Computer Science > Computation and Language
[Submitted on 17 Feb 2025 (v1), last revised 24 Oct 2025 (this version, v5)]
Title:DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection
View PDF HTML (experimental)Abstract:The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and well-curated multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus constructed from newly extracted Common Crawl data and existing multilingual sources. DCAD-2000 covers 2,282 languages, 46.72TB of text, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of existing data cleaning approaches, which rely on manually designed heuristic thresholds, we reframe data cleaning as an anomaly detection problem. This dynamic filtering paradigm substantially improves data quality by automatically identifying and removing noisy or anomalous content. By fine-tuning LLMs on DCAD-2000, we demonstrate notable improvements in data quality, robustness of the cleaning pipeline, and downstream performance, particularly for low-resource languages across multiple multilingual benchmarks.
Submission history
From: Yingli Shen [view email][v1] Mon, 17 Feb 2025 08:28:29 UTC (1,501 KB)
[v2] Mon, 31 Mar 2025 05:25:57 UTC (1,501 KB)
[v3] Sun, 21 Sep 2025 01:30:39 UTC (1,542 KB)
[v4] Tue, 21 Oct 2025 10:54:56 UTC (1,554 KB)
[v5] Fri, 24 Oct 2025 11:05:50 UTC (1,554 KB)
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.