Ruby - Feature #16260

Symbol#to_proc behaves like lambda, but doesn't aknowledge it
10/18/2019 09:21 AM - zverok (Victor Shepelev)

Status: Closed

Priority: Normal

Assignee: nobu (Nobuyoshi Nakada)
Target version: 3.0

Description

Seems that Symbol#to_proc returns Proc that has lambda semantics:
proc = :+.to_proc

proc.call(l, 2) # => 3
proc.call([1l, 2]) # ArgumentError (wrong number of arguments (given 0, expected 1))

But if you ask...
proc.lambda? # => false
That seems to be an inconsistency, which I'd like to clarify. There are obviously two ways to fix it:

1. Make it respond true to lambda? (and mention the semantics in docs)
2. Make it behave like non-lambda.

The second one seems to produce some useful behavior:

Currently:
[1, 2].zip([3, 4]).map(&:+) # ArgumentError (wrong number of arguments (given 0, expected 1))

With non-lambda:
class Symbol
def to_proc
proc { |o, *al o.send(self, *a) }
end
end

[1, 2].zip([3, 4]).map(s:+) # => [4, 6]

Probably all of it was discussed when Symbol#to_proc was introduced, but as old NEWS-files doesn't link to tickets/discussions, |
can't find the reasoning for current behavior.

Associated revisions

Revision f0b815dc670b61ebaldaaa67a8613ac431d32b16 - 02/19/2020 06:46 AM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

Revision f0b815dc670b61ebaldaaa67a8613ac431d32b16 - 02/19/2020 06:46 AM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

Revision f0b815dc - 02/19/2020 06:46 AM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

Revision 5cab86f3b0725457be3c50d3cab43b04bea53290 - 02/21/2020 03:30 PM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

Revision 5cab86f3b0725457be3c50d3cab43b04bea53290 - 02/21/2020 03:30 PM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

Revision 5cab86f3 - 02/21/2020 03:30 PM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

06/05/2025 1/3

Revision 8c5ca318cbe57269f144a4d0822c5283c1fd4ela - 02/21/2020 03:45 PM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

With refinements, too.

Revision 8c5ca318cbe57269f144a4d0822c¢5283c1fd4ela - 02/21/2020 03:45 PM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

With refinements, too.

Revision 8c5ca318 - 02/21/2020 03:45 PM - nobu (Nobuyoshi Nakada)
Proc made by Symbol#to_proc should be a lambda [Bug #16260]

With refinements, too.

History

#1 - 11/27/2019 06:05 PM - Eregon (Benoit Daloze)

| think we should just return true for lambda?.

Proc has extra confusing behavior, e.g., #16166.

#2 - 11/28/2019 05:22 AM - nobu (Nobuyoshi Nakada)
https://github.com/ruby/ruby/pull/2708

#3 - 12/19/2019 03:15 AM - nobu (Nobuyoshi Nakada)
- Status changed from Open to Rejected

As a symbol proc cannot know the method to be invoked, so now | think it cannot be lambda.
In the case :+, it looks like a lambda, but it is not always true.

#4 - 12/19/2019 03:26 AM - mame (Yusuke Endoh)
Just curious: How do you want to use the result of lambda?? Even if it returns true, we may pass an arbitrary number of arguments: lambda {|*a] ... }.

I think that lambda? is useless except debugging.

#5 - 12/19/2019 09:23 AM - zverok (Victor Shepelev)

As a symbol proc cannot know the method to be invoked, so now | think it cannot be lambda.
In the case :+, it looks like a lambda, but it is not always true.

