- 博客(78)
- 资源 (1)
- 收藏
- 关注
原创 基于webpack的场景解决
老项目测试发现Webpack打包后泄漏敏感信息,源代码面板可见webpack文件夹(含接口文档等)。解决方案是通过配置webpack的devtool选项,在生产环境禁用source-map(config.devtool = false),开发环境可选启用。此修改需在vue.config.js中根据环境变量动态设置,避免源码映射文件暴露。参考技术文章分析了source-map的作用及安全配置方案。(150字) 核心点: 问题:生产环境source-map泄漏敏感代码 解决:环境区分 + devtool
2025-09-10 11:12:49
295
原创 基于Vue通用组件定制化无侵入的场景解决
本文针对两个Vue组件使用场景提出无侵入式解决方案。场景1需保留默认字段:通过ref动态覆盖通用组件的resetFilter方法,在mounted钩子中实现字段保留逻辑。场景2需时间校验:采用事件捕获拦截,通过$watch监听组件状态变化,在捕获阶段执行时间校验,失败时阻止事件冒泡。两种方案均不修改通用组件源码,仅在当前组件作用域内生效,并注意销毁监听器避免内存泄漏。关键技术包括ref引用、组件实例方法覆盖、事件捕获拦截和$watch监听等。
2025-08-26 17:31:42
447
原创 基于路由级组件复用的场景解决
摘要 在Vue项目中,一个组件需要同时作为一级和二级菜单使用,但两处使用场景存在模板和业务逻辑差异。解决方案采用Vue Router配置不同路由指向同一组件,通过路由参数传递使用场景标识。在组件内部,利用created钩子获取路由参数设置标志位,再通过v-if条件渲染和JavaScript逻辑分支实现不同场景的差异化处理。该方法避免了组件重复开发,同时保证了功能独立性。
2025-08-14 14:59:33
216
原创 基于element的场景解决
该文档描述了一个基于Vue2和Element UI的表格多选控制场景。在选中24个列表项后需阻止继续选择,但直接return无法取消UI选中状态。解决方案是使用el-table的toggleRowSelection方法结合nextTick,在DOM更新后手动取消选中行。文档包含技术背景、解决思路及参考资料链接,涉及Vue的nextTick和Element的表格组件API。
2025-08-12 10:47:57
303
原创 调研-SSE
SSE技术简介:Server-Sent Events(SSE)是基于HTTP协议的服务端推送技术,具有单向通信、实时推送、轻量级等特点,支持跨域和自动重连。客户端通过EventSource接口建立连接,可监听open/message/error等事件,并支持自定义事件类型。服务端需设置特定HTTP头信息,数据格式为UTF-8文本,通过data/id/event等字段组织内容。SSE适用于需要服务器主动推送数据的场景,相比WebSocket更简单易用。
2025-07-29 14:43:24
244
原创 场景解决-列表项切换时同步到可视区域
本文介绍了如何实现双栏布局中仓库列表项切换时自动滚动到可视区域的功能。通过使用Element.scrollIntoView方法实现滚动对齐,结合document.querySelector获取当前活动元素,并利用Vue的watch监听器在索引变化时触发滚动操作,同时使用flush:"post"确保在DOM更新后执行。该方案实现了平滑的视觉滚动效果,支持垂直方向上最近的边缘对齐,优化了用户交互体验。
2025-07-29 10:45:04
333
原创 git推送报错443
推送时,正常使用魔法,在VPN环境下进行操作。查了很多资料都无效。后来发现需要配置git代理,且要和VPN代理端口相同。打开“网络与Internet设置”–>代理–>手动设置代理–>端口。需要依据你自己电脑上的代理端口进行相应修改。
2024-11-24 13:07:15
737
原创 调研-音视频
量化:为了更高效地保存和传输每个采样点的数值,将这些振幅值进行规整,这一过程称为量化。采样:在一段时间内等间隔地获取模拟信号的幅度值,得到一系列采样点。○ 采集、编码、前后处理、传输、解码、缓冲、渲染等很多环节。- 计算公式=采样率 x 采样大小 (位数)x 声道数。- 指 每秒传输的音频的比特数。● 实时音视频应用环节。码率(/音频的比特率)若干序列组成一段视频。
2024-08-18 17:51:19
1112
原创 leetcode-31-下一个排列
如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。例如,arr = [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1]。而 arr = [3,2,1] 的下一个排列是 [1,2,3] ,因为 [3,2,1] 不存在一个字典序更大的排列。类似地,arr = [2,3,1] 的下一个排列是 [3,1,2]。例如,arr = [1,2,3] 的下一个排列是 [1,3,2]。
2023-05-15 09:50:20
476
原创 代码随想录刷题笔记3
1-解空间树节点组合、分割、排列问题,求叶子节点——路径。子集问题,求所有节点。2-同一层遍历的起点组合、分割、子集,属于无序,for从beginIdx开始。组合问题中,若是2个集合内的组合,不需要beginIdx。排列,属于有序,for从0开始。3-去重类型树枝去重树层去重同一父节点的同一层子节点之间去重方法排序used数组在该层使用哈希集,生命周期只在该层即本次递归中存在,哈希集中只有同层的子节点。(同父节点的同层去重)、4-时空复杂度。
2023-05-05 10:34:48
633
原创 西瓜书-2.4模型评估与选择
