Skip to main content
  • Machine Learning
ML Concepts
  • Introduction
  • Introduction to ML
  • ML models
  • Linear regression
  • Logistic regression
  • Classification
  • Data
  • Working with numerical data
  • Working with categorical data
  • Datasets, generalization, and overfitting
  • Advanced ML models
  • Neural networks
  • Embeddings
  • Large language models
  • Real-world ML
  • Production ML systems
  • Automated machine learning
  • Fairness
Foundational courses Advanced courses Guides Glossary
  • All terms
  • Clustering
  • Decision Forests
  • Fundamentals
  • GCP
  • Generative AI
  • Image
  • Lang Eval
  • Metrics
  • Recommendation Systems
  • Reinforcement Learning
  • Responsible AI
  • Sequence Models
  • TensorFlow
/
  • English
  • Deutsch
  • Español
  • Español – América Latina
  • Français
  • Indonesia
  • Italiano
  • Polski
  • Português – Brasil
  • Tiếng Việt
  • Türkçe
  • Русский
  • Українська
  • עברית
  • العربيّة
  • فارسی
  • हिंदी
  • বাংলা
  • ภาษาไทย
  • 中文 – 简体
  • 中文 – 繁體
  • 日本語
  • 한국어
Sign in
  • ML Concepts
Home Crash Course
  • Machine Learning
  • ML Concepts
    • More
    • Home
    • Crash Course
  • Foundational courses
  • Advanced courses
  • Guides
  • Glossary
    • More
  • Quick links
  • Prerequisites
  • Exercises
  • Help Center
  • ML models
  • Linear regression (70 min)
    • Linear regression (10 min)
    • Loss (10 min)
    • Interactive exercise: Parameters (5 min)
    • Gradient descent (10 min)
    • Hyperparameters (10 min)
    • Interactive exercise: Gradient descent (5 min)
    • Programming exercise (10 min)
    • Test your knowledge (10 min)