Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. International Journal of Computer Vision
  3. Article

Local Histogram Based Segmentation Using the Wasserstein Distance

  • Open access
  • Published: 04 April 2009
  • Volume 84, pages 97–111, (2009)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
International Journal of Computer Vision Aims and scope Submit manuscript
Local Histogram Based Segmentation Using the Wasserstein Distance
Download PDF
  • Kangyu Ni1,
  • Xavier Bresson1,
  • Tony Chan1 &
  • …
  • Selim Esedoglu2 
  • 3908 Accesses

  • 201 Citations

  • Explore all metrics

Abstract

We propose and analyze a nonparametric region-based active contour model for segmenting cluttered scenes. The proposed model is unsupervised and assumes pixel intensity is independently identically distributed. Our proposed energy functional consists of a geometric regularization term that penalizes the length of the partition boundaries and a region-based image term that uses histograms of pixel intensity to distinguish different regions. More specifically, the region data encourages segmentation so that local histograms within each region are approximately homogeneous. An advantage of using local histograms in the data term is that histogram differentiation is not required to solve the energy minimization problem. We use Wasserstein distance with exponent 1 to determine the dissimilarity between two histograms. The Wasserstein distance is a metric and is able to faithfully measure the distance between two histograms, compared to many pointwise distances. Moreover, it is insensitive to oscillations, and therefore our model is robust to noise. A fast global minimization method based on (Chan et al. in SIAM J. Appl. Math. 66(5):1632–1648, 2006; Bresson et al. in J. Math. Imaging Vis. 28(2):151–167, 2007) is employed to solve the proposed model. The advantages of using this method are two-fold. First, the computational time is less than that of the method by gradient descent of the associated Euler-Lagrange equation (Chan et al. in Proc. of SSVM, pp. 697–708, 2007). Second, it is able to find a global minimizer. Finally, we propose a variant of our model that is able to properly segment a cluttered scene with local illumination changes.

Article PDF

Download to read the full article text

Similar content being viewed by others

Spatial color histogram-based image segmentation using texture-aware region merging

Article 21 March 2022

Nonparametric K-means clustering-based adaptive unsupervised colour image segmentation

Article 28 February 2024

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

Chapter © 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Continuous Optimization
  • Functional clustering
  • Image Processing
  • Shape Analysis
  • 3-D Image Reconstruction
  • Calculus of Variations and Optimization
  • Graph-Based Image Segmentation Techniques

References

  • Ambrosio, L., & Tortorelli, V. M. (1990). Approximation of functionals depending on jumps by elliptic functionals via Gamma convergence. Communications on Pure and Applied Mathematics, 43, 999–1036.

    Article  MATH  MathSciNet  Google Scholar 

  • Aubert, G., Barlaud, M., Faugeras, O., & Jehan-Besson, S. (2005). Image segmentation using active contours: calculus of variations or shape gradients? SIAM Journal on Applied Mathematics, 1(2), 2128–2145.

    MathSciNet  Google Scholar 

  • Aujol, J. F., Gilboa, G., Chan, T., & Osher, S. (2006). Structure-texture image decomposition—modeling, algorithms, and parameter selection. International Journal of Computer Vision, 67(1).

  • Bresson, X., & Chan, T. (2007). Fast minimization of the vectorial total variation norm and applications to color image processing. UCLA CAM report 07-25.

  • Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J. P., & Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28(2), 151–167.

    Article  MathSciNet  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.

    MathSciNet  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chan, T., Esedoglu, S., & Nikolova, M. (2006). Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 66(5), 1632–1648.

    Article  MATH  MathSciNet  Google Scholar 

  • Chan, T., Esedoglu, S., & Ni, K. (2007). Histogram based segmentation using Wasserstein distances. In Proceedings of SSVM (pp. 697–708).

  • Chartrand, R., Vixie, K., Wohlber, B., & Bollt, E. (2005). A gradient descent solution to the Monge-Kantorovich problem. Preprint: LA-UR-04-6305.

  • Cohen, L. (1991). On active contour models and balloons. Computer Vision, Graphics, and Image Processing, 53, 211–218.

    MATH  Google Scholar 

  • Georgiou, T., Michailovich, O., Rathi, Y., Malcolm, J., & Tannenbaum, A. (2007). Distribution metrics and image segmentation. Linear Algebra and its Applications, 405, 663–672.

    Article  MathSciNet  Google Scholar 

  • Haker, S., Zhu, L., & Tannnenbaum, A. (2004). Optimal mass transport for registration and warping. International Journal of Computer Vision, 60(3), 225–240.

