- 博客(606)
- 资源 (14)
- 收藏
- 关注
原创 tensorflow 零基础吃透:TensorFlow 稀疏张量(SparseTensor)的核心操作
本文详细讲解了TensorFlow稀疏张量(SparseTensor)的五大核心操作:加法、矩阵乘法、拼接、切片和元素级运算。稀疏张量不能直接使用密集张量的算子,必须通过tf.sparse包下的专用工具处理。文章通过示例代码演示了每种操作的实现方法,包括同形状稀疏张量相加、稀疏矩阵与密集矩阵相乘、沿指定轴拼接多个稀疏张量、切片提取子区域,以及对非零值进行元素级运算的两种方法(TF2.4+专用函数和老版本兼容方案)。每个操作都强调了关键注意事项,如形状匹配要求、索引顺序处理和空切片情况等,帮助开发者正确高效地
2025-12-16 15:17:52
276
原创 tensorflow 零基础吃透:创建 tf.sparse.SparseTensor 的核心方法
本文介绍了TensorFlow中创建tf.sparse.SparseTensor的两种核心方法:直接构造和从密集张量转换。直接构造需要指定非零值坐标(indices)、值(values)和密集形状(dense_shape);而tf.sparse.from_dense可自动从密集张量提取非零值生成稀疏张量。文章还提供了美观打印函数便于调试,并演示了稀疏张量与密集张量间的相互转换。关键注意事项包括数据类型要求、索引格式规范等,最后总结了核心操作函数及其用途,帮助开发者高效处理稀疏数据。
2025-12-16 14:43:21
404
原创 简化版滑块验证(仅 X 轴滑动 + 美化 UI)
摘要 本文介绍了一种简化版滑块验证系统的优化实现方案。该系统主要改进包括: 操作简化:去除缺口匹配要求,用户只需将滑块从左滑到最右侧即可完成验证; UI美化:采用渐变背景、磨砂玻璃效果、圆角设计和滑动动画等现代UI元素; 交互优化:滑动过程中显示进度条,松手后有明确的成功/失败动画反馈。 实现方案保持原有核心逻辑(轨迹校验、Nginx拦截、Redis存储),但大幅提升了用户体验。前端使用原生HTML+JS实现精美UI,后端采用Python Flask框架处理验证请求。该系统在保证安全性的同时,提供了更简洁友
2025-12-16 11:24:13
189
原创 tensorflow 零基础吃透:TensorFlow 稀疏张量(SparseTensor)的核心用法
TensorFlow稀疏张量(SparseTensor)是处理含大量零值数据的高效方案,通过仅存储非零值坐标和值来节省资源。文章详细介绍了SparseTensor的COO编码格式(包含indices、values和dense_shape三个核心组件)、基本使用方法(构造、属性访问、运算)及关键注意事项(索引顺序处理、显式零值避免等)。特别强调了稀疏张量适用于超稀疏数据(如NLP、CV领域),而密集数据则应使用普通张量。最后对比了SparseTensor与RaggedTensor的区别,并总结了稀疏张量的核心
2025-12-15 17:33:01
538
原创 tensorflow 零基础吃透:RaggedTensor 的底层编码原理
RaggedTensor采用"扁平存储+行分区"的编码结构,将不规则数据高效存储为扁平张量(values)和分区规则(row_partition)。核心原理包括四种行分区编码方式:row_splits(拆分点)、value_rowids(行索引)、row_lengths(行长度)和uniform_row_length(均匀长度),各适用于不同场景。对于多维不规则数据,通过嵌套RaggedTensor实现编码,其嵌套深度由ragged_rank表示。这种设计既保证了存储效率,又支持灵活的不
2025-12-15 17:00:30
779
原创 tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
本文详细讲解了TensorFlow中广播机制在不规则张量(RaggedTensor)中的应用。首先介绍了张量维度、不规则张量和广播目的三个基础概念。然后通过四个典型示例,逐步拆解广播的计算过程:包括补维度、扩维度和逐元素运算三个关键步骤。同时分析了广播失败的三种情况,指出维度大小不匹配是报错原因。最后总结了广播的四大核心规律:只补外层维度、仅复制大小为1的维度、不规则维度的兼容条件以及报错的唯一原因。掌握这些规律可以清晰理解广播在不规则张量中的运算逻辑。
2025-12-15 15:49:10
405
原创 tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制