学习器需要用某种实验评估方法来测得学习器的某个性能度量结果,并借此进行性能比较,然后用统计假设检验提供的依据,以错误率为性能度量,以此进行性能比较。
2022-08-29 14:50:17
685
原创 leetcode-145-二叉树的后序遍历
目录题目描述提示思路解决后序遍历-递归形式后序遍历-非递归形式结果题目描述给你二叉树的根节点 root ,返回它节点值的 后序 遍历。实例1:输入:root = [1,null,2,3]输出:[3,2,1]提示树中节点数目在范围 [0, 100] 内-100 <= Node.val <= 100思路前序遍历的步骤是:访问根节点。根节点入栈。访问左子树。回到根节点。根节点出栈。访问右子树。接下来采用递归形式和非递归形式进行实现。非递归形式比较麻烦。在非递归
2022-05-18 16:19:47
927
原创 leetcode-144-二叉树的前序遍历
目录题目描述提示思路解决前序遍历-递归形式前序遍历-非递归形式结果题目描述给你二叉树的根节点 root ,返回它节点值的 前序 遍历。实例1:输入:root = [1,null,2,3]输出:[1,2,3]提示树中节点数目在范围 [0, 100] 内-100 <= Node.val <= 100思路基础题,前序遍历的步骤是:访问根节点。根节点入栈。访问左子树。回到根节点。根节点出栈。访问右子树。接下来采用递归形式和非递归形式进行实现。在非递归中有一点值得注
2022-05-18 11:40:25
1061
1
原创 西瓜书-2.1经验误差与过拟合
文章目录经验误差与过拟合术语问题解决经验误差与过拟合术语错误率分类错误的样本数占总样本的比例。精度=1 - 错误率。误差:指误差期望。学习器的实际预测输出与样本的真实输出之间的差异。在不同数据集上的误差也有区别,如下:训练误差 或 经验误差:训练集。泛化误差:新样本。P问题(P:polynomial)存在多项式时间算法的问题。(多项式时间即算法中O(n^2))NP问题(N:non-deterministic非确定性)不确定1个问题是否存在多项式时间内的算
2022-05-17 20:21:01
451
原创 leetcode-112-路径总和
目录题目描述提示思路解决结果题目描述给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。叶子节点 是指没有子节点的节点。实例1:输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22输出:true解释:等于目标和的根节点到叶节点路径如上
2022-05-16 10:28:27
149
原创 西瓜书-1.4归纳偏好
文章目录归纳偏好描述问题解决归纳偏好作用偏好的建立奥卡姆剃刀(`Occam's razor`)NFL定理(No Free Lunch Theorem)归纳偏好核心:学习算法自身的归纳偏好与问题是否匹配,往往会起到决定性作用。描述基于学习得到相关模型,对应了假设空间中的一个假设。但是在版本空间(假设集合)中,有多个假设,会导致对应的模型在面临新样本的时候,产生不同的输出。问题在诸多假设中,若想要得到理想输出,应该采用哪一种模型(或假设)?解决对于一个具体的学习算法,必须要产生一个模型,而其自
2022-04-25 20:43:55
734
原创 西瓜书-1.3假设空间
文章目录假设空间假设空间演绎(一般到特殊的特化)归纳(特殊到一般的泛化)归纳学习:从样例中学习。广义:从样例中学习。狭义:从训练数据中学得概念,——亦称概念学习、概念形成。概念学习,最基本:布尔概念学习,即对‘是’、‘不是’这样的可表示为0/1布尔值的目标概念的学习。案例——西瓜布尔表达式:好瓜↔(色泽=?)∧(根蒂=?)∧(敲声=?)<?表示未确定值>好瓜 \leftrightarrow (色泽=?)\wedge(根蒂=?)\wedge(敲
2022-04-24 20:08:13
500
原创 西瓜书-1.2术语
文章目录ch1-绪论1.2 基本术语数据术语1类术语2类ch1-绪论1.2 基本术语数据(色泽=青绿;根蒂=蜷缩;敲声=浊响),(色泽=乌黑;根蒂=稍蜷;敲声=沉闷),(色泽=浅自;根蒂=硬挺;敲声=清脆) ,…术语1类示例:一条数据。数据集:一组记录的集合。样本:一条记录or 一个数据集,取决于上下文。属性attribute 或 特征feature、属性值attribute value如:色泽(特征)–青绿(属性值)。PS:下属统称:特征feature
2022-04-19 22:41:12
291
原创 3.3.2-中文分词
目录中文分词基于字典的匹配算法基于统计的算法中文分词基于字典的匹配算法人工建立的大规模字典若一个字符串和字典中的某一个词条匹配成功,认为该字符串表示一个中文词。匹配的策略包括正向最大匹配,系统会从左往右扫描字符串,发现能和字典词条匹配的最长字符串,作为1个中文词,匹配不到,右端减少1个词,剩下部分重复上述步骤。基于统计的算法...
2022-03-03 09:57:46
140
原创 3.3.1-取词干和词形还原
目录取词干和词形还原取词干实例词形还原取词干和词形还原是词形归并。目的:减少词的变化形式,将派生词转化为基本形式。优点1:字典中词条的数量就会降低,用于表示文档的向量维度更低,模型的数据量会缩小。优点2:通过词干和词形的关联,还能发掘不同形式的单词间存在的语义上的关联。取词干通过一定的语言学规则去除或者变换单词的后缀,让其变短,处理后的词干往往不是一个正确的英文单词。可以借助 PorterStemming算法实例 from nltk import PorterStemmer
2022-03-02 22:48:20
276
基于vue3+TS的新闻客户端的简单实现
2025-06-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