ray.rllib.algorithms.algorithm_config.AlgorithmConfig
ray.rllib.algorithms.algorithm_config.AlgorithmConfig#
- class ray.rllib.algorithms.algorithm_config.AlgorithmConfig(algo_class=None)[source]#
Bases:
ray.tune.tune._Config
A RLlib AlgorithmConfig builds an RLlib Algorithm from a given configuration.
Example
>>> from ray.rllib.algorithms.algorithm_config import AlgorithmConfig >>> from ray.rllib.algorithms.callbacks import MemoryTrackingCallbacks >>> # Construct a generic config object, specifying values within different >>> # sub-categories, e.g. "training". >>> config = AlgorithmConfig().training(gamma=0.9, lr=0.01) ... .environment(env="CartPole-v1") ... .resources(num_gpus=0) ... .rollouts(num_rollout_workers=4) ... .callbacks(MemoryTrackingCallbacks) >>> # A config object can be used to construct the respective Algorithm. >>> rllib_algo = config.build()
Example
>>> from ray.rllib.algorithms.algorithm_config import AlgorithmConfig >>> from ray import tune >>> # In combination with a tune.grid_search: >>> config = AlgorithmConfig() >>> config.training(lr=tune.grid_search([0.01, 0.001])) >>> # Use `to_dict()` method to get the legacy plain python config dict >>> # for usage with `tune.Tuner().fit()`. >>> tune.Tuner( ... "[registered Algorithm class]", param_space=config.to_dict() ... ).fit()
Methods
build
([env, logger_creator, use_copy])Builds an Algorithm from this AlgorithmConfig (or a copy thereof).
callbacks
(callbacks_class)Sets the callbacks configuration.
checkpointing
([export_native_model_files, ...])Sets the config's checkpointing settings.
copy
([copy_frozen])Creates a deep copy of this config and (un)freezes if necessary.
debugging
(*[, logger_creator, ...])Sets the config's debugging settings.
environment
([env, env_config, ...])Sets the config's RL-environment settings.
evaluation
(*[, evaluation_interval, ...])Sets the config's evaluation settings.
experimental
(*[, ...])Sets the config's experimental settings.
exploration
(*[, explore, exploration_config])Sets the config's exploration settings.
fault_tolerance
([recreate_failed_workers, ...])Sets the config's fault tolerance settings.
framework
([framework, eager_tracing, ...])Sets the config's DL framework settings.
freeze
()Freezes this config object, such that no attributes can be set anymore.
from_dict
(config_dict)Creates an AlgorithmConfig from a legacy python config dict.
get
(key[, default])Shim method to help pretend we are a dict.
Returns the Learner class to use for this algorithm.
Returns the RLModule spec to use for this algorithm.
Creates a full AlgorithmConfig object from
self.evaluation_config
.Returns a new LearnerHyperparameters instance for the respective Learner.
get_marl_module_spec
(*, policy_dict[, ...])Returns the MultiAgentRLModule spec based on the given policy spec dict.
get_multi_agent_setup
(*[, policies, env, ...])Compiles complete multi-agent config (dict) from the information in
self
.get_rollout_fragment_length
([worker_index])Automatically infers a proper rollout_fragment_length setting if "auto".
Returns the TorchCompileConfig to use on learners.
Returns the TorchCompileConfig to use on workers.
Returns whether this config specifies a multi-agent setup.
items
()Shim method to help pretend we are a dict.
keys
()Shim method to help pretend we are a dict.
multi_agent
(*[, policies, ...])Sets the config's multi-agent settings.
offline_data
(*[, input_, input_config, ...])Sets the config's offline data settings.
overrides
(**kwargs)Generates and validates a set of config key/value pairs (passed via kwargs).
pop
(key[, default])Shim method to help pretend we are a dict.
python_environment
(*[, ...])Sets the config's python environment settings.
reporting
(*[, ...])Sets the config's reporting settings.
resources
(*[, num_gpus, _fake_gpus, ...])Specifies resources allocated for an Algorithm and its ray actors/workers.
rl_module
(*[, rl_module_spec, ...])Sets the config's RLModule settings.
rollouts
(*[, env_runner_cls, ...])Sets the rollout worker configuration.
Returns a mapping from str to JSON'able values representing this config.
to_dict
()Converts all settings into a legacy config dict for backward compatibility.
training
(*[, gamma, lr, grad_clip, ...])Sets the training related configuration.
update_from_dict
(config_dict)Modifies this AlgorithmConfig via the provided python config dict.
validate
()Validates all values in this config.
Detects mismatches for
train_batch_size
vsrollout_fragment_length
.values
()Shim method to help pretend we are a dict.
Attributes
True if if specified env is an Atari env.
Returns the Learner sub-class to use by this Algorithm.