神经网络量化入门--量化感知训练

本文介绍了量化感知训练的概念,通过对比后训练量化,强调其在适应量化信息损失方面的优势。使用pytorch详细展示了如何实现量化训练,包括伪量化节点和量化卷积的代码实现,并探讨了量化训练的收益与困难,如学习率敏感性。实验结果显示,量化训练在高比特量化时能显著提高模型准确率。

(本文首发于公众号)

上一篇文章介绍了后训练量化的基本流程,并用 pytorch 演示了最简单的后训练量化算法。

后训练量化虽然操作简单,并且大部分推理框架都提供了这类离线量化算法 (如 tensorrtncnnSNPE 等),但有时候这种方法并不能保证足够的精度,因此本文介绍另一种比后训练量化更有效地量化方法——量化感知训练。

量化感知训练,顾名思义,就是在量化的过程中,对网络进行训练,从而让网络参数能更好地适应量化带来的信息损失。这种方式更加灵活,因此准确性普遍比后训练量化要高。当然,它的一大缺点是操作起来不方便,这一点后面会详谈。

同样地,这篇文章会讲解最简单的量化训练算法流程,并沿用之前文章的代码框架,用 pytorch 从零构建量化训练算法的流程。

量化训练的困难

要理解量化训练的困难之处,需要了解量化训练相比普通的全精度训练有什么区别。为了看清这一点,我们回顾一下上一篇文章中卷积量化的代码:

class QConv2d(QModule):

    def forward(self, x):
        if hasattr(self, 'qi'):
            self.qi.update(x)

        self.qw.update(self.conv_module.weight.data)

        self.conv_module.weight.data = self.qw.quantize_tensor(self.conv_module.weight.data)
        self.conv_module.weight.data = self.qw.dequantize_tensor(self.conv_module.weight.data)

        x = self.conv_module(x)

        if hasattr(self, 'qo'):
            self.qo.update(x)

        return x

这里面区别于全精度模型的地方在于,我们在卷积运算前先对 weight 做了一遍量化,然后又再反量化成 float。这一步在后训练量化中其实可有可无,但量化感知训练中却是需要的「之前为了代码上的一致,我提前把这一步加上去了」

那这一步有什么特别吗?可以回顾一下量化的具体操作:

def quantize_tensor(x, scale, zero_point, num_bits=8, signed=False):
    if signed:
        qmin = - 2. ** (num_bits - 1)
        qmax = 2. ** (num_bits - 1) - 1
    else:
        qmin = 0.
        qmax = 2
神经网络模型的量化感知训练是指在量化的过程中,通过对网络进行训练,使网络参数能更好地适应量化带来的信息损失。这种训练方式更加灵活,准确性普遍比后训练量化要高。然而,量化感知训练的操作起来不太方便。在量化感知训练中,使用的一种方法是Dorefa,它是一种训练低比特宽度卷积神经网络的方法。在进行低比特量化训练时,当比特数为1时,整个网络会退化成一个二值网络,这会导致网络的信息损失巨大,因此通常的训练方式很难起到作用。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [神经网络量化入门--量化感知训练](https://blog.csdn.net/u012954083/article/details/123392402)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [量化感知训练QAT,quantization aware training](https://blog.csdn.net/m0_50617544/article/details/121596406)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值