| ... | ... |
@@ -2,9 +2,11 @@ |
| 2 | 2 |
|
| 3 | 3 |
* Bioconductor 3.21, May 2025 |
| 4 | 4 |
|
| 5 |
-## zellkonverter 1.17.4 |
|
| 5 |
+## zellkonverter 1.17.4 (2025-04-10) |
|
| 6 | 6 |
|
| 7 | 7 |
* Add tests for **anndata** v0.10.9 |
| 8 |
+* Modify `SCE2AnnData()` to covert sparse matrices to `dgRMatrix` when they are |
|
| 9 |
+ transposed (mostly assays) (Fixes #132) |
|
| 8 | 10 |
|
| 9 | 11 |
## zellkonverter 1.17.3 (2025-04-08) |
| 10 | 12 |
|
| ... | ... |
@@ -268,14 +268,18 @@ SCE2AnnData <- function(sce, X_name = NULL, assays = TRUE, colData = TRUE, |
| 268 | 268 |
#' @importClassesFrom Matrix CsparseMatrix |
| 269 | 269 |
#' @importFrom DelayedArray is_sparse |
| 270 | 270 |
#' @importFrom Matrix t |
| 271 |
+# Original code from Charlotte Soneson in kevinrue/velociraptor |
|
| 271 | 272 |
.makeNumpyFriendly <- function(x, transpose = TRUE) {
|
| 272 | 273 |
if (transpose) {
|
| 273 | 274 |
x <- t(x) |
| 274 | 275 |
} |
| 275 | 276 |
|
| 276 |
- # Code from Charlotte Soneson in kevinrue/velociraptor. |
|
| 277 | 277 |
if (is_sparse(x)) {
|
| 278 |
- as(x, "CsparseMatrix") |
|
| 278 |
+ x <- as(x, "CsparseMatrix") |
|
| 279 |
+ if (transpose) {
|
|
| 280 |
+ x <- as(x, "RsparseMatrix") |
|
| 281 |
+ } |
|
| 282 |
+ x |
|
| 279 | 283 |
} else {
|
| 280 | 284 |
as.matrix(x) |
| 281 | 285 |
} |
| 282 | 286 |
new file mode 100644 |
| ... | ... |
@@ -0,0 +1,38 @@ |
| 1 |
+test_that(".makeNumpyFriendly() works correctly", {
|
|
| 2 |
+ mat <- matrix(1:50, nrow = 10, ncol = 5) |
|
| 3 |
+ |
|
| 4 |
+ friendly_mat <- .makeNumpyFriendly(mat, transpose = TRUE) |
|
| 5 |
+ expect_identical(friendly_mat, t(mat)) |
|
| 6 |
+ expect_identical(dim(friendly_mat), rev(dim(mat))) |
|
| 7 |
+ |
|
| 8 |
+ friendly_mat <- .makeNumpyFriendly(mat, transpose = FALSE) |
|
| 9 |
+ expect_identical(friendly_mat, mat) |
|
| 10 |
+ expect_identical(dim(friendly_mat), dim(mat)) |
|
| 11 |
+ |
|
| 12 |
+ sparse_mat <- Matrix::Matrix(mat, sparse = TRUE) |
|
| 13 |
+ friendly_sparse_mat <- .makeNumpyFriendly(sparse_mat, transpose = TRUE) |
|
| 14 |
+ expect_s4_class(friendly_sparse_mat, "dgRMatrix") |
|
| 15 |
+ expect_identical(dim(friendly_sparse_mat), rev(dim(sparse_mat))) |
|
| 16 |
+ |
|
| 17 |
+ friendly_sparse_mat <- .makeNumpyFriendly(sparse_mat, transpose = FALSE) |
|
| 18 |
+ expect_s4_class(friendly_sparse_mat, "dgCMatrix") |
|
| 19 |
+ expect_identical(dim(friendly_sparse_mat), dim(sparse_mat)) |
|
| 20 |
+ |
|
| 21 |
+ delayed_mat <- DelayedArray::DelayedArray(mat) |
|
| 22 |
+ friendly_delayed_mat <- .makeNumpyFriendly(delayed_mat, transpose = TRUE) |
|
| 23 |