@nobu (Nobuyoshi Nakada), | am not sure | get it right. Can you please show when it is not true?..
For as far as | can understand, there are two distinctions of lambda:

1. Its return returns from lambda itself, not enclosing scope
2. It treats parameters strictly, without implicit unpacking/optionality

Now, :+.to_proc behaves this way:

PLUS = :+.to_proc
PLUS.call (1, 2)
=> 3

PLUS.call([1, 2])
ArgumentError (wrong number of arguments (given 0, expected 1)
Tried to call [1, 2].+(), not 1.+(2), so no unpacking

Whilst lambda would behave this way:

PLUS_L = lambda { |obj, *rest| obj.send(:+, *rest) }
PLUS_L.call(1l, 2)
=> 3

PLUS_L.call([1, 2])
ArgumentError (wrong number of arguments (given 0, expected 1)

Explicit return:

lambda { |obj, *rest| return obj.send(:+, *rest) }.call(l, 2)
=> 3

06/05/2025 2/3

https://bugs.ruby-lang.org/issues/16166
https://github.com/ruby/ruby/pull/2708
https://bugs.ruby-lang.org/users/4

....and proc will behave this way:

PLUS_P = lambda { |obj, *rest| obj.send(:+, *rest) }
PLUS_P.call(l, 2)

=> 3

PLUS_P.call([1, 21)

=>3

Implicit unpacking

Explicit return:

proc { |obj, *rest| return obj.send(:+, *rest) }.call(l, 2)
—-—— returns from the enclosing scope

So, :<sym>.to_proc behaves exactly like lambda, and nothing like proc.

The only thing that differs from the equivalent lambda is...

PLUS.parameters # => [[:rest]]
PLUS_L.parameters # => [[:req, :0bj], [:rest, :rest]]

(which is ideally to be fixed too, as in fact the first parameter is indeed mandatory.)
Can you please show me the case when :<sym>.to_proc does NOT behave like lambda?..
Just curious: How do you want to use the result of lambda??

@mame (Yusuke Endoh) For explanatory and educational purposes, at least. For example, in this article, | am showing some funny examples, and to
explain why this works:

[1, 2, 3].zip([4, 4, 4]).map { la, bl a + b }
...and this not:
[1, 2, 3].zip([4, 4, 4]) .map(&:+)

...I'd like to just say "because :+.to_proc is a lambda, as you can see", but what | really need to say is "becuase :+.to_proc doesn't unpacks
arguments, behaving like lambda... though it doesn't aknowledge it is"".

So, yep, debugging, explaining, teaching, this kind of things.

#6 - 12/19/2019 09:31 AM - Eregon (Benoit Daloze)
- Status changed from Rejected to Open

| agree with @zverok (Victor Shepelev) here, a method behaves as a lambda, and doesn't unpack arguments (except a few special methods that
specifically do that).

@nobu (Nobuyoshi Nakada) | think we should merge your PR. Could you show an example of a Symbol#to_proc Proc that behaves like a proc and
not a lambda? | think that's only rare exceptions (due to that method semantic, not due to the generated Proc), and so Symbol#to_proc should
acknowledge it's a lambda.

#7 - 12/26/2019 02:35 AM - mame (Yusuke Endoh)
- Tracker changed from Misc to Feature
- Assignee set to nobu (Nobuyoshi Nakada)

- Target version set to 36

At the previous meeting, matz said it should return true. Will do.

#8 - 02/19/2020 07:15 AM - nobu (Nobuyoshi Nakada)
- Status changed from Open to Closed

Applied in changeset git|f0b815dc670b61ebaldaaa67a8613ac431d32b16.

Proc made by Symbol#to_proc should be a lambda [Bug #16260]

#9 - 09/29/2020 03:37 AM - hsbt (Hiroshi SHIBATA)

- Target version changed from 36 to 3.0

06/05/2025 3/3

https://bugs.ruby-lang.org/users/18
https://zverok.github.io/blog/2019-10-18-each_with_object.html
https://bugs.ruby-lang.org/users/710
https://bugs.ruby-lang.org/users/4
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/f0b815dc670b61eba1daaa67a8613ac431d32b16
https://bugs.ruby-lang.org/issues/16260
http://www.tcpdf.org

