Low-Light Image Enhancement Based on Retinex Reflectance Compensation
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Abstract

Enhancement of low-light images is a low-level visu-
al task aimed at improving the quality of images captured
under low-light conditions. In this study, a low-light im-
age enhancement algorithm is proposed by compensating
for the reflection loss of illumination components obtained
through object reflection. Specifically, the algorithm first
utilizes Gaussian filtering to process the value componen-
t (V) of the image, separating the illumination component
from the reflection component. Then, through a illumina-
tion compensation strategy, the illumination component is
processed and combined with the reflectance component to
synthesize the enhanced value component (V). Finally, an
adaptive global balance strategy is applied to optimize the
enhanced value component (V) to ensure that the resulting
image appears more natural and conforms to human visu-
al perception habits. Experimental results demonstrate the
effectiveness and superiority of our method compared to ex-
isting traditional processing algorithms and deep learning
methods, showing excellent performance in enhancing dark
details of images and maintaining natural colors.

Keywords: Adaptive global balancing, Reflectance esti-
mation, Illumination Component Compensation

1. Introduction

With the rapid development of mobile internet, the im-
portance of images in key areas such as medical analysis,
satellite remote sensing, and industrial machine vision is be-
coming increasingly prominent. However, images captured
under low-light conditions often face issues such as low
brightness, poor contrast, and high noise, severely affect-
ing their practical application effects. Therefore, low-light
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image enhancement technology has significant research and
application value in the field of computer vision.
Traditional low-light image enhancement methods pri-
marily focus on adjusting global illumination. The Retinex
theory [[1] is a widely used approach for low-light image
enhancement.. According to this theory, the original image
S(x,y) can be represented as the product of the illumination
component L(z,y) and the reflectance component R(x, y):

Early studies such as SSR [2[], MSR [3]], and MSRCR [4]
estimated the illumination component and adjusted the re-
flectance component to enhance the image. Specifically:

R(z,y) = log(S(x,y)) — log(G(z,y) * S(x,y)) ()

However, Retinex-based methods can disrupt the balance
between light and dark in the original image, often result-
ing in over-enhancement. To address this, researchers de-
veloped methods such as MF [5]] and LIME [6], which con-
centrate on processing the illumination component. MF
employs a multi-scale approach to generate a new illumi-
nation component, effectively enhancing the image. LIME
estimates the illumination of each pixel by identifying the
maximum value in the R, G, and B channels and refines the
initial illumination map using a structure prior, thus provid-
ing a more accurate representation of the illumination com-
ponent. Nevertheless, these methods can introduce halos in
the enhanced images.In conclusion, while traditional meth-
ods have made progress in increasing brightness, enhanc-
ing details, and preserving the original light-dark relation-
ship, they still struggle to achieve a more comprehensive
enhancement.

The development of deep learning has led to many data-
driven low-light image enhancement algorithms. For ex-
ample, RAW [7|] proposed a new RAW-guided light en-
hancement network, which uses paired RAW images for



Figure 1: Algorithm Flowchart.

training, directly processes raw image data, and improves
image quality without losing details. However, it may en-
counter problems of detail loss under extremely low-light
conditions. Zero-DCE [8] enhances low-light images us-
ing a no-reference deep curve estimation method, increas-
ing brightness and contrast under conditions of unpaired im-
ages, but may cause color distortion in high-contrast scenes.
Ret-Net [[9] combines Retinex theory and deep learning to
improve illumination and color rendering, but there is room
for improvement in noise control. ASV [10] balances illu-
mination and reflection using a self-regularized model, but
may result in detail loss under extreme low-light condition-
s. RUAS [11] uses unsupervised learning to optimize im-
age quality, but lacks robustness in scenes with extremely
wide dynamic ranges. SCI [[12] processes low-light images
with cascaded illumination learning processes and weight-
sharing methods, providing a new perspective on handling
low-light complexity, but may cause detail blurring in fast-
changing scenes. LLDE [13] applies diffusion models to
generate enhanced images, which may cause color distor-
tion in high-contrast scenes. LLVIF [14]] applies a variation-
al inference framework to accurately separate reflection and
illumination, reducing noise, but with high computational
complexity, which may affect real-time processing efficien-
cy. Although these methods have made significant progress
in enhancing the quality of low-light images, they still face
challenges in preserving details, color accuracy, noise con-
trol, and processing efficiency. In addition, deep learning
methods require a large amount of computational resources
and training data, and the complexity of the models may
also prolong processing time.

