**
机器学习相关总结(小白入门!)
**
目录
- 机器学习的特点
- 机器学习的研究对象
- 机器学习的应用
#大家好,这篇博文主要介绍机器学习相关的基本理论和部分应用,目的是帮助初学者对机器学习建立初步的认知框架,文章通俗易懂,以后博主还会根据具体的机器学习实践和部分模型模型应用更深入的帮助大家汇总相关知识。
现在让我们开始吧!!!
1.机器学习的特点*
简单来说机器学习的特性是从我们已经拥有的数据的特征(Data)和其对应的对照的答案(Label)寻找某种规则。Data和Label 帮助大家理解,后续我们会说到有的训练是没有Label也就是对照答案的,像无监督学习。

学术一点来说,机器学习是以计算机为平台,数据为研究对象,学习方法为中心的交叉学科,涉及的课程包括概率论、线性代数、信息论、等。
涉及的研究包括:
- 机器学习方法:开发新的学习方法。
- 机器学习理论: 探究机器学习方法的有效性和效率。
- 机器学习的应用: 利用模型解决实际问题。
2.机器学习的研究对象*
机器学习的研究对象,毋庸置疑是从数据出发的,提取数据特征,利用数据模型,发现数据中的规律。

我们来看一个例子,这个是Kag

本文旨在为初学者介绍机器学习的基础知识,包括机器学习的特点、研究对象、分类及其应用。机器学习涉及有监督学习(如分类、回归)、无监督学习(如聚类、降维)和强化学习。通过实例解释了如何利用数据训练模型并应用于实际问题,如拉面评分预测。此外,还探讨了机器学习在人脸识别、垃圾邮件检测等领域的应用。
最低0.47元/天 解锁文章
17万+

被折叠的 条评论
为什么被折叠?



