自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(100)
  • 收藏
  • 关注

原创 铜镍矿元素检测:基于YOLOv8的矿物元素识别与定位实战

摘要: 本文提出基于YOLOv8的铜镍矿元素快速检测方案,针对传统光谱检测方法周期长、成本高等痛点,通过构建5000张矿物图像数据集(含七种关键元素),结合图像预处理与数据增强技术(CLAHE、CutMix等)优化模型性能。改进的YOLOv8引入注意力机制与多尺度特征融合,[email protected]提升至0.923,检测速度达28ms/张,较传统方法快180倍。系统部署采用ONNX量化与异步批处理,实际应用中可支持矿产勘探、选矿优化等场景,未来拟扩展至多模态检测。实验证明该方案兼具高效性与实用性,为矿业数字化提供新思路

2025-11-18 11:52:44 483

原创 计算机视觉坐姿检测分类YOLOv10N_SOEP_PST原创实现

本文提出了一种基于YOLOv10N的坐姿检测系统,结合SOEP和PST技术实现高效准确的人体坐姿分析。系统采用YOLOv10N轻量级模型作为基础架构,通过数据集构建、数据增强等技术提升模型泛化能力。关键创新点包括:1)集成SOEP技术提取躯干倾斜、膝盖弯曲等姿态特征;2)应用PST技术进行姿态相似性转换;3)优化数据预处理流程,包含几何变换、光度调整等增强方法。实验表明,该系统在资源受限设备上实现了实时准确的坐姿分类,为健康监测、智能办公等应用提供了有效解决方案。

2025-11-18 11:21:30 1038

原创 基于YOLO11-SEG的驾驶员睡意检测模型开发与应用

本文提出了一种基于YOLO11-SEG模型的驾驶员睡意检测系统。系统采用三层架构设计,包含数据采集层、算法处理层和应用层。通过构建包含三种疲劳状态的标注数据集,并应用多种数据增强技术提高模型泛化能力。YOLO11-SEG模型结合CSPDarknet53骨干网络和U-Net结构,实现了高精度的眼部状态分割。系统采用多级预警机制,在实验室和实际道路环境中分别达到96.3%和92.7%的准确率。实验表明该系统具有实时检测能力(65ms/帧),可有效预防疲劳驾驶事故。未来将进一步优化模型轻量化和跨平台部署能力。

2025-11-18 10:43:33 813

原创 无人机避障物体检测——基于Mask-RCNN与HRNet的改进模型实现

本文提出一种改进的Mask-RCNN与HRNet融合模型,用于无人机避障物体检测。该模型通过HRNet特征提取优化、动态RoI采样和轻量化设计,显著提升了检测性能。实验表明,改进模型在自建数据集上mAP达到85.7%,FPS提升至18帧,满足实时避障需求。消融实验验证了各改进点有效性,HRNet增强特征提取贡献最大。系统部署采用NVIDIA Jetson平台,通过模型量化与TensorRT加速实现高效推理。该方案解决了传统方法精度不足、实时性差等问题,为无人机安全飞行提供了可靠的技术保障。

2025-11-18 10:12:05 791

原创 YOLO11改进实战:基于EUCB-SC的驾驶员饮水行为识别系统

基于改进YOLO11-EUCB-SC的驾驶员饮水行为识别系统 摘要:本文提出了一种改进的YOLO11目标检测模型,结合EUCB-SC(Enhanced Unified Contextual Block with Spatial-Channel Attention)注意力机制,用于实时识别驾驶员饮水行为。系统通过构建包含5000张标注图像的驾驶行为数据集,引入EUCB模块融合通道和空间注意力,设计SC模块增强空间上下文感知能力,并采用轻量化策略优化计算效率。实验结果表明,改进后的模型在[email protected]指标上达到

2025-11-18 09:34:38 562

原创 菠萝蜜果实目标检测_yolo11-C3k2-ConvFormer改进

近年来,Transformer架构在计算机视觉领域展现出强大的特征提取能力,其自注意力机制能够有效捕捉图像中的长距离依赖关系。C3k2-ConvFormer作为一种结合了卷积神经网络和Transformer优势的混合架构,在特征提取方面表现出色。混合注意力机制:结合了卷积操作的自适应性和Transformer的全局注意力,能够同时捕捉局部特征和全局依赖关系。多尺度特征融合:通过多尺度卷积核设计,能够有效处理不同大小的菠萝蜜目标。轻量化设计。

