这个保存就很简单,因为使用过pytorch里面加载FashionMNIST数据集,就会生成这样一个文件

里面有两个文件

于是加载就非常简单了
import torch
import cv2
import numpy as np
train_data=torch.load("training.pt")[0].numpy()
test_data=torch.load("test.pt")[0].numpy()
print(train_data.shape)
print(test_data.shape)
#print(test_data[0])
for i in range(train_data.shape[0]):
cv2.imwrite("train\\"+str(i)+".jpg",train_data[i][:,:,np.newaxis])
for i in range(test_data.shape[0]):
cv2.imwrite("test\\"+str(i)+".jpg",test_data[i][:,:,np.newaxis])
运行之前自己在路径下新建train和test文件夹
运行结果


该博客介绍了如何使用PyTorch加载并保存FashionMNIST数据集,将训练集和测试集转化为numpy数组,并保存为.pt文件。之后通过cv2库将数据集转为图像文件,分别保存在'train'和'test'文件夹中,方便后续使用。提供了处理后的图像文件下载链接。
最低0.47元/天 解锁文章
956

被折叠的 条评论
为什么被折叠?



