Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Jun 2022]
Title:DETR++: Taming Your Multi-Scale Detection Transformer
View PDFAbstract:Convolutional Neural Networks (CNN) have dominated the field of detection ever since the success of AlexNet in ImageNet classification [12]. With the sweeping reform of Transformers [27] in natural language processing, Carion et al. [2] introduce the Transformer-based detection method, i.e., DETR. However, due to the quadratic complexity in the self-attention mechanism in the Transformer, DETR is never able to incorporate multi-scale features as performed in existing CNN-based detectors, leading to inferior results in small object detection. To mitigate this issue and further improve performance of DETR, in this work, we investigate different methods to incorporate multi-scale features and find that a Bi-directional Feature Pyramid (BiFPN) works best with DETR in further raising the detection precision. With this discovery, we propose DETR++, a new architecture that improves detection results by 1.9% AP on MS COCO 2017, 11.5% AP on RICO icon detection, and 9.1% AP on RICO layout extraction over existing baselines.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.