In response to the limitations of existing low-light image
enhancement methods, this study proposes a novel enhance-
ment algorithm. The main innovations of this algorithm in-
clude:

e Using the Lambert reflectance model to initially esti-
mate the reflectance of the image and further optimize
it through refined adjustment functions.

e Separating the illumination component and the reflec-
tion component of the image’s value component (V)
through Gaussian filtering and precisely compensating

the illumination component based on the reflectance.

e Introducing an adaptive global balance strategy to ad-
just the enhanced image to better match the brightness
changes of the original image, optimizing the visual
experience.

Compared with traditional and deep learning methods,
this algorithm has certain advantages in improving the clari-
ty of dark areas, maintaining the original brightness contrast
of the image, and optimizing the overall visual effect. The
structure of the article is divided into: Section II elaborates
on the proposed algorithm in detail; Section III presents ex-
perimental results and evaluations; Section IV summarizes
the entire article.

2 Proposed Method

In this section, we elaborate on the key technical detail-
s of the proposed image enhancement algorithm. Firstly,
the algorithm transforms the image from the RGB color s-
pace to the HSV space, facilitating separate processing of
the V component while maintaining the invariance of hue
(H) and saturation (S). The entire process consists of three
steps: firstly, employing multi-scale Gaussian filters to pro-
cess the V component, separating reflection and illumina-
tion components; secondly, adjusting the illumination com-
ponent through an illumination compensation strategy and
combining it with the reflection component to generate an
updated V component; thirdly, utilizing an adaptive glob-
al balancing strategy to merge the updated V componen-
t with the original V component through weighting, ulti-
mately combining with the H and S components to form the
enhanced image. Algorithm flowchart show in Fig. [T}

2.1 Estimating Illumination Component

Based on the Retinex theory, this study applies multi-
scale Retinex (MSR) to process the V component of im-
ages. The objective is to separate the illumination and re-
flection components to enhance local contrast and details
of the image while maintaining natural consistency in color
and lighting. The calculation of the illumination component
is as follows:

N

L(z,y) =Y wn (G(z,y) * S(x,y)) 3)

n=1

similarly, the calculation of the reflection component is:

R(z,y) = ZN: Wn (CM)

n=1

“)

here, IV represents the total number of scales, n denotes a
specific scale, and w,, represents the weight for each scale.



The study selects three scales (5, 20, 100), each assigned
equal weight (w1 = wy = w3 = ).

2.2 Derivation of Reflection Loss

In this section, we combine radiometry and photometry
principles to explore the calculation of perceived brightness
loss of reflected light after illumination hits the object sur-
face. By analyzing factors such as radiant flux, reflectance,
and human eye sensitivity to light, we establish a mathe-
matical model that connects the physical properties of light
with visual perception.

Radiometry and Photometry Principles From a radio-
metric perspective, radiant flux (®) is used to describe the
total energy of the light source, while from a photometric
perspective, luminance focuses on brightness perception,
introducing illuminance (B,,) to quantify luminous flux.
The emphasis is on using the luminous efficiency function
V(X) to convert radiant flux into illuminance, establishing
a connection between physical measurement and perceptual
measurement.

By=FK, ® V() 5)

here, K, represents the maximum spectral luminous effi-
ciency of vision, with a value of 683 lm/W, reflecting the
highest perceived brightness efficiency of light at a specific
wavelength, typically peaking at 555 nm in green light.

