目录
引言
在日常办公和电脑使用中,我们经常会遇到一些重复性的任务或需要快速获取特定信息的情况。Python 作为一种强大而灵活的编程语言,可以用来编写各种小脚本,以自动化这些任务并提高工作效率。本文将介绍一些 Python 常用的数据处理脚本,帮助读者更好地利用 Python 解决实际问题。

数据处理脚本
一、CSV 文件数据处理
假设你有一个 CSV 文件,需要对其中的数据进行一些处理,比如提取特定列的数据或进行数据清洗。以下是一个示例脚本:
import pandas as pd
def process_csv(file_path):
df = pd.read_csv(file_path)
# 提取特定列的数据
column_data = df["column_name"]
# 进行数据清洗,例如去除空值
cleaned_data = column_data.dropna()
return cleaned_data
file_path = "path/to/your/csv/file.csv"
processed_data = process_csv(file_path)
print(processed_data)
这个脚本使用 pandas 库读取 CSV 文件,并进行特定的数据处理操作。
二、文本文件内容统计
如果你需要统计一个文本文件中的单词数量、行数等信息,可以使用以下脚本:
def count_words_and_lines(file_path):
with open(file_path, "r") as file:
lines = file.readlines()
word_count = 0
for line in lines:
words = line.split()
word_count += len(words)
return len(lines), word_count
file_path = "path/to/your/text/file.txt"
line_count, word_count = count_words_and_lines(file_path)
print(f"Lines: {line_count}, Words: {word_count}")
这个脚本打开一个文本文件,统计其中的行数和单词数量。
716

被折叠的 条评论
为什么被折叠?



