Skip to main content
Machine Learning
ML Concepts
Introduction
Introduction to ML
ML models
Linear regression
Logistic regression
Classification
Data
Working with numerical data
Working with categorical data
Datasets, generalization, and overfitting
Advanced ML models
Neural networks
Embeddings
Large language models
Real-world ML
Production ML systems
Automated machine learning
Fairness
Foundational courses
Advanced courses
Guides
Glossary
All terms
Clustering
Decision Forests
Fundamentals
GCP
Generative AI
Image
Lang Eval
Metrics
Recommendation Systems
Reinforcement Learning
Responsible AI
Sequence Models
TensorFlow
/
English
Deutsch
Español
Español – América Latina
Français
Indonesia
Italiano
Polski
Português – Brasil
Tiếng Việt
Türkçe
Русский
Українська
עברית
العربيّة
فارسی
हिंदी
বাংলা
ภาษาไทย
中文 – 简体
中文 – 繁體
日本語
한국어
Sign in
ML Concepts
Home
Crash Course
Machine Learning
ML Concepts
More
Home
Crash Course
Foundational courses
Advanced courses
Guides
Glossary
More
Quick links
Prerequisites
Exercises
Help Center
ML models
Linear regression (70 min)
Linear regression (10 min)
Loss (10 min)
Interactive exercise: Parameters (5 min)
Gradient descent (10 min)
Hyperparameters (10 min)
Interactive exercise: Gradient descent (5 min)
Programming exercise (10 min)
Test your knowledge (10 min)