Derivation of Reflectance-Energy Relationship Re-
flectance (r) represents the ratio of reflected light energy
to incident light energy. The formula is expressed as:

E,=FEy-r (6)

where F,, represents the energy after reflection, Fy repre-
sents the energy before reflection, and r represents the re-
flectance.

Radiant flux describes how quickly light energy is emit-
ted, transmitted, or received. Therefore, the relationship be-
tween radiant flux (®) and light energy can be defined by
the rate of radiation energy transmission, i.e.,

_dE

¢_E (N

where F represents radiant energy, and ¢ represents time.
By combining equations (6) and (7)), we obtain equation
(8):
‘I)n = @0 - T (8)

where ®,, represents the radiant flux after reflection, and ®
represents the incident radiant flux.

Detailed Derivation of the Mathematical Model Ac-
cording to the formula for converting radiant flux to illu-
minance, the illuminance By of incident light with radiant
flux @y is:

By =Ky, - % - V() ©)

and the illuminance B,, of light reflected from the object
surface with radiant flux ®,, is:

B,=K, -2, -V(\) (10)

Since K, and V() remain constant in both states, it
can be seen from equations (9) and (I0) that there is a di-
rect proportional relationship between the illuminance B,
of reflected light and the illuminance By of incident light,
as shown in equation (TI):

B, =DBy-r (11)

This mathematical model provides us with a framework
for quantifying and understanding the perceived brightness
of reflected light and how to compensate for the loss of il-
lumination component during the reflection process using
principles of physics and photometry.

2.3 Illumination Component Compensation

Based on the derivation of reflection loss in Section 2.2,
this section elaborates on the compensation strategy for the
illumination component in image enhancement algorithm-
s. After Gaussian filtering, we separate the illumination (L)
and reflection (R) components from the V component of the
image. The illumination component reflects the combined
influence of light reflected from the object surface and s-
cattered light in the atmosphere. The research focuses on
analyzing and compensating for the loss of object-reflected
illumination, without detailed consideration of the effects of
atmospheric scattered light.

Reflectance Estimation In this study, we adopt the Lam-
bertian reflectance model to estimate reflectance. This mod-
el assumes that the surface of an object reflects light with the
same intensity regardless of the viewing angle and the direc-
tion of the light source. Widely used in computer graphics
to simulate the reflection properties of non-emissive object-
s, the model’s formula is:

I=1Iy-r-cos(f) (12)

where [ represents the intensity of the reflected light; Iy de-
notes the intensity of the incident light; r is the reflectance
of the object surface, typically ranging from O to 1; 6 is
the angle between the incident light and the surface normal;
cos(#) indicates the cosine value of the angle between the



Figure 2: (a) Original image, (b) Before using the Adaptive Global Bal-
ancing Strategy, (c) After using the Adaptive Global Balancing Strategy.

light ray and the surface normal, representing the influence
of incident light intensity on reflected light intensity.

For simplification, we assume 6 = 0°, [y = 255, i.e.,
the light is vertically incident on the object surface, and the
intensity of the incident light is 255. The minimum value
of the RGB channels can better approximate the intensity
of the reflected light since it is more likely to represent the
weakest part of the illumination among all light sources,
thus mitigating the influence of color saturation to some
extent. Therefore, we set the value of I as the minimum
value of RGB. This method provides an initial estimate of
reflectance.

We found that when using the above formula for re-
flectance to enhance images, there is an issue of disrupting
the original brightness relationship of the image. Therefore,
we propose an optimization function for reflectance adjust-
ment, formulated as:

_ 1

T = I eato=) (13)
where 7 is the optimized reflectance, r( is the initial esti-
mated reflectance, « controls the curvature of the function,
i.e., the rate of growth. Increasing the value of av makes the
function steeper around the inflection point, thereby signifi-
cantly increasing smaller reflectance values. S is the offset,
determining the horizontal position of the center point of
the optimization function. By adjusting 3, the reflectance
threshold can be controlled.