摘要:本文深入解析TensorFlow中RaggedTensor的不规则形状与广播机制。RaggedTensor通过静态形状(TensorShape)和动态形状(DynamicRaggedShape)描述其可变长度特性,静态形状中不规则维度恒为None,动态形状则记录实际行长度。广播机制继承普通Tensor规则但针对不规则维度特殊处理,允许标量、均匀维度为1的Tensor与RaggedTensor进行运算。文章通过多个代码示例演示了形状获取、动态形状操作及广播规则的具体应用场景。(150字)
2025-12-15 15:08:54
401
原创 滑块验证完整实现教程(前端 + 后端 + Nginx 集成)
本文提供了一个完整的滑块验证系统实现方案,包含前端、后端和Nginx集成三个部分。前端负责渲染滑块和采集用户滑动轨迹,后端校验轨迹真实性并生成短期有效token,Nginx拦截业务请求验证token有效性。文章详细介绍了核心原理和实现步骤,包括环境准备、前端滑块渲染与轨迹采集代码示例。该系统通过分析滑动特征(如速度波动、加速度)来区分真人操作和机器行为,有效防止自动化攻击。
2025-12-15 11:22:54
430
原创 tensorflow 零基础吃透:RaggedTensor 的评估(访问值的 4 种核心方式)
本文介绍了评估RaggedTensor的4种核心方法:1)转嵌套Python列表(to_list()),适合快速查看数据结构;2)转嵌套NumPy数组(numpy()),兼容NumPy生态;3)拆解底层分量(values/row_splits),用于深度处理和序列化;4)Python索引取值,精准访问单个行/元素。每种方法各具优势,覆盖从快速调试到底层开发的全场景需求。文章通过示例代码详细解析了每种方法的实现原理、输出结果和使用场景,并提供了关键避坑指南,帮助开发者根据实际需求选择最佳评估方式。
2025-12-12 17:51:55
892
原创 tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
本文详细介绍了RaggedTensor与TensorFlow其他张量类型(密集张量和稀疏张量)之间的转换方法。主要内容包括: RaggedTensor转密集张量:使用to_tensor()方法填充默认值,适用于需要固定形状输入的场景 密集张量转RaggedTensor:使用from_tensor()方法剔除填充值,恢复可变长度结构 RaggedTensor转稀疏张量:使用to_sparse()方法仅存储非空元素,节省内存 稀疏张量转RaggedTensor:使用from_sparse()方法转换为可变长度结
2025-12-12 17:26:19
938
原创 tensorflow 零基础吃透:RaggedTensor 的索引与切片(规则 + 示例 + 限制)
本文详细介绍了TensorFlow中RaggedTensor的索引与切片操作规则。核心原则是:允许对均匀维度(固定行数)进行任意索引/切片,允许对不规则维度(可变长度行)进行切片操作,但禁止对不规则维度做固定位置索引(如取所有行的第3个元素)。文章通过二维和三维RaggedTensor的示例演示了合法操作,并解释了禁止固定列索引的原因(处理逻辑不明确)。最后提供了将RaggedTensor转为密集张量后再索引的替代方案。总结强调RaggedTensor的设计既兼容Python习惯,又规避了不规则维度固定索引
2025-12-12 16:58:54
934
原创 tensorflow 零基础吃透:RaggedTensor 的重载运算符
用法和普通Tensor完全一致,学习成本低;保留RaggedTensor的可变长度结构,无冗余补0,计算效率高;支持广播规则,覆盖绝大多数基础数学/比较场景。只要普通Tensor能做的运算符操作,RaggedTensor都能做,且结果保持行长度不变。
2025-12-12 16:40:33
814
原创 tensorflow 零基础吃透:SavedModel 与 RaggedTensor 的结合使用
摘要:本文介绍了如何在TensorFlow中将RaggedTensor与SavedModel格式结合使用。主要内容包括:1) 通过Keras模型和自定义tf.Module模型两种方式保存/加载支持RaggedTensor的模型;2) 关键实现步骤,如预构建具体函数适配RaggedTensor输入;3) 版本兼容性说明,TF 2.3+原生支持而旧版本需手动拆解RaggedTensor。文章通过代码示例演示了完整流程,并分析了运行结果和注意事项,帮助开发者正确处理变长序列数据的模型保存与部署问题。
2025-12-12 16:20:03
861
原创 如何区分什么场景下用机器学习,什么场景下用深度学习
小数据、明特征、省资源 → 机器学习;大数据、暗特征、高精度 → 深度学习。作为TensorFlow初学者,建议先从机器学习入手(比如用逻辑回归做鸢尾花分类、用随机森林做房价预测),理解“特征工程”和“算法原理”后,再用TensorFlow做简单的深度学习任务(比如用CNN做MNIST手写数字识别),循序渐进就能分清场景啦!
