As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The label ranking problem is a supervised learning scenario in which the learner predicts a total order of the class labels for a given input instance. Recently, research has increasingly focused on the partial label ranking problem, a generalization of the label ranking problem that allows ties in the predicted orders. So far, most existing learning approaches for the partial label ranking problem rely on approximation algorithms for rank aggregation in the final prediction step. This paper explores several alternative aggregation methods for this critical step, including scoring-based and non-parametric probabilistic-based rank aggregation approaches. To enhance their suitability for the more general partial label ranking problem, the investigated methods are extended to increase the likelihood of producing ties. Experimental evaluations on standard benchmarks demonstrate that scoring-based variants consistently outperform the current state-of-the-art method in handling incomplete information. In contrast, non-parametric probabilistic-based variants fail to achieve competitive performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.