Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of Intelligent & Robotic Systems
  3. Article

Global Round-up Strategy Based on an Improved Hungarian Algorithm for Multi-robot Systems

  • Regular paper
  • Open access
  • Published: 04 December 2024
  • Volume 110, article number 168, (2024)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript
Global Round-up Strategy Based on an Improved Hungarian Algorithm for Multi-robot Systems
Download PDF
  • Meng Zhou1,
  • Jianyu Li1,
  • Chang Wang2,
  • Jing Wang  ORCID: orcid.org/0000-0002-6847-84521,
  • Weifeng Zhai1 &
  • …
  • Vicenç Puig3 
  • 761 Accesses

  • 2 Citations

  • Explore all metrics

Abstract

In this paper, a round-up strategy is proposed to optimize global target selection and improve the efficiency of multi-robot round-up behavior, which is applicable to the round-up situation with multiple pursuers and multiple evaders. Firstly, a constrained pursuer control strategy is designed to maintain the effectiveness of the area-minimizing round-up strategy. Additionally, a novel and detailed procedure is presented to make the area-minimizing round-up strategy based on Voronoi easier to understand. Then, an improved Hungarian algorithm-based global optimization strategy for target selection is proposed. This algorithm aims to reduce the efficiency due to the uneven position distribution of the robots. Finally, experimental results are given to demonstrate the proposed strategy can improve the global efficiency of multi-robot round-up.

Article PDF

Download to read the full article text

Similar content being viewed by others

Scheduling for multi-robot routing with blocking and enabling constraints

Article 30 April 2021

A Global/Local Path Planner for Multi-Robot Systems with Uncertain Robot Localization

Article 20 April 2020

Distributed Multi-robot Information Gathering Using Path-Based Sensors in Entropy-Weighted Voronoi Regions

Chapter © 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Continuous Optimization
  • Lead Optimization
  • Optimization
  • Robotics
  • Smooth pursuit
  • Targeted resequencing

References

  1. Verma, J.K., Ranga, V.: Multi-robot coordination analysis, taxonomy, challenges and future scope. J. Intell. Robot. Syst. 102, 1–36 (2021)

    Article  MATH  Google Scholar 

  2. Hu, J., Niu, H., Carrasco, J., et al.: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Veh. Technol. 69(12), 14413–14423 (2020)

    Article  Google Scholar 

  3. Quinton, F., Grand, C., Lesire, C.: Market approaches to the multi-robot task allocation problem: a survey. J. Intell. Robot. Syst. 107(2), 29 (2023)

    Article  MATH  Google Scholar 

  4. Ni, S., Wang, N., Qin, Z., et al.: A distributed coordinated path planning algorithm for maritime autonomous surface ship. Ocean Eng. 271, 113759 (2023)

    Article  MATH  Google Scholar 

  5. Wang, N., Ahn, C.K.: Coordinated trajectory-tracking control of a marine aerial-surface heterogeneous system. IEEE/ASME Trans. Mechatron. 26(6), 3198–3210 (2021)

    Article  MATH  Google Scholar 

  6. Feng, Z., Hu, G., Sun, Y., et al.: An overview of collaborative robotic manipulation in multi-robot systems. Ann. Rev. Control 49, 113–127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bian, X., Zhou, S., Zhang, H., et al.: Swarm robot multitarget search strategy based on triangular cones in a complex dynamic nonconvex obstacle environment. J. Intell. Robot. Syst. 108(4), 80 (2023)

    Article  MATH  Google Scholar 

  8. Pan, T., Yuan, Y.: A region-based relay pursuit scheme for a pursuit-evasion game with a single evader and multiple pursuers. IEEE Trans. Syst. Man Cybern. Syst. 53(3), 1958–1969 (2022)

    Article  MATH  Google Scholar 

  9. Sun, W., Tsiotras, P.: Sequential pursuit of multiple targets under external disturbances via Zermelo-Voronoi diagrams. Automatica 81, 253–260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Y., Dong, L., Sun, C.: Cooperative control for multi-player pursuit-evasion games with reinforcement learning. Neurocomputing 412, 101–114 (2020)