+ expect_identical(friendly_delayed_mat, t(mat)) |
|
| 24 |
+ expect_identical(dim(friendly_delayed_mat), rev(dim(mat))) |
|
| 25 |
+ |
|
| 26 |
+ friendly_delayed_mat <- .makeNumpyFriendly(delayed_mat, transpose = FALSE) |
|
| 27 |
+ expect_identical(friendly_delayed_mat, mat) |
|
| 28 |
+ expect_identical(dim(friendly_delayed_mat), dim(mat)) |
|
| 29 |
+ |
|
| 30 |
+ sparse_delayed_mat <- DelayedArray::DelayedArray(sparse_mat) |
|
| 31 |
+ friendly_sparse_delayed_mat <- .makeNumpyFriendly(sparse_delayed_mat, transpose = TRUE) |
|
| 32 |
+ expect_s4_class(friendly_sparse_delayed_mat, "dgRMatrix") |
|
| 33 |
+ expect_identical(dim(friendly_sparse_delayed_mat), rev(dim(sparse_delayed_mat))) |
|
| 34 |
+ |
|
| 35 |
+ friendly_sparse_delayed_mat <- .makeNumpyFriendly(sparse_delayed_mat, transpose = FALSE) |
|
| 36 |
+ expect_s4_class(friendly_sparse_delayed_mat, "dgCMatrix") |
|
| 37 |
+ expect_identical(dim(friendly_sparse_delayed_mat), dim(sparse_delayed_mat)) |
|
| 38 |
+}) |
| ... | ... |
@@ -35,6 +35,37 @@ test_that("writeH5AD works as expected", {
|
| 35 | 35 |
expect_identical(col_data, colData(sce)) |
| 36 | 36 |
}) |
| 37 | 37 |
|
| 38 |
+test_that("writeH5AD works as expected with version 0.10.9", {
|
|
| 39 |
+ temp <- tempfile(fileext = ".h5ad") |
|
| 40 |
+ writeH5AD(sce, temp, version = "0.10.9") |
|
| 41 |
+ expect_true(file.exists(temp)) |
|
| 42 |
+ |
|
| 43 |
+ # Reading it back out again. Hopefully we didn't lose anything important. |
|
| 44 |
+ out <- readH5AD(temp, version = "0.10.9") |
|
| 45 |
+ |
|
| 46 |
+ expect_identical(dimnames(out), dimnames(sce)) |
|
| 47 |
+ expect_equal(assay(out), assay(sce)) |
|
| 48 |
+ expect_identical(reducedDims(out), reducedDims(sce)) |
|
| 49 |
+ |
|
| 50 |
+ # Need to coerce the factors back to strings. |
|
| 51 |
+ row_data <- rowData(out) |
|
| 52 |
+ for (i in seq_len(ncol(row_data))) {
|
|
| 53 |
+ if (is.factor(row_data[[i]])) {
|
|
| 54 |
+ row_data[[i]] <- as.character(row_data[[i]]) |
|
| 55 |
+ } |
|
| 56 |
+ } |
|
| 57 |
+ expect_identical(row_data, rowData(sce)) |
|
| 58 |
+ |
|
| 59 |
+ col_data <- colData(out) |
|
| 60 |
+ for (i in seq_len(ncol(col_data))) {
|
|
| 61 |
+ if (is.factor(col_data[[i]])) {
|
|
| 62 |
+ col_data[[i]] <- as.character(col_data[[i]]) |
|
| 63 |
+ } |
|
| 64 |
+ } |
|
| 65 |
+ names(col_data) <- names(colData(sce)) |
|
| 66 |
+ expect_identical(col_data, colData(sce)) |
|
| 67 |
+}) |
|
| 68 |
+ |
|
| 38 | 69 |
test_that("writeH5AD works as expected with version 0.10.6", {
|
| 39 | 70 |
temp <- tempfile(fileext = ".h5ad") |
| 40 | 71 |
writeH5AD(sce, temp, version = "0.10.6") |