INlumination Component Compensation This section
introduces an illumination component compensation strat-
egy aimed at appropriately adjusting illumination compo-
nents. The strategy consists of two steps: firstly, prelimi-
nary adjustment of the illumination component L to obtain
an illumination component unaffected by atmospheric light;
secondly, adjustment based on atmospheric light values and
reflectance to ensure the authenticity and naturalness of the
illumination component.

According to formula (ﬂ;f[), the initial adjustment formu-
la is:

_L—Ax7

Ly = (14)

7
where L represents the preliminary adjusted illumination
component, L is the initial illumination component ob-

tained through the MSR algorithm, A represents the adjust-
ed local atmospheric light value, and 7 is the reflectance
of different regions in the image. Subtracting A * 7 from
L aims to reduce the influence of atmospheric light on the
illumination component, allowing the illumination compo-
nent to better reflect the brightness of the object itself rather
than the lighting conditions of the external environment.
To precisely define the local atmospheric light, we ex-
tract the image luminance component from the CIE 1931
XYZ color space as the preliminary estimate of local at-
mospheric light A, and further optimize it through guided
filtering to obtain the final local atmospheric light value A:

A=GF(A) 15)

The calculation formula for the final illumination com-
ponent is:
Lfinal =Lo+AxT (16)

where Ly, represents the final illumination componen-
t, and Ly represents the preliminary adjusted illumination
component. By adding the adjusted atmospheric light val-
ue A and reflectance 7 to Ly, we aim to restore the partial
illumination information lost due to atmospheric scattering
effects, preserving both the enhancement effect of objec-
t surface details and the naturalness and authenticity of the
illumination component.

2.4 Adaptive Global Balancing Strategy

Following the illumination component compensation s-
trategy in Section 2.3, we multiply the adjusted illumination
and reflection components to obtain the enhanced V compo-
nent, as shown in the formula below:

Vnew = Lfinal ‘R (17)

The processed results exhibit phenomena of partial over-
exposure in certain regions, as shown in Fig 2[b). To ad-
dress the issue of image overexposure, we consider blend-
ing the enhanced V component with the initial V compo-
nent. Considering that fixed weights are difficult to balance
between dark enhancement and overexposure suppression,
we introduce an adaptive weighting strategy to adjust the
blending weights. The weight calculation formula is:

vV v

where v controls the sensitivity of weight allocation. When
V is small, the weight w approaches 1, allowing the en-
hanced V¢, to dominate; whereas when V' is large, the
weight w approaches 0, enabling the initial ' component to
dominate. Through weight allocation, we can balance the
issues of dark enhancement and bright overexposure.
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Figure 3: (a)Original image, (b) ASV, (c) LIME, (d) LLDE, (e) LLVIF, (f) MF, (g) Ret-Net, (h) RUAS, (i) SCI, (j) Proposed method. Note:img1 represents
the image in the first row, img2 represents the image in the second row, and so on.

Finally, we use the calculated weight w and its comple-
mentary weight 1 — w to blend the enhanced and initial V
components:

sz'nal = GF(WVnew + (1 - w)V) (19)

where V., represents the enhanced V component, V' rep-
resents the initial V component, and G F' denotes guided fil-
tering. The results before and after using the adaptive global
balance strategy are shown in Fig 2]

3 Experimental Results

This study compares the proposed algorithm with t-
wo traditional methods (MF [5]], LIME [6])) and six deep
learning-based methods (Ret-Net [9], ASV [10], RUAS
(11], SCI [12], LLDE [13], LLVIF [14]). All compari-
son methods are reproduced using publicly available source
code and recommended parameters. Key parameter settings
include: Gaussian filter scales of 5, 20, 100; reflectance
adjustment parameters « as 5, 8 as 0.5; adaptive balance
parameter v as 0.3. Firstly, we evaluate the effectiveness
of each method through visual comparison; secondly, we
conduct objective evaluation using the no-reference image
quality assessment metric PIQE [15].

