关于svm和神经网络的恩爱情仇
两者都是在寻找一个可分割的超平面,单层神经网络的感知机是线性可分,非线性不可分的。有局限性。这时候svm出现了,通过核函数解决了非线性数据的问题。后来随着硬件的发展解决了多层神经网络的计算问题,神经网络也可以做非线性数据的分割问题了
至于svm怎么寻找超平面的,大概分三步
第一步,线性可分,求距离各个样本距离最短的超平面。
第二步,线性不太可分,引入松弛变量,然后软间隔最大化。也是个线性分类器
第三步,线性不可分,引入核函数,低纬到高维映射。
svm具体求解过程:
svm的关键参数:
参考资料:https://blog.csdn.net/szlcw1/article/details/52259668
LIBSVM:http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
本文探讨了支持向量机(SVM)与神经网络的区别与联系。从线性可分到非线性可分,SVM通过引入核函数解决复杂问题,而神经网络则借助多层结构处理非线性数据。文中详细介绍了SVM的实现步骤及其关键参数。
17万+

被折叠的 条评论
为什么被折叠?



