Computer Science > Hardware Architecture
[Submitted on 17 Dec 2025]
Title:FAME: FPGA Acceleration of Secure Matrix Multiplication with Homomorphic Encryption
View PDF HTML (experimental)Abstract:Homomorphic Encryption (HE) enables secure computation on encrypted data, addressing privacy concerns in cloud computing. However, the high computational cost of HE operations, particularly matrix multiplication (MM), remains a major barrier to its practical deployment. Accelerating homomorphic encrypted MM (HE MM) is therefore crucial for applications such as privacy-preserving machine learning.
In this paper, we present a bandwidth-efficient FPGA implementation of HE MM. We first develop a cost model to evaluate the on-chip memory requirements for a given set of HE parameters and input matrix sizes. Our analysis shows that optimizing on-chip memory usage is critical for scalable and efficient HE MM. To this end, we design a novel datapath for Homomorphic Linear Transformation (HLT), the primary bottleneck in HE MM. The proposed datapath significantly reduces off-chip memory traffic and on-chip memory demand by enabling fine-grained data reuse. Leveraging this datapath, we introduce FAME, the first FPGA-based accelerator specifically tailored for HE MM. FAME supports arbitrary matrix shapes and is configurable across a wide range of HE parameter sets. We implement FAME on an Alveo U280 FPGA and evaluate its performance across diverse matrix sizes and shapes. Experimental results show that FAME achieves an average speedup of 221x over state-of-the-art CPU-based implementations, demonstrating its scalability and practicality for large-scale consecutive HE MM and real-world workloads.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.