    Article  Google Scholar 

  • Herbulot, A., Jehan-Besson, S., Barlaud, M., & Aubert, G. (2004). Shape gradient for image segmentation using information theory. In ICASSP (Vol. 3, pp. 21–24).

  • Herbulot, A., Jehan-Besson, S., Duffner, S., Barlaud, M., & Aubert, G. (2006). Segmentation of vectorial image features using shape gradients and information measures. Journal of Mathematical Imaging and Vision, 25(3), 365–386.

    Article  MathSciNet  Google Scholar 

  • Kantorovich, L. V. (1942). On the translocation of masses. Doklady Akademii Nauk SSSR, 37, 199–201.

    Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1991). Snakes: active contours model. International Journal of Computer Vision, 1, 1167–1186.

    Google Scholar 

  • Kichenesamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A. (1996). Conformal curvature flows: from phase transitions to active vision. Archive for Rational Mechanics and Analysis, 134, 275–301.

    Article  MathSciNet  Google Scholar 

  • Kim, J., Fisher, J. W., Yezzi, A., Cetin, M., & Willsky, A. S. (2005). A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Transactions on Image Processing, 14, 1486–1502.

    Article  MathSciNet  Google Scholar 

  • Michailovich, O., Rathi, Y., & Tannenbaum, A. (2007). Image segmentation using active contours driven by the Bhattacharya gradient flow. IEEE Transactions on Image Processing, 16(11), 2787–2801.

    Article  MathSciNet  Google Scholar 

  • Mory, B., & Ardon, R. (2007). Fuzzy region competition: a convex two-phase segmentation framework. In Proceedings of SSVM (pp. 214–226).

  • Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Osher, S., & Fedkiw, R. (2002). Applied mathematical sciences: Vol. 153. Level set methods and dynamic implicit surfaces. New York: Springer.

    Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 79, 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Paragios, N., & Deriche, R. (2002). Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation, 13(1–2), 249–268.

    Article  Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33, 1065–1076.

    Article  MATH  MathSciNet  Google Scholar 

  • Rachev, S., & Rüschendorf, L. (1998). Mass transportation problems. Vol. I: Theory, Vol. II: Applications. Probability and its applications. New York: Springer.

    Google Scholar 

  • Rubner, Y., Tomasi, C., & Guibas, L. J. (1998). A metric for distributions with applications to image databases. In: IEEE international conference on computer vision (pp. 59–66).

  • Sapiro, G., & Caselles, V. (1997). Histogram modification via differential equations. Journal of Differential Equations, 135(2), 238–268.

    Article  MATH  MathSciNet  Google Scholar 

  • Tu, Z., & Zhu, S. (2002). Image segmentation by data-driven Markov chain Monte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5).

  • Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293.

    Article  MATH  Google Scholar 

  • Villani, C. (2003). Graduate studies in mathematics: Vol. 58. Topics in optimal transportation. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Yezzi, A. Jr., Tsai, A., & Willsky, A. (1999). A statistical approach to snakes for bimodal and trimodal imagery. In International conference on computer vision (pp. 898–903).

  • Zhu, S. C., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 884–900.

    Article  Google Scholar 

  • Zhu, W., Jiang, T., & Li, X. (2005). Local region based medical image segmentation using J-divergence measures. In Proceedings of EMBC.

Download references

Author information

Authors and Affiliations

  1. University of California, Los Angeles, USA

    Kangyu Ni, Xavier Bresson & Tony Chan

  2. University of Michigan, Ann Arbor, USA

    Selim Esedoglu

Authors
  1. Kangyu Ni
    View author publications

    Search author on:PubMed Google Scholar

  2. Xavier Bresson
    View author publications

    Search author on:PubMed Google Scholar

  3. Tony Chan
    View author publications

    Search author on:PubMed Google Scholar

  4. Selim Esedoglu
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Kangyu Ni.

Additional information

This research is supported by ONR grant N00014-09-1-0105 and NSF grant DMS-0610079.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Ni, K., Bresson, X., Chan, T. et al. Local Histogram Based Segmentation Using the Wasserstein Distance. Int J Comput Vis 84, 97–111 (2009). https://doi.org/10.1007/s11263-009-0234-0

Download citation

  • Received: 12 July 2008

  • Accepted: 24 March 2009

  • Published: 04 April 2009

  • Issue date: August 2009

  • DOI: https://doi.org/10.1007/s11263-009-0234-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Image segmentation
  • Unsupervised
  • Wasserstein distance
  • Image processing
  • Computer vision
  • Nonparametric

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature