

University of Washington

CSE351 � Winter 2011 1

The Hardware/Software Interface
CSE351 Winter 2011

1st Lecture, 3 January

Instructor:

John Zahorjan

Teaching Assistants:

David Cohen, Michael Ratanapintha

University of Washington

CSE351 -Winter 2011 2

Overview

¢ Course Synopsis

¢ Course themes: big and little

¢ Four important realities

¢ How the course fits into the CSE curriculum

¢ Logistics5

HW0 is out. Due end of day Wednesday.

University of Washington

CSE351 -Winter 2011 3

Course Synopsis: Preliminaries

� A program is an expression of a computation

� It describes what the output should be when given some input

� Programs are written to some specification

� E.g., Java defines how to write statements and what they mean

� How to write something is called syntax

� We usually think of syntax as a relatively minor issue, although it can

have substantial impact on the likelihood of making mistakes

� What it means is called semantics

� �if (x != 0) y = (y+z)/x;� vs. �when (x != 0) y = (y+z)/x;�

� different syntax, same semantics

University of Washington

CSE351 -Winter 2011 4

Course Synopsis: Programs and Hardware

� A hardware architecture defines its programming specification

� How to write instructions and what they mean

� That specification isn't Java!

� We'll say why in a moment...

� So, what happens?

� A Java compiler translates the computation as expressed in Java into a

computation expressed in the language the hardware defines

� The translation is correct if the two programs are equivalent

� For every input, the hardware program produces the same outputs

as the Java program would if executed according to the semantics

defined by Java

Note: I'm taking some liberties with full truth for the sake of clarity.

University of Washington

CSE351 -Winter 2011 5

HW/SW Interface: The Historical Perspective

� Hardware started out quite primitive

� Design was expensive Þ the instruction set was very simple

� E.g., a single instruction can add two integers

� Forget about x = (2*y + 17) / (x*y*z + 3*w)

� Software was also very primitive

� Forget about x = (2*y + 17) / (x*y*z + 3*w)

Hardware

Architecture Specification (Interface)

University of Washington

CSE351 -Winter 2011 6

HW/SW Interface: Assemblers

� Life was made a lot better by assemblers

� 1 assembler instruction = 1 machine instruction, but...

� different syntax: assembly instructions are character strings, not bit strings

Hardware

User
Program

in
Asm

Assembler specification

Assembler

University of Washington

CSE351 -Winter 2011 7

HW/SW Interface: Higher Level Languages (HLL's)

� Human was still writing 1 line of assembler for each machine

instruction

� HLL's (e.g., C) provided a higher level of abstraction:

� 1 HLL line is compiled into many (many) assembler lines

Hardware

User
Program

in C

C language specification

AssemblerC
Compiler

University of Washington

CSE351 -Winter 2011 8

C vs. Assembler vs. Machine Programs

if (x != 0) y = (y+z) / x; cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx,%eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

� The three program fragments are equivalent

� You'd rather write C!

� The hardware likes bit strings!

� The machine instructions are actually much shorter than the bits required

torepresent the characters of the assembler code

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

University of Washington

CSE351 -Winter 2011 10

Near-Recent History: Java

� Hardware is really, really fast and really, really cheap

� Programming Is really, really hard, and programmers aren't

cheap

� So...

� Help the programmer by making it harder to make (unnoticed) mistakes

� One program runs everywhere, not one per system type

� How?

� More precisely defined language semantics

� More restrictive language semantics

� The �Java virtual machine�

University of Washington

CSE351 -Winter 2011 12

More Translation: Compiler Optimizations

� Some compiler optimizations can be viewed as �source to

source� translations

for (i=0; i<10; i++) {

 a[i] = i;

}

a[0] = 0;

a[1] = 1;

a[2] = 2;

a[3] = 3;

a[4] = 4;

a[5] = 5;

a[6] = 6;

a[7] = 7;

a[8] = 8;

a[9] = 9;

i = 10;

1 scalar assignment +
11 integer compares +
11 integer increments +
10 array element assignments

1 scalar assignment +
10 array element assignments

University of Washington

CSE351 -Winter 2011 13

And more translation: The C Preprocessor

� C programs can include �preprocessor directives,� which are

executed at compile time

� The directives can alter the program that is actually compiled

by the C compiler

#define NUMELEMENTS 10

int X[NELEMENTS];

for (i=0; i<NELEMENTS; i++) {

 �

}

int X[10];

for (i=0; i<10; i++) {

 �

}

C
Preprocessor

Now this text is compiled

University of Washington

CSE351 -Winter 2011 14

One More Thing...

� Attempts have been made to build hardware that directly

executes HLL's

� That is, the hardware architecture defines instruction syntax and semantics

very similar to HLL's

� It hasn't worked

� The hardware was slow

� Generally applicable moral: Simpler is faster.

� Hardware architectures today look a lot like architectures from

decades ago.

Hardware
HLL

Program

University of Washington

CSE351 -Winter 2011 15

Translation Summary

� Pros:

� Translation overhead is suffered once (at compile time), not for each

execution of the program

� Raises level of abstraction for the programmer (C vs. assembler)

� Cons:

� Raising level of abstraction can come at the cost of some inefficiency

� On the other hand, the compiler is better at some sorts of

optimizations than humans

� The program that's actually running isn't the one you wrote

� That can make debugging somewhat tricky...

University of Washington

CSE351 -Winter 2011 16

Big Theme #1: The HW/SW Interface

¢ THE HARDWARE VIEW
� What is the programming model supported by the hardware?

� How does that influence programs you might write?

� How does it influence programming languages?

� How do the requirements of programs and systems software (e.g.,

compilers, operating systems) influence what the hardware supports?

¢ Understanding the HW/SW interface might make you a more effective

programmer
� It will certainly make you a more versatile and comfortable

one

University of Washington

CSE351 -Winter 2011 17

Big Theme #2: The HW/SW Interface

¢ THE SOFTWARE VIEW
� A �system� is an orchestration of hw & sw

� The sw needs hw to run, but the hw needs the sw as well

� Compilers/translators

� Resource allocators

� Protection mechanisms

� I/O systems

� ...

¢ We'll look at some of the functionality that �systems

software� provides

University of Washington

CSE351 -Winter 2011 18

Little Theme 1: Representation

¢ At the hardware level, everything is 0s and 1s
� numbers, characters, strings, instructions, objects, classes, ...

¢ We'll look at the base representations

§ The ones the hardware �understands�

� numbers, characters, hardware instructions

§ We'll also look up a few layers of abstraction to the ones created

by software

� procedure class, objects

¢ An important implication:

§ We'll better understand what a type is in a programming language

University of Washington

CSE351 -Winter 2011 19

Little Theme 2: Translation

¢ Translation is everywhere...

¢ But, we'll look particularly at the path C programs to

execution, and from Java programs to execution

§ We�ll encounter Java byte-codes, C language, assembly language, and

machine code (for the X86 family of CPU architectures)

University of Washington

CSE351 -Winter 2011 20

Little Theme 3: Correctness + Performance
¢ Up to now you've mostly struggled just with getting an implementation

that works
� Optimizing performance was ignored, or...

� Performance was assumed to be purely an (asymptotic)

algorithmic issue

¢ In this course we'll consider the effect of implementation (rather than

algorithm) on performance

� For example:

� Choice of language

� How the language is used

¢ And, we'll explain why!

University of Washington

CSE351 -Winter 2011 21

Course Outcomes

¢ Foundation: basics of high-level programming (Java)

¢ Understanding of some of the abstractions that exist between

programs and the hardware they run on, why they exist, and

how they build upon each other

¢ Knowledge of some of the details of underlying

implementations

¢ Become more effective programmers

§ More efficient at finding and eliminating bugs

§ Understand the many factors that influence program performance

§ Facility with some of the many languages that we use to describe

programs and data

¢ Prepare for later classes in CSE

University of Washington

CSE351 -Winter 2011 22

Reality 1: Ints the Integers & �

 Floats Reals�

¢ Representations are finite

¢ Example 1: Is x
2
 0?�

§ Floats: Yes!

§ Ints:

§ 40,000 * 40,000 --> 1,600,000,000

§ 50000 * 50000 --> ??

¢ Example 2: Is (x + y) + z = x + (y + z)?

§ Unsigned & Signed Ints: Yes!

§ Floats:

§ (1e20 + -1e20) + 3.14 --> 3.14

§ 1e20 + (-1e20 + 3.14) --> ??

University of Washington

CSE351 -Winter 2011 23

Reality #2: Memory Matters

¢ Memory is not unbounded
§ It must be allocated and managed

§ Many applications are memory-dominated

¢ Memory referencing bugs are especially pernicious
§ Effects are distant in both time and space

¢ Memory performance is not uniform
§ Cache and virtual memory effects can greatly affect program

performance

§ Adapting program to characteristics of memory system can lead to
major speed improvements

University of Washington

CSE351 -Winter 2011 24

Memory Referencing Errors

¢ C (and C++) do not provide any memory protection

§ Out of bounds array references

§ Invalid pointer values

§ Abuses of malloc/free

¢ Can lead to nasty bugs

§ Whether or not bug has any effect depends on system and compiler

§ Action at a distance

§ Corrupted object logically unrelated to one being accessed

§ Effect of bug may be first observed long after it is generated

¢ How can I deal with this?

§ Program in Java (or C#, or ML, or �)

§ Understand what possible interactions may occur

§ Use or develop tools to detect referencing errors (valgrind)

University of Washington

CSE351 -Winter 2011 25

Memory System Performance Example

¢ Hierarchical memory organization

¢ Performance depends on access patterns

§ Including how program steps through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

21 times slower

(Pentium 4)

University of Washington

CSE351 � Winter 2011 26

University of Washington

CSE351 -Winter 2011 27

Reality #3: Performance isn�t counting ops

¢ Exact op count does not predict performance

§ Easily see 10:1 performance range depending on how code written

§ Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

¢ Must understand system to optimize performance

§ How programs compiled and executed

§ How memory system is organized

§ How to measure program performance and identify bottlenecks

§ How to improve performance without destroying code modularity and

generality

University of Washington

CSE351 -Winter 2011 28

Example Matrix Multiplication

¢ Standard desktop computer, vendor compiler, using optimization flags

¢ Both implementations have exactly the same operations count (2n
3
)

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

Triple loop

Best code (K. Goto)

160x

University of Washington

CSE351 -Winter 2011 29

MMM Plot: Analysis

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

¢ Reason for 20x: blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice

¢ Effect: less register spills, less L1/L2 cache misses, less TLB misses

University of Washington

CSE351 -Winter 2011 30

CSE351�s role in the �new CSE Curriculum�

�
¢ Pre-requisites

§ 142 and 143: Intro Programming I and II

¢ One of 6 core courses

§ 311: Foundations I

§ 312: Foundations II

§ 331: SW Design and Implementation

§ 332: Data Abstractions

§ 351: HW/SW Interface

§ 352: HW Design and Implementation

¢ 351 sets the context for many follow-on courses

University of Washington

CSE351 � Winter 2011 31

CSE351�s place in new CSE Curriculum

CSE351

CSE451

Op Systems

CSE401

Compilers

Concurrency

CSE333

Systems Prog

Performance

CSE484

Security

CSE466

Emb Systems

CS 143

Intro Prog II

CSE352

HW Design

Comp. Arch.

CSE461

Networks

Machine

Code

Distributed

Systems

CSE477/481

Capstones

The HW/SW Interface

Underlying principles linking

hardware and software

Execution

Model

Real-Time

Control

University of Washington

CSE351 -Winter 2011 32

Textbooks

¢ Computer Systems: A Programmer�s Perspective, 2nd Edition

§ Randal E. Bryant and David R. O�Hallaron

§ Prentice-Hall, 2010

§ http://csapp.cs.cmu.edu

§ This book really matters for the course!

§ How to solve labs

§ Practice problems typical of exam problems

¢ C: A Reference Manual, 5th Edition

§ Samuel P. Harbison III and Guy L. Steele, Jr.

§ Prentice-Hall, 2002

§ Solid C programming language reference

§ Useful book to have on your shelf

University of Washington

CSE351 -Winter 2011 33

Course Components

¢ Lectures (~30)

§ Higher-level concepts � I�ll assume you�ve done the reading in the text

¢ Sections (~10)

§ Applied concepts, important tools and skills for labs, clarification of

lectures, exam review and preparation

¢ Written assignments (~4)

§ Problems from text to solidify understanding

¢ Labs (4)

§ Provide in-depth understanding (via practice) of an aspect of systems

¢ Exams (midterm + final)

§ Motivation to stay on top of things

§ Demonstrate your understanding of concepts and principles

University of Washington

CSE351 -Winter 2011 34

Resources

¢ Course Web Page
§ http://www.cse.washington.edu/351

§ Copies of lectures, assignments, exams

¢ Course Discussion Board
§ Keep in touch outside of class � help each other

§ Staff will monitor and contribute

¢ Course Mailing List
§ Low traffic � mostly announcements; you are already subscribed

¢ Staff email
§ Things that are not appropriate for discussion board or better offline

¢ Anonymous Feedback (linked from homepage)
§ Any comments about anything related to the course

where you would feel better not attaching your name

§ By default, all anonymous feedback is posted (so you can view it)

University of Washington

CSE351 -Winter 2011 35

Policies: Grading

¢ Exams: weighted 1/3 (midterm), 2/3 (final)

¢ Written assignments: weighted according to effort

§ We�ll try to make these about the same

¢ Labs assignments: weighted according to effort

§ These will likely increase in weight as the quarter progresses

¢ Late Policy
� Two discretionary late days

� 10%/day after that

¢ Grading:

§ 55%assignments

§ 45% exams

University of Washington

CSE351 -Winter 2011 36

Welcome to CSE351!

¢ Let�s have fun

¢ Let�s learn � together

¢ Let�s communicate

¢ Let�s set the bar for a useful and interesting class

¢ Many thanks to the many instructors who have shared their

lecture notes � I will be borrowing liberally through the qtr �

they deserve all the credit, the errors are all mine

§ UW: Gaetano Borriello (Inaugural edition of CSE 351, Spring 2010)

§ CMU: Randy Bryant, David O�Halloran, Gregory Kesden, Markus Püschel

§ Harvard: Matt Welsh

§ UW: Tom Anderson, Luis Ceze