2025-11-17 21:27:39 949

原创 如何使用yolo11-C3k2-MambaOut-UniRepLK模型实现历史文化名城Filarmoniya建筑检测识别

本文介绍了一种专为历史文化建筑检测设计的yolo11-C3k2-MambaOut-UniRepLK深度学习模型。该模型整合了YOLOv11主干网络、C3k2注意力模块、MambaOut特征融合和UniRepLK关键点检测等创新技术,能够高效识别Filarmoniya建筑群的各类元素。文章详细阐述了数据准备、模型训练、评估指标和性能优化策略,通过消融实验验证了各模块的有效性。该模型在建筑普查、保护监测等场景展现了优异性能,为文化遗产数字化保护提供了有力工具。未来可进一步探索多模态融合和3D重建等扩展应用。

2025-11-17 20:52:18 409

原创 基于YOLO11的智能家庭安防危险物品检测系统_3

基于YOLO11的危险物品检测系统研究 本文介绍了基于YOLO11的智能家庭安防危险物品检测系统。首先回顾了目标检测算法发展历程,包括滑窗检测、区域检测等传统方法,重点分析了YOLO系列算法(v1-v4)的核心思想和技术演进。YOLOv1将检测转化为回归问题,v3引入多尺度检测和Anchor机制,v4则优化了数据增强、激活函数和损失函数。文章详细阐述了YOLO算法的边界框表示、Darknet配置文件解析、特征融合机制等技术细节,并提供了PyTorch和Darknet框架下搭建YOLO平台的具体方法(包括GP

2025-11-17 20:18:01 797

原创 基于卫星图像的变电站目标检测:改进YOLO11-C3k2-Faster模型详解

YOLO(You Only Look Once)系列算法是一种单阶段目标检测算法,以其速度快、精度高的特点在目标检测领域得到广泛应用。🚀 从YOLOv1到YOLOv11,算法不断进化,在保持检测速度的同时,不断提高检测精度。YOLO系列算法的核心思想是将目标检测问题转化为回归问题,直接从图像中预测边界框和类别概率。检测速度快:单次前向传播即可完成检测全局上下文信息:能够充分利用图像的全局上下文信息端到端训练:无需复杂的后处理步骤。

2025-11-17 19:44:41 1051

原创 YOLOv8结合AIFIRepBN改进火灾检测识别系列_1

本文提出了一种基于YOLOv8和AIFIRepBN改进的火灾检测方法。传统火灾检测技术存在精度低、误报率高等问题,而深度学习技术能有效提升检测性能。YOLOv8作为高效目标检测模型,结合AIFIRepBN的注意力机制和重参数化技术,显著增强了特征提取能力。系统采用模块化设计,包括数据采集、预处理、模型推理等模块,支持实时火灾检测。通过精心准备火灾图像数据集并进行数据增强,模型训练效果得到优化。实验表明,该方法在检测精度和速度上优于传统方法,适用于工业设施、森林防火等多种场景。

2025-11-17 19:18:16 1034

原创 基于YOLO11-EMBSFPN-SC的肉桂叶片病害识别与检测系统

本文提出了一种基于改进YOLO11-EMBSFPN-SC模型的肉桂叶片病害检测系统,通过引入EMBSFPN特征融合网络和SC-Head检测头,显著提升了检测精度。实验表明,该系统在复杂背景下对健康叶片和叶斑病两类目标的检测[email protected]达到87.1%,较YOLOv10提升2.8%。系统采用Darknet53骨干网络提取特征,结合多尺度注意力机制和空间约束优化,有效解决了小目标和重叠目标的检测难题。虽然计算复杂度略有增加(FPS为41),但仍满足实时检测需求,为肉桂病害智能诊断提供了可靠解决方案。

2025-11-17 18:47:16 1025

原创 YOLOv5-MultiSEAMHead:烟草叶部病害检测与识别模型改进_1

摘要:本文提出了一种改进的YOLOv5-MultiSEAMHead模型用于烟草叶部病害检测。针对传统检测方法效率低、YOLOv5在复杂场景下检测精度不足等问题,研究通过引入MultiSEAMHead结构和SEAM注意力模块,有效提升了多尺度目标检测能力。实验采用1000张烟草病害图像,改进模型mAP达0.874,比原始YOLOv5提高3.2%,在小目标检测上召回率提升5.8%。研究还设计了针对性的数据增强策略和自适应学习率优化方法,显著提高了模型性能。该方法为农业智能化提供了有效的技术方案,未来可进一步探索

