案例
Python生态下处理100GB日志数据的解决方案:1)Pandas分块读取避免内存溢出;2)Dask实现并行计算加速处理;3)Polars优化单机性能;4)SQLite存储便于重复查询。核心策略是通过分块处理、并行计算和延迟加载来突破内存限制,不同场景下选择最优工具组合:批处理用Pandas,分布式用Dask,高性能查询用Polars,交互分析用SQLite。这些方法可扩展到TB级数据处理。
2025-09-21 18:45:26
586
原创 5 个鲜为人知的可视化库,用于有影响力的机器学习故事讲述
本文介绍了五个鲜为人知但功能强大的Python数据可视化库,可增强机器学习的数据叙事效果。Plotly擅长交互式2D/3D可视化,支持独特图表类型;HyperNetX专注于超图可视化,适合处理复杂关系;HoloViews结合Bokeh等后端,能快速创建交互图表;Altair提供优雅的交互式2D绘图和JSON导出;PyDeck则专精于大规模3D地理空间可视化。这些库各具特色,能弥补Matplotlib等主流工具在某些场景下的不足,为机器学习结果展示提供更多可能性。
2025-09-21 11:18:21
938
原创 数据挖掘与KDD:从理论到实践的最佳流程解析
本文探讨了数据挖掘与KDD(数据库知识发现)的关系及实践方法。数据挖掘是从数据中提取有价值信息的过程,而KDD则提供了完整的流程框架,包括数据清理、集成、转换、挖掘和评估等步骤。作者强调数据预处理的重要性,指出机器学习是数据挖掘的核心技术支撑而非全部。文中分享了实用建议:从明确业务目标出发,注重数据质量而非算法复杂度,采用迭代式开发和可视化方法。正确的流程比算法选择更能确保项目成功,初学者通过系统化方法可逐步提升专业技能。
2025-09-20 12:51:43
797
原创 7个NumPy技巧,让Python数值计算速度飞起来!
本文介绍了7个实用的NumPy技巧,帮助提升Python数值计算效率:1)用矢量化操作替代循环;2)利用广播机制实现高效运算;3)使用np.where()进行条件运算;4)@运算符简化矩阵乘法;5)np.dot()计算内积;6)np.random快速生成随机数据;7)np.asarray()避免内存重复。这些技巧通过优化数组运算、减少循环和条件语句,能显著提升大规模数据处理的性能,特别适合数据科学和机器学习应用。建议在日常工作中逐步实践这些矢量化编程方法。
2025-09-17 16:14:30
783
原创 别再踩坑了!程序员副业变现的正确打开方式
《程序员副业避坑指南:如何实现月入过万》 针对程序员开展副业常见的选方向难、被割韭菜、时间不足、收入不稳等问题,提供经过2年验证的实战解决方案。课程包含三大核心内容:已验证的副业路径图、零投资轻资产打法、可直接复制的三种赚钱模式,帮助程序员快速实现首单1000元收入并冲击月入过万目标。适合想突破收入瓶颈、打造个人IP的技术人员,避免盲目试错,提供可落地的副业方法论。
2025-09-14 20:46:56
736
原创 使用 Neo4j 和 Ollama 在本地构建知识图谱
本文详细介绍了构建知识图谱的完整流程,利用Neo4j图数据库、Ollama和HuggingFace模型实现文本到结构化知识的转换。知识图谱在欺诈检测、社交网络分析和推荐系统等场景具有显著优势。文章重点讲解了技术架构部署、模式设计、Python自动化处理流程等关键环节,包括通过Docker部署Neo4j、配置text2cypher语言模型、设计有效图谱模式以及实现自动化查询生成等实践步骤。同时提供了优化查询生成策略和实际应用案例,展示了如何将非结构化文本转换为结构化Cypher查询。最后指出知识图谱在智能问答
2025-09-14 19:29:44
1024
原创 你真的了解大语言模型吗?——开发者必须避开的 10 大误区
摘要:大型语言模型(LLM)已成为各行业生产力工具,但应用过程中存在诸多误区。本文剖析了十大常见误解:1)LLM本质是统计引擎而非理解语言;2)参数量并非性能唯一指标;3)具备超越自动补全的涌现能力;4)知识存在压缩和幻觉;5)微调可能带来灾难性遗忘;6)模型本质具有概率性;7)大上下文窗口未必高效;8)传统NLP方法仍有优势;9)提示工程需要系统方法论;10)LLM是助手而非替代者。正确应用LLM需理解其边界,合理搭配RAG、Prompt工程等技术,将其作为生产力放大器而非万能工具。成功落地的关键在于选择
2025-09-13 15:40:58
894
测试管理工具TestLink 1.9.16的详细使用手册
2024-12-14
软件项目产品版本需求规划说明书
2024-12-14
项目管理迭代计划评审报告模板
2024-12-13
CAR改进计划方案模版
2024-12-13
星空特效背景播放视频文件
2024-12-10
软件项目总统设计说明书模板文档
2024-08-24
Postman 实战到精通独家教学视频
2024-08-10
漏洞处理与预警处理流程
2024-08-12
抖音seo关键词排名优化技术,三天学活抖音seo
2024-04-24
抖音同城相亲号课程创业项目
2024-04-23
收藏PPT模板,不仅仅是为了表面功夫!1000+套模板,让你PPT从此不再“乏味”!
2024-04-14
商务PPT模板精选20套
2024-04-01
软件工程基于系统化思维的项目问题排查方法论:全链路根因分析与多维度协同解决体系构建
2025-09-30
Java安全基于类加载机制的代码加密与反编译防护:字节码加密还原实战技术解析
2025-09-30
【Java安全防护】基于Allatori与YGuard的代码混淆加密实战:Spring Boot应用防逆向保护方案设计
2025-09-30
【API测试工具】Postman功能详解与自动化实践:环境管理、集合测试及CI/CD集成系统应用
2025-09-30
Fiddler高手之路:从零开始的抓包实战教程Fiddler课程总结与问题分析.docx
2025-09-30
微信开发基于第三方平台的公众号开发技术方案:实现授权接入、消息处理与菜单管理的全流程系统设计
2025-09-30
逆向分析 + 环境配置 + 打包修改实战教程(零基础可入门)
2025-09-25
DeepSeek入门与深度剖析:从基础到高级技巧的全面指南
2025-02-08
软件测试流程3.0规范模版文档
2025-01-07
软件测试计划-模板V1.2.doc
2025-01-03
迭代计划评审报告模板V1
2024-12-19
软件产品病毒扫描报告模板
2024-12-18
网络安全:常见Web与系统安全漏洞及其解决方法
2024-12-18
Web安全测试方案管理模板
2024-12-18
软件性能测试报告模版文档
2024-12-15
应用安全编码规范模版文档
2024-12-15
企业级数据中台解决方案的用户手册:功能详解与环境搭建
2024-12-15
微服务模块概要设计说明书
2024-12-14
互联网软件研发敏捷实践全流程指南
2024-12-14
概要设计接口设计说明书模板
2024-12-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