Computer Science > Cryptography and Security
[Submitted on 5 Aug 2025]
Title:Selection-Based Vulnerabilities: Clean-Label Backdoor Attacks in Active Learning
View PDF HTML (experimental)Abstract:Active learning(AL), which serves as the representative label-efficient learning paradigm, has been widely applied in resource-constrained scenarios. The achievement of AL is attributed to acquisition functions, which are designed for identifying the most important data to label. Despite this success, one question remains unanswered: is AL safe? In this work, we introduce ALA, a practical and the first framework to utilize the acquisition function as the poisoning attack surface to reveal the weakness of active learning. Specifically, ALA optimizes imperceptibly poisoned inputs to exhibit high uncertainty scores, increasing their probability of being selected by acquisition functions. To evaluate ALA, we conduct extensive experiments across three datasets, three acquisition functions, and two types of clean-label backdoor triggers. Results show that our attack can achieve high success rates (up to 94%) even under low poisoning budgets (0.5%-1.0%) while preserving model utility and remaining undetectable to human annotators. Our findings remind active learning users: acquisition functions can be easily exploited, and active learning should be deployed with caution in trusted data scenarios.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.