2025-12-12 15:38:27
492
原创 tensorflow 零基础吃透:tf.function 与 RaggedTensor 的结合使用
摘要:本文介绍了TensorFlow中tf.function与RaggedTensor的结合使用方法。tf.function能将Python函数编译为计算图,提升执行效率,而RaggedTensor可以透明兼容tf.function,无需修改函数逻辑。文章通过三个场景演示:1) tf.function对RaggedTensor的透明支持;2) 使用tf.RaggedTensorSpec指定输入签名;3) 具体函数(Concrete Function)与RaggedTensor的高效结合。关键点包括:TF自动
2025-12-12 15:16:08
827
原创 tensorflow 如何使用 tf.RaggedTensorSpec 来创建 RaggedTensor
文章摘要:tf.RaggedTensorSpec 并非直接创建 RaggedTensor 的工具,而是用于描述其规格(形状、数据类型、不规则维度数量)。创建 RaggedTensor 需使用 tf.ragged.constant 或 tf.RaggedTensor.from_tensor 等构造器,并确保符合 Spec 定义的约束。主要步骤包括:1)定义目标规格;2)按规格创建 RaggedTensor;3)验证匹配性;4)在 tf.function 等场景中应用 Spec 约束。注意避免混淆规格描述与张量
2025-12-12 14:59:43
912
原创 tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
tf.RaggedTensorSpec是TensorFlow中描述不规则张量(RaggedTensor)规格的类,用于定义输入签名。它通过shape、dtype和ragged_rank三个参数指定张量约束:shape定义整体形状框架,dtype指定数据类型,ragged_rank表示不规则维度数量。例如,shape=[2,None,None]表示外层固定2个元素,内层可变;ragged_rank=2表明第1、2维是不规则维度。该规格可用于tf.function输入签名、Keras模型输入层和SavedMod
2025-12-12 14:58:55
245
原创 tensorflow 零基础吃透:tf.data 中 RaggedTensor 的核心用法(数据集流水线)
本文详细介绍了TensorFlow中tf.data.Dataset与RaggedTensor结合的四大核心应用场景。主要内容包括:1)使用RaggedTensor构建数据集,保留可变长度数据的原始结构;2)批处理与取消批处理操作对RaggedTensor的特殊处理方式;3)将非规则张量转换为Ragged批处理的技术。通过代码示例和结果解读,展示了RaggedTensor在处理可变长度数据时的优势——无需补零,保持数据原生结构,提高处理效率。文章还对比了Ragged批处理与传统密集张量批处理的差异,突出了Ra
2025-12-11 17:29:13
958
原创 tensorflow 零基础吃透:RaggedTensor 在 Keras 和 tf.Example 中的实战用法 (补充)
为什么原代码报错?LSTM层不支持直接处理RaggedTensor的内部不规则维度,仅Input/Embedding层原生支持RaggedTensor;修正逻辑:RaggedTensor → 补0密集张量 + Mask(通过让LSTM忽略补0),既适配LSTM输入要求,又保留“只处理有效元素”的核心逻辑;关键API::RaggedTensor转补0密集张量;:生成有效元素Mask;:自动传递Mask给后续序列层(LSTM/GRU等)。
2025-12-11 16:10:06
708
原创 tensorflow 零基础吃透:RaggedTensor 在 Keras 和 tf.Example 中的实战用法
本文详细介绍了RaggedTensor在Keras和tf.Example中的实战应用。主要内容包括: Keras中使用RaggedTensor: 处理可变长度句子输入(如LSTM模型判断疑问句) 无需补零,直接保留原始长度 关键步骤:字符串切分→哈希编码→构建支持RaggedTensor的Keras模型(含Embedding和LSTM层) tf.Example解析: 将protobuf格式的可变长度特征转换为RaggedTensor 使用tf.io.RaggedFeature定义特征规范 处理不同样本的特征
2025-12-11 16:06:49
693
原创 tf.nn.relu 核心解析
摘要:tf.nn.relu是TensorFlow中实现ReLU激活函数的核心接口,通过max(0,x)逐元素计算,为神经网络引入非线性。其特点包括计算高效、缓解梯度消失、稀疏激活等,但存在"死亡ReLU"问题。广泛应用于CNN和DNN的隐藏层,是深度学习中最常用的激活函数之一。
2025-12-11 15:06:57
130
原创 LSTM 模型 简要解析
LSTM(长短期记忆网络)是改进型循环神经网络,通过遗忘门、输入门和输出门解决传统RNN的长序列梯度问题,能选择性保留关键信息。其门控机制可精准控制信息流动,在文本处理、时间序列预测等任务中表现优异,比RNN更稳定且擅长捕捉长距离依赖关系。
2025-12-11 14:49:08
155
原创 tensorflow 零基础吃透:不规则张量(RaggedTensor)vs 稀疏张量(SparseTensor)
本文对比了TensorFlow中的RaggedTensor和SparseTensor两种张量类型。RaggedTensor用于处理可变长度/嵌套结构数据,存储无冗余空位,运算按实际元素数计算;SparseTensor则用于压缩存储固定形状但大部分值为空的数据,运算等价于密集张量。通过收纳工具比喻和实例演示(如concat和reduce_mean运算),展示了二者的本质差异:RaggedTensor解决"长度不一致"问题,SparseTensor解决"大部分值为空"问题
2025-12-10 18:06:17
922
原创 tensorflow 零基础吃透:不规则维度 vs 均匀维度(RaggedTensor 核心概念)
摘要:本文深入解析RaggedTensor的核心概念,重点区分不规则维度和均匀维度。均匀维度指同维度下所有切片长度相同,而不规则维度则长度各异。RaggedTensor的最外层维度必为均匀维度,内层可混合规则/不规则维度。文章介绍了三种形状表示方法:逻辑写法用括号标记不规则维度,shape属性用None表示不规则维度,bounding_shape()则显示补全后的最小普通张量形状。通过切蛋糕比喻和多个实例,帮助读者掌握RaggedTensor的维度规则、形状表示及秩的计算方法,并附有练习验证理解程度。
2025-12-10 17:21:44
320
原创 理解 axis(轴)的核心含义
核心摘要: axis=N 表示沿张量的第N个维度操作(从外到内编号)。axis=1 的语义随张量维度变化: 二维(表格):列方向(每行内部操作) 三维(序列数据):样本内部的元素方向(如拼接词向量) 四维(图像):高度/深度方向 判断技巧:先解析shape的业务含义,axis=1始终对应第二个维度的语义(如“每行的列数”“每个句子的词数”)。实际代码中,axis=1常用于合并同一样本的不同特征(如词与词对向量)。
2025-12-10 16:51:33
533
原创 零基础吃透 RaggedTensor 文本特征提取示例(通俗版)
本文通过通俗易懂的方式讲解了如何使用RaggedTensor处理变长文本特征提取。主要内容包括: 核心思想:处理长度不一的句子,既要保留单词语义,又要捕捉词间搭配,最终输出固定长度向量。 关键技术: 使用RaggedTensor原生支持变长序列,避免补零 通过哈希桶将单词转为编号 创建可训练的嵌入表将单词映射为向量 添加首尾标记并构造二元词对捕捉上下文关系 关键步骤: 定义变长句子输入 创建嵌入表 计算一元词嵌入 添加首尾标记 构造二元词对 该方法能有效处理自然语言中常见的变长文本,为后续文本分类、搜索等任
2025-12-10 15:22:28
692
原创 RaggedTensor 处理可变长度文本序列的核心实战场景
本文演示了使用 RaggedTensor 处理变长文本序列 的完整流程。通过为3个不同长度的句子构建"一元词+二元词"的联合嵌入,最终输出每个句子的4维平均向量。关键步骤包括:定义RaggedTensor输入、创建嵌入表、计算一元/二元词嵌入、合并特征并求均值。全程利用RaggedTensor原生支持变长序列的特性,无需填充补零,保持计算高效准确。该方案既保留单词语义又捕捉上下文关系,适用于文本分类等任务,展现了RaggedTensor在处理非规整文本数据时的独特优势。
2025-12-10 15:21:49
1042
原创 tensorflow不规则张量(RaggedTensor)的存储约束
摘要:RaggedTensor允许同一维度长度可变,但必须满足两个硬性约束:1) 所有元素数据类型必须统一(如全为字符串或整数);2) 嵌套深度(秩)必须一致(如全为二维或三维)。合法示例如二维字符串或三维整数张量,即使各维度长度不同。非法情况包括混合数据类型(如字符串+整数)或混合嵌套深度(如一维+二维),会触发ValueError。RaggedTensor的"不规则"仅指维度长度可变,类型和结构仍需统一以保证运算可行性。(150字)
2025-12-09 17:45:02
410
原创 TensorFlow 不规则张量(RaggedTensor)的两种核心构造方式
摘要:本文介绍了TensorFlow中构造不规则张量(RaggedTensor)的两种方法。第一种是直接使用tf.ragged.constant,适用于已有嵌套列表/数组的情况,系统会自动识别可变长度结构。第二种是工厂方法,通过扁平值列表配合行分区规则(如行号、行长度或起止索引)来构建,适用于数据扁平存储的场景。文中详细拆解了两种方法的实现逻辑、适用场景和具体示例,并比较了它们的优缺点:直接法简单直观但依赖嵌套数据,工厂法更灵活但需额外定义分区规则。最后强调了系统自带的校验机制和性能优化选项。
2025-12-09 17:34:09
712
原创 TensorFlow 中不规则张量(RaggedTensor)
摘要:TensorFlow中的不规则张量(RaggedTensor)专门处理非均匀长度数据,允许同一维度下元素长度不一致(如[[3,1,4,1], [], [5,9,2]])。它适用于可变长度特征、批量序列、分层数据等场景,支持100+原生运算(数学、数组、字符串操作等)。关键特性包括Python风格索引、算术重载、自定义转换,并能与Python列表/NumPy互转。RaggedTensor解决了普通张量必须固定形状的限制,无需填充即可保留原始数据结构,兼容大多数TF运算,学习成本低。
2025-12-09 17:08:08
744
原创 TensorFlow tf.GradientTape(梯度带)的高级用法指南
本文档详细介绍了 TensorFlow tf.GradientTape 的高级用法,包括梯度计算的精细控制、复杂导数求解和自定义梯度逻辑。主要内容涵盖: 梯度记录控制:通过 stop_recording、reset 和 tf.stop_gradient 选择性记录运算,减少计算开销。 自定义梯度:使用 tf.custom_gradient 修改梯度逻辑,如梯度裁剪,并支持保存到 SavedModel。 多梯度带使用:同时创建多个 tape 独立计算不同梯度,互不干扰。 高阶梯度:通过嵌套 tape 计算二阶
2025-12-09 16:07:27
865
原创 TensorFlow 高级自动微分
本文介绍了TensorFlow高级自动微分的核心用法,重点围绕tf.GradientTape的四种高级场景展开:1)通过嵌套tape计算高阶导数;2)利用TensorFlow控制流(如tf.cond)实现动态路径的梯度跟踪;3)使用tf.stop_gradient阻断特定运算的梯度传播;4)计算向量对向量导数的雅可比矩阵。所有示例均提供完整可执行代码和详细解释,涵盖从二阶导数到多变量函数微分的实际应用场景,帮助开发者处理优化算法、物理模拟等复杂微分需求。
2025-12-09 14:36:00
1131
原创 什么是Hessian矩阵
本文介绍了Hessian矩阵的概念、计算方法和应用。Hessian矩阵是多元函数的二阶偏导数矩阵,用于描述函数的曲率和梯度变化率。文章通过通俗比喻解释其与梯度的关系,给出数学定义和计算实例,并演示TensorFlow的实现方法。Hessian矩阵在牛顿法优化、极值判断和神经网络曲率分析中有重要应用。核心要点是:Hessian矩阵等于梯度的雅可比矩阵,是二阶优化算法的数学基础,可通过GradientTape嵌套求导或jacobian方法计算。
2025-12-09 11:23:18
854
原创 TensorFlow 中雅可比矩阵计算方式
摘要:tape.jacobian(y, x)是TensorFlow 2.x中最稳定通用的雅可比矩阵计算方法,作为GradientTape实例方法不受顶层API版本问题影响。该方法支持任意维度输入输出,对常量需显式watch而变量自动跟踪,无需持久化tape。相比顶层API封装更底层稳定,是解决版本兼容问题的最优方案,可无缝适配批量计算等场景。
2025-12-05 17:31:09
368
原创 雅可比矩阵(Jacobian Matrix)
摘要: 雅可比矩阵是多元函数的偏导数矩阵,用于描述多输入多输出函数的局部变化率。它将每个输出对每个输入的偏导数组织成m×n矩阵(m输出,n输入),是梯度的多维扩展。通过实例计算(如2输入2输出函数)和TensorFlow代码演示(tf.GradientTape),可直观理解其结构。在机器学习中,雅可比矩阵支撑反向传播、优化算法(如牛顿法)及生成模型(VAE/GAN),是自动微分和局部线性化的核心工具。简言之,雅可比矩阵是“多输出函数的导数表格”,梯度是其单行特例。
2025-12-05 16:24:18
682
原创 TensorFlow 基础训练循环(简化版 + 补全代码)
模型是,用tf.Module封装权重w和偏置b(方便管理参数、后续保存)。# 初始化参数(w=5.0,b=0.0,原文固定初始化,实际中常用随机初始化)self.w = tf.Variable(5.0) # 权重(要学习的参数)self.b = tf.Variable(0.0) # 偏置(要学习的参数)# 模型的计算逻辑:输入x,输出预测值y_pred = w*x + b# 创建模型实例# 查看模型参数(tf.Module自动收集变量)
2025-12-05 10:47:22
709
原创 tensorflow Keras 模型的保存与加载
摘要:Keras模型保存与加载方法相比tf.Module更简洁高效。通过model.save()可保存模型计算图、权重及训练配置(需先compile),使用tf.keras.models.load_model()加载时无需原始类定义即可恢复完整模型。Keras自动处理权重恢复,且支持保存优化器状态实现续训功能,但未编译模型加载时会警告需手动compile才能训练。自定义层需通过custom_objects参数指定。Keras整合了底层SavedModel特性与高层训练功能,显著简化了模型保存、共享和部署流程
2025-12-04 15:23:10
1044
原创 独热编码”(One-Hot Encoding)
独热编码(One-Hot Encoding)是机器学习中处理类别型特征的关键技术,通过将离散类别转换为互斥的二进制向量,消除虚假顺序关系。其核心原理是为每个类别创建新特征,样本对应类别标记为1,其余为0。需注意高基数类别可能导致维度爆炸,可通过合并低频类别或使用特征哈希解决。对于线性模型,应删除一个哑变量以避免共线性问题。Python中可用Pandas的get_dummies或Scikit-learn的OneHotEncoder实现。与标签编码不同,独热编码适用于无顺序关系的名义特征,能更好地保持类别独立性
2025-12-04 15:15:54
662
原创 tensorflow 衔接 tf.Module 讲解 Keras 的核心设计
本文介绍了Keras框架的核心设计理念及其与TensorFlow底层模块tf.Module的关系。主要内容包括: 继承关系:Keras的Layer和Model均继承自tf.Module,保留了变量收集、子模块管理等底层功能,同时增加了高层特性如标准化生命周期、训练工具等。 Keras层实现: 基础层通过继承tf.keras.layers.Layer实现 使用build()方法延迟变量创建,实现更灵活的输入形状处理 支持training参数、配置保存等实用功能 Keras模型构建: 继承tf.keras.Mo
2025-12-04 11:16:59
601
原创 TensorFlow 模型的 “完整保存与跨环境共享” 方案
本文介绍了TensorFlow模型的完整保存与跨环境共享方案。通过tf.function将模型计算逻辑固化为计算图,再以SavedModel格式保存计算图、权重和元数据,实现脱离原始Python代码的环境部署。关键步骤包括:用@tf.function装饰模型调用方法生成计算图,通过TensorBoard可视化验证计算图结构,使用tf.saved_model.save保存完整模型。与仅保存权重的检查点相比,SavedModel支持跨语言调用和无需原始代码的部署,适用于服务器、边缘设备等场景。
2025-12-03 16:47:57
901
chrome插件,修改对应URL的http请求的header头,包括ajax请求
2024-06-25
GeoIP_1.4.8.tar.gz 地理信息系统,资源包含geoIP_1.4.8的所有资源。
2021-01-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