University of Washington

The Hardware/Software Interface
CSE351 Winter 2011
1st Lecture, 3 January

Instructor:
John Zahorjan

Teaching Assistants:
David Cohen, Michael Ratanapintha

CSE351 — Winter 2011 1

University of Washington

Overview

Course Synopsis

Course themes: big and little

Four important realities

How the course fits into the CSE curriculum
Logistics5

L= N - A = = 3

HWO is out. Due end of day Wednesday.

CSE351 -Winter 2011 2

University of Washington

Course Synopsis: Preliminaries

* A program is an expression of a computation
* It describes what the output should be when given some input
* Programs are written to some specification

* E.g., Java defines how to write statements and what they mean

How to write something is called syntax

* We usually think of syntax as a relatively minor issue, although it can
have substantial impact on the likelihood of making mistakes

What it means is called semantics
e “if (x1=0)y = (y+z)/x;” vs. “When (x |=0) y = (y+z)/x;”

- different syntax, same semantics

CSE351 -Winter 2011 3

Course Synopsis: Programs and Hardware

* A hardware architecture defines its programming specification
* How to write instructions and what they mean

* That specification isn't Java!
* We'll say why in a moment...

* So, what happens?

* A lJava compiler translates the computation as expressed in Java into a
computation expressed in the language the hardware defines

e The translation is correct if the two programs are equivalent

- For every input, the hardware program produces the same outputs
as the Java program would if executed according to the semantics
defined by Java

Note: I'm taking some liberties with full truth for the sake of clarity.

CSE351 -Winter 2011 4

University of Washington

HW/SW Interface: The Historical Perspective
* Hardware started out quite primitive

* Design was expensive = the instruction set was very simple

- E.g., asingle instruction can add two integers
- Forget about x = (2*y +17) / (x*y*z + 3*w)
e Software was also very primitive
e Forget about x = (2*y + 17) / (x*y*z + 3*w)

g K

Architecture Specification (Interface)

Hardware

CSE351 -Winter 2011 5

University of Washington

HW/SW Interface: Assemblers

* Life was made a lot better by assemblers

e 1 assembler instruction = 1 machine instruction, but...

¢ different syntax: assembly instructions are character strings, not bit strings

Assembler specification

/

g User

Program
in

\ Asm

» Assembler » | Hardware

CSE351 -Winter 2011 6

University of Washington

HW/SW Interface: Higher Level Languages (HLL's)

¢ Human was still writing 1 line of assembler for each machine
instruction

e HLL's (e.g., C) provided a higher level of abstraction:

e 1 HLLIline is compiled into many (many) assembler lines
User c
Program > : —4» | Assembler| —§* [Hardware
\ inC Compiler

C language specification

CSE351 -Winter 2011

University of Washington

C vs. Assembler vs. Machine Programs

‘ if (x!1=0)y=(y+z)/x; _cmpl $0, -4(%ebp) 8???8%383811111)%%001001000001110000000000
je L2 10001011010001000010010000010100
movl -12(%ebp), %eax 10001011010001100010010100010100
movl -8(%ebp), %edx 100011010000010000000010
leal (%edx % o 1000100111000010
eal (%edx,%eax), %eax | | 110000011111101000011111
movl %eax, %edx 11110111011111000010010000011100
sarl $31, %edx 10001001010001000010010000011000
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

e The three program fragments are equivalent
* You'd rather write C!
¢ The hardware likes bit strings!

e The machine instructions are actually much shorter than the bits required
torepresent the characters of the assembler code

CSE351 -Winter 2011

University of Washington

HW/SW Interface: Code / Compile / Run Times

Code Time Compile Time Run Time

.ex
File

> c : —f—»|Assembler Hardware
Compiler

Note: The compiler and assembler are just programs, developed using
this same process.

CSE351 -Winter 2011 9

University of Washington

Near-Recent History: Java

* Hardware is really, really fast and really, really cheap

* Programming Is really, really hard, and programmers aren't
cheap

* So...
* Help the programmer by making it harder to make (unnoticed) mistakes
* One program runs everywhere, not one per system type
* How?
* More precisely defined language semantics
* More restrictive language semantics

e The “Java virtual machine”

CSE351 -Winter 2011 10

University of Washington

The Java Virtual Machine (JVM)

Java Language Specification

.~

User
Compiler JVM.exe | — > Hardware

\ in Java

\\\

Java Virtual Machine

Specification
The JVM is a program JVMexe — f»
that simulates the operation Hardware
of a hypothetical piece of
hardware.

CSE351 -Winter 2011 11

University of Washington

More Translation: Compiler Optimizations

* Some compiler optimizations can be viewed as “source to
source” translations

for (i=0; i<10; i++) { al0] = 0;
ali] = 1i; alll = 1;
} al2] = 2;
al3] = 3;
, ald4] = 4;
1 scalar assignment + a[5] = 5;
11 integer compares + al6] = 6;
11 integer increments + al7] = 7;
10 array element assignments a[8] = 8;
al9] = 9;

i = 10;

1 scalar assignment +
10 array element assignments

CSE351 -Winter 2011 12

And more translation: The C Preprocessor

e C programs can include “preprocessor directives,” which are
executed at compile time

e The directives can alter the program that is actually compiled
by the C compiler

#define NUMELEMENTS 10

int X[NELEMENTS] ; int X[10];

C
Preprocessor

for (i=0; i<NELEMENTS; i++) f{ for (1=0; i<10; i+4) {

))

Now this text is compiled

CSE351 -Winter 2011 13

University of Washington

One More Thing...

* Attempts have been made to build hardware that directly
executes HLL's

¢ Thatis, the hardware architecture defines instruction syntax and semantics
very similar to HLL's

O
HLL

Program
N

Hardware

* It hasn't worked
¢ The hardware was slow

e Generally applicable moral: Simpler is faster.

e Hardware architectures today look a lot like architectures from
decades ago.

CSE351 -Winter 2011 14

Translation Summary

* Pros:

* Translation overhead is suffered once (at compile time), not for each
execution of the program

e Raises level of abstraction for the programmer (C vs. assembler)
* Cons:

e Raising level of abstraction can come at the cost of some inefficiency

- Onthe other hand, the compiler is better at some sorts of
optimizations than humans

* The program that's actually running isn't the one you wrote

- That can make debugging somewhat tricky...

CSE351 -Winter 2011 15

Big Theme #1: The HW/SW Interface

¢ THE HARDWARE VIEW
* What is the programming model supported by the hardware?

* How does that influence programs you might write?
- How does it influence programming languages?

* How do the requirements of programs and systems software (e.g.,
compilers, operating systems) influence what the hardware supports?

¢ Understanding the HW/SW interface might make you a more effective
programmer
* It will certainly make you a more versatile and comfortable
one

CSE351 -Winter 2011 16

University of Washington

Big Theme #2: The HW/SW Interface

¢ THE SOFTWARE VIEW
* A “system” is an orchestration of hw & sw

* The sw needs hw to run, but the hw needs the sw as well
— Compilers/translators
— Resource allocators

— Protection mechanisms

I/0 systems

¢ We'll look at some of the functionality that “systems
software” provides

CSE351 -Winter 2011 17

University of Washington

Little Theme 1: Representation

¢ At the hardware level, everything is Os and 1s
* numbers, characters, strings, instructions, objects, classes, ...

¢ We'll look at the base representations
§ The ones the hardware “understands”

- numbers, characters, hardware instructions

§ We'll also look up a few layers of abstraction to the ones created
by software

- procedure class, objects

¢ An important implication:
§ We'll better understand what a type is in a programming language

CSE351 -Winter 2011 18

University of Washington
Little Theme 2: Translation
¢ Translation is everywhere...

¢ But, we'll look particularly at the path C programs to
execution, and from Java programs to execution

§ We’ll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

CSE351 -Winter 2011 19

University of Washington

Little Theme 3: Correctness + Performance

¢ Up to now you've mostly struggled just with getting an implementation
that works
* Optimizing performance was ignored, or...

* Performance was assumed to be purely an (asymptotic)
algorithmic issue

¢ In this course we'll consider the effect of implementation (rather than
algorithm) on performance

* For example:

- Choice of language
- How the language is used

¢ And, we'll explain why!

CSE351 -Winter 2011 20

University of Washington

Course Outcomes

L=

Foundation: basics of high-level programming (Java)

¢ Understanding of some of the abstractions that exist between
programs and the hardware they run on, why they exist, and
how they build upon each other

¢ Knowledge of some of the details of underlying
implementations

¢ Become more effective programmers
§ More efficient at finding and eliminating bugs
§ Understand the many factors that influence program performance

§ Facility with some of the many languages that we use to describe
programs and data

¢ Prepare for later classes in CSE

CSE351 -Winter 2011 21

University of Washington

Reality 1: Ints # the Integers &
Floats # Reals

¢ Representations are finite
¢ Example 1:1Is X 20?
§ Floats: Yes!

§ Ints:
§ 40,000 * 40,000 -->1,600,000,000

§ 50000 * 50000 --> ??
¢ Example2:Is(x+y)+z = x+(y +2)?

§ Unsigned & Signed Ints: Yes!

§ Floats:
§ (1e20+-1e20) +3.14 -->3.14

§ 120+ (-1e20 +3.14) --> ??

CSE351 -Winter 2011 22

Reality #2: Memory Matters

¢ Memory is not unbounded
§ It must be allocated and managed
§ Many applications are memory-dominated

¢ Memory referencing bugs are especially pernicious
§ Effects are distant in both time and space

¢ Memory performance is not uniform

§ Cache and virtual memory effects can greatly affect program
performance

§ Adapting program to characteristics of memory system can lead to
major speed improvements

CSE351 -Winter 2011 23

University of Washington

Memory Referencing Errors

¢ C(and C++) do not provide any memory protection
§ Out of bounds array references
§ Invalid pointer values
§ Abuses of malloc/free

¢ Can lead to nasty bugs

§ Whether or not bug has any effect depends on system and compiler
§ Action at a distance
§ Corrupted object logically unrelated to one being accessed

§ Effect of bug may be first observed long after it is generated
¢ How can | deal with this?
§ Program in Java (or C#, or ML, or ...)

§ Understand what possible interactions may occur
§ Use or develop tools to detect referencing errors (valgrind)

CSE351 -Winter 2011 24

University of Washington

Memory System Performance Example

¢ Hierarchical memory organization

¢ Performance depends on access patterns
§ Including how program steps through multi-dimensional array

void copyij (int src[2048] [2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,3; int i,j;
for (i = 0; i < 2048; i++) \><—>for (J = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) =] ™ for (i = 0; i < 2048; i++)
dst[i][j] = srcl[i][]]; dst[i] [j] = srcl[i][]];
} }

21 times slower
(Pentium 4)

CSE351 -Winter 2011 25

University of Washington

. Intel Core i7
The Memory Mountain 267 GHz
32 KB L1 d-cache
256 KB L2 cache
7000 8 MB L3 cache
6000 +—
2 w000 47
]
E 4000 1+
s T
g 3000 |
g 2000
1000 -
T
Stride {x8 bytes) w2 Z Size (bytes}

CSE351 — Winter 2011 26

University of Washington

Reality #3: Performance isn’t counting ops

¢ Exact op count does not predict performance
§ Easily see 10:1 performance range depending on how code written
§ Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
¢ Must understand system to optimize performance
§ How programs compiled and executed
§ How memory system is organized
§ How to measure program performance and identify bottlenecks

§ How to improve performance without destroying code modularity and
generality

CSE351 -Winter 2011 27

University of Washington

Example Matrix Multiplication

¢ Standard desktop computer, vendor compiler, using optimization flags

¢ Both implementations have exactly the same operations count (2n3)

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

50

45

—n

Best code (K. Goto)

40

35

30

2 Triple loop 160p

10

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

CSE351 -Winter 2011 28

University of Washington

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
e ——

40 C
35 -

Multiple threads: 4x
30
25
20
15 - -
° Vector instructions: 4x
5 . Memory hierarchy and other optimizations: 20x
o = - - - - ; ; . — J

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

¢ Reason for 20x: blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

¢ Effect: less register spills, less L1/L2 cache misses, less TLB misses

CSE351 -Winter 2011 29

University of Washington

CSE351’s role in the “new CSE Curriculum”

«“
¢ Pre-requisites
§ 142 and 143: Intro Programming | and I

¢ One of 6 core courses

311: Foundations |

312: Foundations Il

331: SW Design and Implementation
332: Data Abstractions

351: HW/SW Interface

352: HW Design and Implementation

w W W W W WD

¢ 351 sets the context for many follow-on courses

CSE351 -Winter 2011 30

University of Washington

CSE351’s place in new CSE Curriculum

CSE477/481
Capstones
CSE352 CSE333 CSE451 CSE401 CSE461 CSE484 CSE466
HW Design | |Systems Prog| | Op Systems || Compilers Networks Security Emb Systems
N \ Vd 7
Performance Concurrency Distributed Exl?llcu:clm
ode
Machine Systems -
Comp. Arch. Code Real-Time
Control
\ I
CSE351 | The HW/SW Interface
Underlying principles linking
hardware and software
CS 143
Intro Prog Il

CSE351 — Winter 2011

31

Textbooks

¢
Randal E. Bryant and David R. O’Hallaron
Prentice-Hall, 2010
http://csapp.cs.cmu.edu

This book really matters for the course!
How to solve labs

w W WY LY

Practice problems typical of exam problems

¢ C: A Reference Manual, 5th Edition

§ Samuel P. Harbison Il and Guy L. Steele, Jr.
§ Prentice-Hall, 2002

§ Solid C programming language reference
§

Useful book to have on your shelf

CSE351 -Winter 2011

University of Washington

Computer Systems: A Programmer’s Perspective, 2nd Edition

-]
COMPUTER SYSTEMS

A Pragrammer's Pery

Bryant + O'Hallaren

A Reference Manual

32

University of Washington

Course Components

¢ Lectures (~30)

§ Higher-level concepts — I'll assume you’ve done the reading in the text
¢ Sections (~10)

§ Applied concepts, important tools and skills for labs, clarification of

lectures, exam review and preparation

¢ Written assignments (~4)

§ Problems from text to solidify understanding
¢ Labs (4)

§ Provide in-depth understanding (via practice) of an aspect of systems
¢ Exams (midterm + final)

§ Motivation to stay on top of things

§ Demonstrate your understanding of concepts and principles

CSE351 -Winter 2011 33

University of Washington

Resources

¢ Course Web Page

§ http://www.cse.washington.edu/351

§ Copies of lectures, assignments, exams
¢ Course Discussion Board

§ Keep in touch outside of class — help each other

§ staff will monitor and contribute
¢ Course Mailing List

§ Low traffic — mostly announcements; you are already subscribed
¢ Staff email

§ Things that are not appropriate for discussion board or better offline
¢ Anonymous Feedback (linked from homepage)

§ Any comments about anything related to the course
where you would feel better not attaching your name

§ By default, all anonymous feedback is posted (so you can view it)

CSE351 -Winter 2011 34

University of Washington

Policies: Grading

¢ Exams: weighted 1/3 (midterm), 2/3 (final)
¢ Written assignments: weighted according to effort
§ We'll try to make these about the same

¢ Labs assignments: weighted according to effort
§ These will likely increase in weight as the quarter progresses

¢ Late Policy
* Two discretionary late days

* 10%/day after that
¢ @rading:

§ 55%assignments
§ 45% exams

CSE351 -Winter 2011 35

University of Washington

Welcome to CSE351!

¢ Let’s have fun

¢ Let’s learn — together

¢ Let’s communicate

¢ Let’s set the bar for a useful and interesting class

¢ Many thanks to the many instructors who have shared their
lecture notes — | will be borrowing liberally through the qtr —
they deserve all the credit, the errors are all mine
§ UW: Gaetano Borriello (Inaugural edition of CSE 351, Spring 2010)
§ CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Piischel
§ Harvard: Matt Welsh
§ UW: Tom Anderson, Luis Ceze

CSE351 -Winter 2011 36

