机器学习全面知识点总结(小白入门!)

本文旨在为初学者介绍机器学习的基础知识,包括机器学习的特点、研究对象、分类及其应用。机器学习涉及有监督学习(如分类、回归)、无监督学习(如聚类、降维)和强化学习。通过实例解释了如何利用数据训练模型并应用于实际问题,如拉面评分预测。此外,还探讨了机器学习在人脸识别、垃圾邮件检测等领域的应用。

**

机器学习相关总结(小白入门!)

**

目录

  • 机器学习的特点
  • 机器学习的研究对象
  • 机器学习的应用

#大家好,这篇博文主要介绍机器学习相关的基本理论和部分应用,目的是帮助初学者对机器学习建立初步的认知框架,文章通俗易懂,以后博主还会根据具体的机器学习实践和部分模型模型应用更深入的帮助大家汇总相关知识。

现在让我们开始吧!!!

1.机器学习的特点*

简单来说机器学习的特性是从我们已经拥有的数据的特征(Data)和其对应的对照的答案(Label)寻找某种规则。Data和Label 帮助大家理解,后续我们会说到有的训练是没有Label也就是对照答案的,像无监督学习。
机器学习

学术一点来说,机器学习是以计算机为平台,数据为研究对象,学习方法为中心的交叉学科,涉及的课程包括概率论、线性代数、信息论、等。
涉及的研究包括:

  1. 机器学习方法:开发新的学习方法。
  2. 机器学习理论: 探究机器学习方法的有效性和效率。
  3. 机器学习的应用: 利用模型解决实际问题。

2.机器学习的研究对象*

机器学习的研究对象,毋庸置疑是从数据出发的,提取数据特征,利用数据模型,发现数据中的规律。

拉面评分
我们来看一个例子,这个是Kag

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Not_Today.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值