2025-11-17 18:09:13 571

原创 基于YOLOv5-RepHGNetV2的火灾与吸烟行为检测,识别火焰烟雾打火机等关键元素原创

本文提出了一种基于YOLOv5-RepHGNetV2的火灾与吸烟行为检测系统。该系统采用RepHGNetV2作为骨干网络,结合HG-Block多分支结构和RepVGG风格的重参数化技术,实现高效的特征提取和实时检测。针对火灾与吸烟检测任务的特点,详细阐述了数据集构建、模型训练优化及部署策略。实验结果表明,该系统在保持高精度的同时具有较低计算复杂度,适用于边缘设备部署,能够有效识别火焰、烟雾等复杂视觉特征,为公共场所的火灾预防和安全监测提供了一种高效的解决方案。

2025-11-17 17:34:35 765

原创 基于YOLO11-C3k2-ConverseB的乌德琴等传统民族弹拨乐器自动检测与识别系统

本文提出了一种基于YOLO11-C3k2-ConverseB架构的传统民族弹拨乐器自动检测系统,专门针对乌德琴等10种乐器进行高精度识别。系统采用动态卷积和多尺度特征融合技术,在复杂背景下仍保持94.6%的F1值。实验表明,该系统在mAP(0.934)和推理速度(10.2ms)上优于主流方法。应用场景涵盖文化遗产保护、音乐教育和表演分析。未来将探索模型轻量化和多模态融合技术,扩展至更多乐器类型。系统为民族音乐数字化保护提供了有效的技术支持。

2025-11-17 16:58:05 753

原创 YOLOv10n-LSDECD:塔式起重机关键部件智能识别新方案

在建筑行业智能化转型的背景下,塔式起重机作为关键设备,其安全运行直接关系到工程质量和人员安全。本文提出了一种基于YOLOv10n-LSDECD的塔式起重机关键部件智能识别方案,通过轻量化模型设计、一致性分配策略和预测感知损失函数,实现了对塔式起重机关键部件的高精度、实时检测。实验表明,该方案在保持高精度的同时,显著降低了计算复杂度,适用于边缘设备部署,为塔式起重机的智能运维提供了有力支撑。关键词: 塔式起重机,关键部件识别,YOLOv10,轻量化模型,实时检测。

2025-11-17 16:29:01 683

原创 山羊检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Cabras”的数据集,以改进YOLOv8的山羊检测系统。该数据集专门针对山羊(cabra)及其相关类别(dw)进行了精心构建,旨在提升计算机视觉算法在农业和动物监测领域的应用效果。数据集的类别数量为2,具体包括“cabra”和“dw”,这两个类别的选择反映了我们对山羊检测任务的关注和需求。“Cabras”数据集的构建过程充分考虑了山羊在自然环境中的多样性和复杂性。数据集中包含了大量的图像样本,这些样本来源于不同的地理位置和气候条件,确保了数据的多样性和代表性。

2024-10-08 13:17:31 1576

原创 表面缺陷检测系统源码分享

数据集信息展示在现代工业生产中,表面缺陷的检测是确保产品质量和延长使用寿命的重要环节。为了提升表面缺陷检测系统的准确性和效率,研究者们不断探索和改进现有的检测算法。为此,本研究采用了名为“brightness”的数据集,旨在训练和优化YOLOv8模型,以实现更为精准的表面缺陷检测。“brightness”数据集专注于五种主要的表面缺陷类型,分别为:Chipping(剥落)、Dirt(污垢)、Pitting(凹坑)、Rusting(生锈)和ThermalCracking(热裂纹)。

2024-10-07 21:00:41 1684

原创 饮料瓶识别系统源码分享

数据集信息展示在本研究中,我们使用了名为“Bebidas_varias”的数据集,以改进YOLOv8的饮料瓶识别系统。该数据集专门针对饮料瓶的识别任务,包含了22个不同类别的饮料瓶样本。这些类别涵盖了多种流行的饮料品牌,具有广泛的代表性和多样性,为训练和测试模型提供了丰富的样本。