3.1 Subjective Evaluation

Due to space limitations, we selected four representative
images for display, as shown in the figure below.

For scenes with clear light and dark boundaries in natu-
ral light, ASV and LIME tend to produce halos and pseudo-
images at the boundaries; LLDE unevenly brightens dark
areas, with some areas like faces being prone to overex-
posure; LLVIF enhances overall but tends to bias toward-
s white, affecting the original color tones; MF can cause
brightness and darkness reversal and halos in certain scenes;
Ret-Net results in more noise and loss of details; RUAS and
SCI, while enhancing brightness significantly, may lead to
overexposure in bright areas. In comparison, our algorith-
m avoids overexposure in bright areas while significantly
improving brightness and detail preservation in dark areas.
Experimental results are shown in Fig[3] imgl and img2.

In backlit natural light scenes, ASV excels in dark en-
hancement and color preservation but leads to unnatural
brightness contrast in the sky area; LIME tends to cause
color deviation in tree leaves and halo phenomena; LLDE
and LLVIF, although effective in bright areas, exhibit in-
sufficient performance in dark areas; MF significantly im-
proves dark areas but may cause sky area reversal; Ret-Net,
although somewhat effective in handling dark areas, over-
all demonstrates suboptimal performance with considerable
noise. RUAS and SCI can enhance dark areas but result
in sky overexposure. In contrast, our research algorithm
effectively enhances dark areas while preserving color and
brightness relationships, demonstrating better optimization
results. Experimental results are shown in Fig[3] img3 and
img4.

Overall, although each method has its characteristics and



Table 1: PIQE Score

Img imgl | img2 | img3 | imgd | Avg
ASV 36.21 | 35.69 | 34.87 | 36.68 | 35.86
LIME 3275 | 34.61 | 33.89 | 36.38 | 34.41
LLDE 28.48 | 65.22 | 38.71 | 43.45 | 43.96
LLVIF 34.38 | 28.61 | 30.87 | 38.67 | 33.13
MF 31.13 | 32.80 | 35.68 | 34.74 | 33.59
Ret-net 46.94 | 44.14 | 41.24 | 36.43 | 42.19
RUAS 31.70 | 41.82 | 3590 | 60.48 | 42.48
SCI 31.91 | 32.65 | 38.24 | 39.81 | 35.65
Pro 31.46 | 31.45 | 30.80 | 30.21 | 30.98

limitations, the algorithm proposed in this study shows cer-
tain advantages in light-dark transitions, color preservation,
and detail retention.

3.2 Objective Evaluation

In the experimental evaluation, this study adopts the no-
reference image quality assessment metric PIQE (Percep-
tual Image Quality Evaluator) to accurately measure the
image enhancement effect. PIQE, based on human visu-
al perception design, evaluates image quality by analyzing
key visual elements of the image such as contrast, texture,
detail, and noise. Its advantage lies in simulating human
eye response to changes in image quality and synthesizing
both local and global statistical characteristics of the im-
age, which are closely related to human visual perception.
Therefore, PIQE is an effective tool for evaluating image
quality in the absence of original reference images, where a
decrease in score indicates an improvement in image quali-
ty. Detailed evaluation results are shown in Table[I]

In Table |1} red indicates the best result, and blue indi-
cates the second-best result. The evaluation results show
that our method performs excellently in PIQE scores, vali-
dating its superiority in image enhancement.

4 Conclution

This study proposes a low-light image enhancement al-
gorithm based on the Retinex theory. The algorithm is
specifically designed for images captured under low-light
conditions, effectively improving image brightness, con-
trast, and detail clarity while preserving natural colors and
dynamic range through innovative reflectance estimation, il-
lumination component compensation strategies, and adap-
tive global balancing strategies. Compared to traditional
and deep learning methods, this algorithm demonstrates sig-
nificant advantages in maintaining image brightness rela-
tionships, reducing overexposure, and enhancing visual ef-
fects. Experimental results confirm the efficiency and wide

applicability of this method.
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