    Article  MATH  Google Scholar 

  11. De Souza, C., Newbury, R., Cosgun, A., et al.: Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robot. Autom. Lett. 6(3), 4552–4559 (2021)

    Article  MATH  Google Scholar 

  12. Deghat, M., Shames, I., Anderson, B.D., et al.: Localization and circumnavigation of a slowly moving target using bearing measurements. IEEE Trans. Autom. Control 59(8), 2182–2188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng, R., Liu, Y., Sun, D.: Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica 53, 400–407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bakolas, E., Tsiotras, P.: Optimal pursuit of moving targets using dynamic Voronoi diagrams. In: 49th IEEE Conference on Decision and Control (CDC). IEEE, pp. 7431–7436 (2010)

  15. Pierson, A., Wang, Z., Schwager, M.: Intercepting rogue robots: An algorithm for capturing multiple evaders with multiple pursuers. IEEE Robot. Autom. Lett. 2(2), 530–537 (2016)

    Article  MATH  Google Scholar 

  16. Bera, R., Makkapati, V.R., Kothari, M.: A comprehensive differential game theoretic solution to a game of two cars. J. Optim. Theory Appl. 174, 818–836 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, X., Xie, L., Chen, J., et al.: Cooperative pursuit with multi-pursuer and one faster free-moving evader. IEEE Trans. Cybern. 52(3), 1405–1414 (2020)

    Article  MATH  Google Scholar 

  18. Vlahov, B., Squires, E., Strickland, L., et al.: On developing a UAV pursuit-evasion policy using reinforcement learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, pp. 859–864 (2018)

  19. Zhang, Z., Wang, X., Zhang, Q., et al.: Multi-robot cooperative pursuit via potential field-enhanced reinforcement learning. In: 2022 International Conference on Robotics and Automation (ICRA), IEEE, pp. 8808–8814 (2022)

  20. Yu, X., Xu, X., Liu, L., et al.: Circular formation of networked dynamic unicycles by a distributed dynamic control law. Automatica 89, 1–7 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, X., Liu, L., Feng, G.: Distributed circular formation control of nonholonomic vehicles without direct distance measurements. IEEE Trans. Autom. Control 63(8), 2730–2737 (2018)

  22. Hu, J., Niu, H., Carrasco, J., et al.: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Veh. Technol. 69(12), 14413–14423 (2020)

    Article  Google Scholar 

  23. Hu, J., Bhowmick, P., Lanzon, A.: Group coordinated control of networked mobile robots with applications to object transportation. IEEE Trans. Veh. Technol. 70(8), 8269–8274 (2021)

    Article  MATH  Google Scholar 

  24. Hu, J., Niu, H., Carrasco, J., et al.: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Veh. Technol. 69(12), 14413–14423 (2020)

    Article  Google Scholar 

  25. Zhu, H., Brito, B., Alonso-Mora, J.: Decentralized probabilistic multi-robot collision avoidance using buffered uncertainty-aware Voronoi cells. Auton. Robot. 46(2), 401–420 (2022)

    Article  Google Scholar 

  26. Tian, B., Li, P., Zong, Q., et al.: Distributed pursuit of an evader with collision and obstacle avoidance. IEEE Trans. Cybern. 52(12), 13512–13520 (2021)

    Article  MATH  Google Scholar 

  27. Zhou, M., Wang, Z., Wang, J., et al.: Multi-robot collaborative hunting in cluttered environments with obstacle-avoiding Voronoi cells. IEEE/CAA J. Autom. Sin. 11(7), 1643–1655 (2024)

    Article  MATH  Google Scholar 

  28. Huang, H., Zhang, W., Ding, J., et al.: Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, pp. 4835–4840 (2011)

  29. Jia, Z., Yu, J., Ai, X., et al.: Cooperative multiple task assignment problem with stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic algorithm. Aerosp. Sci. Technol. 76, 112–125 (2018)

    Article  MATH  Google Scholar 

  30. Ibrahim, R.A., Ewees, A.A., Oliva, D., et al.: Improved salp swarm algorithm based on particle swarm optimization for feature selection. J. Ambient Intell. Hum. Comput. 10(8), 3155–3169 (2019)