2024-10-07 16:59:35 1614

原创 地图箭头方向检测系统源码分享

数据集信息展示在现代计算机视觉领域,目标检测技术的不断进步为多种应用场景提供了强有力的支持,尤其是在交通管理和智能驾驶系统中。为此,我们构建了一个专门用于训练和改进YOLOv8模型的“ArrowDetection”数据集,旨在提高地图箭头方向检测的准确性和效率。该数据集的设计充分考虑了不同方向箭头的多样性与复杂性,确保能够有效地训练出具有良好泛化能力的检测模型。

2024-10-07 13:54:20 1446

原创 农业机械检测系统源码分享

数据集信息展示在现代农业生产中,智能化技术的应用正逐渐成为提升生产效率和降低劳动成本的重要手段。为了实现这一目标,开发一个高效的农业机械检测系统显得尤为重要。为此,我们采用了名为“AgriVehicle”的数据集,以改进YOLOv8模型在农业机械检测中的表现。该数据集专门针对农业机械的多样性进行了精心设计,涵盖了七个主要类别,分别是无人机、收割机、旋耕机、移栽机、小型拖拉机、割草机和拖拉机。这些类别不仅代表了现代农业中常见的机械设备,还反映了不同作业环节的需求。

2024-10-02 13:13:14 1292

原创 仪器数码管数字识别系统源码分享

数据集信息展示在本研究中,我们使用了名为“7Segment”的数据集,以支持对YOLOv8模型的改进,旨在提升仪器数码管数字识别系统的性能。该数据集专门设计用于数字识别任务,包含了从0到9的十个类别,具体类别列表为:‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’。这些类别涵盖了数字识别的基本需求,能够有效地支持多种应用场景,包括但不限于仪器仪表的读数、智能家居设备的状态显示以及工业自动化中的实时监控。

2024-10-01 20:48:31 1207

原创 螺钉生产线缺陷检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“yolov7 all photo”的数据集,以支持对改进YOLOv8模型在螺钉生产线缺陷检测系统中的应用。该数据集专门针对螺钉生产过程中可能出现的缺陷进行了精心的标注和整理,旨在为深度学习模型提供高质量的训练数据。数据集的设计考虑到了螺钉生产线的实际情况,涵盖了各种可能的缺陷类型,尽管在本次研究中,我们主要聚焦于单一类别的缺陷检测。数据集中包含的类别数量为1,具体类别为“defect”,这表明数据集的主要目标是识别和分类螺钉生产过程中出现的缺陷。

2024-09-28 12:58:34 1606

原创 小麦生长状态检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Wheat Pascal VOC”的数据集,以支持改进YOLOv8的小麦生长状态检测系统的训练和评估。该数据集专门针对小麦生长过程中的不同状态进行了标注,旨在为农业领域的智能监测提供可靠的数据基础。数据集的类别数量为四个,具体包括:发芽状态(germinant)、赤霉素处理状态(gibberellic)、霉变状态(mildew)以及正常生长状态(normal)。这些类别的划分不仅反映了小麦在生长过程中的不同生理状态,也为后续的图像识别和分类任务提供了丰富的样本。

2024-09-28 10:38:19 1514

原创 服装分类检测系统源码分享

数据集信息展示在现代计算机视觉领域,尤其是在服装分类和检测的任务中,数据集的质量和多样性直接影响到模型的性能和泛化能力。本研究所采用的数据集名为“clothes classfy”,该数据集专门设计用于训练和改进YOLOv8模型,以实现高效的服装分类检测。该数据集包含8个不同的服装类别,分别为Tshirt、dress、jacket、pants、shirt、short、skirt和sweater。这些类别涵盖了日常生活中常见的服装类型,能够为模型提供丰富的样本,以便更好地学习和识别各种服装的特征。

2024-09-27 21:51:11 2032

原创 易燃气体检测系统源码分享

数据集信息展示在现代安全监测系统中,易燃气体的检测尤为重要,尤其是在工业和家庭环境中。为此,我们构建了一个专门用于训练改进YOLOv8的易燃气体检测系统的数据集,命名为“butane_gas”。该数据集的设计旨在提高对多种易燃物品的识别能力,确保在潜在危险环境中能够及时发出警报,从而保障人们的生命安全和财产安全。

2024-09-27 19:31:04 1319

原创 外国名人面孔识别系统源码分享

数据集信息展示在本研究中,我们使用了名为“all+me”的数据集,以训练和改进YOLOv8模型,旨在实现对外国名人面孔的高效识别。该数据集包含58个类别,涵盖了众多知名人士,提供了丰富的面孔图像,适合用于面部识别任务。每个类别代表一位外国名人,数据集中的类别名称包括政治家、运动员、演员和其他公众人物,反映了多样化的社会文化背景。

2024-09-27 17:06:58 1346

原创 仓库场景物品检测分类系统源码分享

数据集信息展示在现代仓库管理和物流行业中,物品检测与分类的自动化已成为提升效率和准确性的关键因素。为此,我们引入了名为“Vikas_Warehouse_Obj_detection”的数据集,该数据集专门用于训练和改进YOLOv8模型,以实现对仓库场景中物品的高效检测与分类。该数据集包含四个主要类别,分别是“box”(箱子)、“forklift”(叉车)、“pallets”(托盘)和“person”(人员),为模型提供了丰富的样本,以支持其在复杂环境中的学习和适应能力。

2024-09-26 18:01:26 1888

原创 垃圾分类检测系统源码分享

数据集信息展示在现代社会中,垃圾分类已成为环境保护和资源回收的重要环节。为了提高垃圾分类的准确性和效率,开发出一套高效的垃圾分类检测系统显得尤为重要。本研究选用的数据集名为“Trash in real background”,旨在为改进YOLOv8的垃圾分类检测系统提供强有力的支持。该数据集专注于真实环境中的垃圾物品,具有较高的实用价值和应用前景。“Trash in real background”数据集包含三种主要类别,分别是瓶子(Bottles)、纸张(Paper)和塑料(Plastic)。

2024-09-26 15:41:16 1163

原创 红绿灯倒计时读秒数字识别系统源码分享

数据集信息展示在现代智能交通系统中,红绿灯倒计时数字的准确识别对于提高交通安全和优化交通流量具有重要意义。为此,我们构建了一个名为“traffic numbers”的数据集,旨在为改进YOLOv8模型在红绿灯倒计时数字识别任务中的表现提供强有力的支持。该数据集包含了丰富的图像样本,专门用于训练和测试深度学习模型,以实现对红绿灯倒计时数字的高效识别。“traffic numbers”数据集共包含10个类别,分别对应于数字0至9。

2024-09-26 11:45:00 1490 1

原创 热源检测系统源码分享

数据集信息展示在现代计算机视觉领域,热源检测系统的研究与应用正日益受到重视。为了提升YOLOv8在热源检测任务中的性能,我们构建了一个名为“ThermoCam”的数据集,旨在为该系统的训练提供丰富而多样的样本。该数据集包含三种主要类别,分别是“avr”(音频视频接收器)、“cpu”(中央处理单元)和“monitor”(显示器),这些类别涵盖了在实际应用中常见的热源目标。通过对这些类别的精细标注和分类,我们期望能够提高YOLOv8在不同热源检测场景下的识别准确性和鲁棒性。

2024-09-25 22:37:25 1429

原创 钢管加工长度检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“team_tube detection”的数据集,以训练和改进YOLOv8模型在钢管加工长度检测系统中的应用。该数据集专注于钢管的检测,特别是连接管和普通管的识别,旨在提升自动化检测的准确性和效率。数据集的类别数量为2,具体类别包括“connect_tube”和“tube”。这种分类设计使得模型能够有效地区分不同类型的钢管,进而实现更为精确的长度检测。“team_tube detection”数据集的构建考虑到了实际应用中的多样性和复杂性。

2024-09-25 20:17:01 1278

原创 变电站设备检测系统源码分享

数据集信息展示在现代电力系统中,变电站作为电力传输和分配的重要环节,其设备的实时监测与故障检测显得尤为重要。为此,我们构建了一个名为“Substation elements detection”的数据集,旨在为改进YOLOv8的变电站设备检测系统提供强有力的支持。该数据集包含14个类别,涵盖了变电站中常见的设备类型,这些设备在电力系统的运行和维护中扮演着关键角色。

2024-09-25 17:56:43 1338

原创 著名建筑物检测与识别系统源码分享

数据集信息展示在现代计算机视觉领域,建筑物检测与识别的研究日益受到重视,尤其是在城市规划、文化遗产保护和旅游管理等方面,准确识别和分类著名建筑物具有重要的实际意义。本研究所使用的数据集“SpbBuildings”正是为此目的而构建,旨在为改进YOLOv8模型提供高质量的训练数据。该数据集包含49个类别,涵盖了圣彼得堡市内的众多著名建筑物,体现了丰富的历史文化内涵和独特的建筑风格。

2024-09-25 13:36:21 1414

原创 船舶检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“ships_detection”的数据集,以改进YOLOv8的船舶检测系统。该数据集专门针对海洋环境中的各种船舶类型进行了精心设计,旨在提升自动化检测的准确性和效率。数据集包含12个类别,涵盖了从货船到客船的多种船舶类型,具体类别包括:散货船、集装箱船、渔船、一般货船、矿石运输船和客船等。这些类别的多样性不仅反映了海洋运输的复杂性,也为训练模型提供了丰富的样本,确保其在实际应用中的广泛适用性。

2024-09-24 19:15:53 1398

原创 螺丝头与螺杆检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Screw Head, Body detection”的数据集,以改进YOLOv8模型在螺丝头与螺杆检测系统中的表现。该数据集专门针对螺丝的不同视角和特征进行了精心设计,包含了三种主要类别,分别是“head_side_view”(螺丝头侧视图)、“screw-top-view”(螺丝顶部视图)和“threads”(螺纹)。这些类别的选择不仅反映了螺丝在实际应用中的多样性,也为模型的训练提供了丰富的样本,确保其在不同场景下的泛化能力。

2024-09-24 16:55:36 1530

原创 犀牛检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“rhino”的数据集,以支持对犀牛检测系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集专注于单一类别的物种——犀牛,具有高度的针对性和专业性。数据集的类别数量为1,具体类别名称为“Rhino”。这种简化的类别设置使得模型能够集中学习与犀牛相关的特征,从而提高检测的准确性和效率。“rhino”数据集的构建过程遵循了严格的标准,确保数据的质量和多样性。数据集中的图像涵盖了犀牛在不同环境和光照条件下的多种姿态和角度。

2024-09-24 14:35:12 684

原创 显示屏显示缺陷检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Red-Green”的数据集,以支持改进YOLOv8模型在显示屏显示缺陷检测系统中的应用。该数据集专门设计用于识别和分类显示屏上常见的缺陷类型,具有极高的实用价值和应用潜力。数据集的类别数量为三,具体包括“Dark spot”(黑点)、“Lines”(线条缺陷)和“Screen”(屏幕整体缺陷),这些类别涵盖了显示屏在实际使用中可能出现的主要问题。“Dark spot”类别主要指显示屏上出现的黑色斑点,这种缺陷通常是由于显示器内部的像素失效或物理损伤造成的。

2024-09-24 12:14:49 1649

原创 车辆检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Pulinkunnoo”的数据集,以改进YOLOv8的车辆检测系统。该数据集专注于车辆的检测与识别,旨在为自动驾驶、交通监控及智能交通系统等应用提供高质量的训练数据。Pulinkunnoo数据集的设计充分考虑了现实世界中车辆的多样性和复杂性,确保模型在各种环境下的鲁棒性和准确性。Pulinkunnoo数据集的类别数量为1,具体类别为“vehicle”。这一单一类别的设置,虽然看似简单,但却为模型的训练提供了清晰的目标,避免了多类别之间的干扰。

2024-09-24 09:54:31 963

原创 防护装备穿戴与否检测系统源码分享

数据集信息展示在构建和优化防护装备穿戴与否检测系统的过程中,数据集的选择和质量至关重要。本项目所使用的数据集名为“ppe-detection”,它专门用于训练改进YOLOv8模型,以提高在各种环境中对防护装备穿戴情况的检测能力。该数据集包含了丰富的图像数据,旨在为计算机视觉领域的研究人员和开发者提供高效的解决方案,以确保在工业、医疗等关键领域中,人员的安全和合规性。

2024-09-23 22:40:55 1039

原创 塑料瓶回收标志分级检测系统源码分享

数据集信息展示在塑料瓶回收标志分级检测系统的研究中,数据集“PlasticModel4”扮演了至关重要的角色。该数据集专为改进YOLOv8模型而设计,旨在提高塑料瓶回收标志的检测精度和效率。通过对多种塑料瓶标志的分类与识别,研究者们希望能够推动塑料回收行业的智能化发展,从而实现更高效的资源回收与再利用。“PlasticModel4”数据集包含30个不同的类别,每个类别对应着特定的塑料瓶回收标志。这些类别的名称包括数字标识,从‘1’到‘98’的多个标志,涵盖了塑料瓶的不同类型和回收要求。

2024-09-23 20:20:17 1220

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除