Computer Science > Computer Science and Game Theory
[Submitted on 5 Aug 2024 (v1), last revised 11 Aug 2024 (this version, v2)]
Title:Nash Equilibrium in Games on Graphs with Incomplete Preferences
View PDF HTML (experimental)Abstract:Games with incomplete preferences are an important model for studying rational decision-making in scenarios where players face incomplete information about their preferences and must contend with incomparable outcomes. We study the problem of computing Nash equilibrium in a subclass of two-player games played on graphs where each player seeks to maximally satisfy their (possibly incomplete) preferences over a set of temporal goals. We characterize the Nash equilibrium and prove its existence in scenarios where player preferences are fully aligned, partially aligned, and completely opposite, in terms of the well-known solution concepts of sure winning and Pareto efficiency. When preferences are partially aligned, we derive conditions under which a player needs cooperation and demonstrate that the Nash equilibria depend not only on the preference alignment but also on whether the players need cooperation to achieve a better outcome and whether they are willing to this http URL illustrate the theoretical results by solving a mechanism design problem for a drone delivery scenario.
Submission history
From: Abhishek Kulkarni [view email][v1] Mon, 5 Aug 2024 23:18:26 UTC (2,015 KB)
[v2] Sun, 11 Aug 2024 14:33:08 UTC (2,015 KB)
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.