    Article  MATH  Google Scholar 

  31. Tirkolaee, E.B., Goli, A., Weber, G.-W.: Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans. Fuzzy Syst. 28(11), 2772–2783 (2020)

    Article  MATH  Google Scholar 

  32. Dai, W., Lu, H., Xiao, J., et al.: Task allocation without communication based on incomplete information game theory for multi-robot systems. J. Intell. Robot. Syst. 94, 841–856 (2019)

    Article  MATH  Google Scholar 

  33. Buzzi, S., D’Andrea, C., Fresia, M., et al.: Pilot assignment in cell-free massive MIMO based on the hungarian algorithm. IEEE Wirel. Commun. Lett. 10(1), 34–37 (2020)

    Article  MATH  Google Scholar 

  34. Lindsay, N., Buehling, R.K., Sun, L.: A sequential task addition distributed assignment algorithm for multi-robot systems. J. Intell. Robot. Syst. 102(2), 51 (2021)

    Article  MATH  Google Scholar 

  35. Dong, D., Zhu, Y., Du, Z., et al.: Multi-target dynamic hunting strategy based on improved K-means and auction algorithm. Inf. Sci. 640, 119072 (2023)

    Article  MATH  Google Scholar 

  36. Geng, N., Chen, Z., Nguyen, Q.A., et al.: Particle swarm optimization algorithm for the optimization of rescue task allocation with uncertain time constraints. Complex Intell. Syst. 7, 873–890 (2021)

    Article  MATH  Google Scholar 

  37. Patel, R., Rudnick-Cohen, E., Azarm, S., et al.: Decentralized task allocation in multi-agent systems using a decentralized genetic algorithm. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3770–3776 (2020)

  38. Abed-Alguni, B.H., Alawad, N.A.: Distributed grey wolf optimizer for scheduling of workflow applications in cloud environments. Appl. Soft Comput. 102, 107113 (2021)

    Article  MATH  Google Scholar 

Download references

Funding

This paper is funded by National Key Research and Development Program of China (2023YFB4704404), R&D Program of Beijing Municipal Education Commission (KM202410009014), Project of Cultivation for Young Top-notch Talents of Beijing’s Municipal Institutions (BPHR202203032), and Yuxiu Innovation Project of NCUT (2024NCUTYXCX107).

Author information

Authors and Affiliations

  1. School of Electrical and Control Engineering, North China University of Technology, Beijing, 100144, P. R. China

    Meng Zhou, Jianyu Li, Jing Wang & Weifeng Zhai

  2. Beijing Aerospace Automatic Control Institute, Beijing, 100854, China

    Chang Wang

  3. CSIC-UPC, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelone, Spain

    Vicenç Puig

Authors
  1. Meng Zhou
    View author publications

    Search author on:PubMed Google Scholar

  2. Jianyu Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Chang Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Jing Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Weifeng Zhai
    View author publications

    Search author on:PubMed Google Scholar

  6. Vicenç Puig
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Author 1 (Meng Zhou):Conceptualization, Me-thodology, Software, Investigation, Formal Analysis, Funding Acquisition, Writing - Original Draft; Author 2 (Jianyu Li): Data Curation, Investigation, Validation, Methodology, Software, Resources, Visualization, Writing - Original Draft; Author 3 (Chang Wang): Conceptualization, Investigation, Supervision, Software, Visualization, Writing - Review/Editing; Author 4 (Jing Wang: Corresponding Author): Conceptualization, Resources, Supervision, Writing - Review/Editing; Author 5 (Weifeng Zhai): Investigation, Supervision; Author 6 (Vicenc,Puig): Supervision, Writing - Review/Editing.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no competing financial interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Li, J., Wang, C. et al. Global Round-up Strategy Based on an Improved Hungarian Algorithm for Multi-robot Systems. J Intell Robot Syst 110, 168 (2024). https://doi.org/10.1007/s10846-024-02190-4

Download citation

  • Received: 16 October 2023

  • Accepted: 18 October 2024

  • Published: 04 December 2024

  • Version of record: 04 December 2024

  • DOI: https://doi.org/10.1007/s10846-024-02190-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Multi-robot system
  • Round-up
  • Task allocation
  • Voronoi cell
  • Improved Hungarian algorithm

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature