算法 | 很详尽KMP算法(厉害)

本文深入解析KMP算法,强调其高效模式匹配特性,通过实例展示如何减少模式串的移动次数,达到快速查找目标子串的目的。

KMP
学KMP算法懵懵懂懂的倒推了一下next,感觉到模式串满足前面和后面有几项是相等的,但是还是挺懵的,不系统。看到这篇就懂了:就是尽可能有效率地利用模式串,使其模式串移动次数最小。

我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法KMP算法是拿来处理字符匹配的。换句话说,给你两个字符,你需要回答,B是否是A的子(A是否包含B)。比如,字符A="I'm matrix67",字符B="matrix",我们就说B是A的子。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子吗?” 解决这类问题,通常我们的方法是枚举从A的什么位置起开始与B匹配,然后验证是否匹配。假如A长度为n,B长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)算法(这里假设 m<=n),即传说中的KMP算法。 之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。 个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值