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1 Background

We will consider both supervised learning and reinforcement learning and hence give brief

introductions below.

1.1 Supervised Learning

The goal of supervised learning is to map feature vectors, the independent variable, to

labels or responses, the dependent variable. Let X denote the feature space, and let Y
denote the label / response space. xn ∈ X denotes a feature vector, and yn ∈ Y denotes

the associated response / label defined by Y. The N -element training sample is then D =

{xn, yn}Nn=1. We will almost always work with a probabilistic formulation, using the negative

log-likelihood (NLL) as the training objective. Given a paramerization f(x;θ), where θ are

the model parameters, we can follow the framework of generalized linear models, letting

Ey|x = f(x;θ). The NLL is then:

`(θ;D) = − log

{
N∏
n=1

p(yn|xn,θ)

}

=

N∑
n=1

− log p(yn|xn,θ).

(1)

When Y = R, real numbers, then the supervised learning problem is usually called regression,

and when Y denotes discrete variables, then the task is classification. It is an easy calculation

to show that, for the case of regression, plugging in the normal distribution to the NLL above

yields the squared-error loss function. Similarly, for classification, plugging in the categorical

distribution results in the cross-entropy loss function.

1.2 Maximum Likelihood Estimation

The NLL above is the training objective for the general procedure of maximum likeli-

hood estimation. It can be derived from first principles as follows. Assume that p∗(y)

denotes the true data-generating distribution and p(y;θ) denotes the model with param-

eters θ. The model can be fit to data by minimizing a statistical divergence between

these two distributions. MLE corresponds to using the Kullback–Leibler divergence (KLD):

KLD[p||q] =
∫

log{p/q}dp:

KLD [ p∗(y) || p(y;θ) ] = Ep∗
[
log

p∗(y)

p(y;θ)

]
= Ep∗ [− log p(y;θ)] − H [p∗(y)]

= Ep∗ [− log p (y;θ)] + const.

(2)

where H[p] =
∫

(− log p)dp denotes the entropy of the distribution p. The entropy is a

constant with respect to (w.r.t.) θ and thus it will drop out when taking a derivative

w.r.t. θ. Of course, we do not usually know p∗(y) in practice and instead have knowledge

of it through samples: Y = {y1, . . . ,yN}, yn ∼ p∗(y). We can use these samples to form a
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Monte Carlo approximation of the expectation above:

Ep∗ [− log p(y;θ)] ≈ 1

N

N∑
n=1

− log p(yn;θ), (3)

where the approximation becomes exact as N →∞.

Example for the Categorical Distribution: Now we work through an example of

maximum likelihood estimation when the data takes the form of categories or labels, i.e. yn =

[0, 0, 1, 0], which means that there are K = 4 possible categories and the nth observation was

of the 3rd category. The canonical model for categorical data of this form is the multinoulli

(a.k.a. categorical) distribution:

p(yn;π) = Categorical(yn;π) =

K∏
k=1

π
yn,k
k ,

where π = [π1, . . . , πK ] is the vector of parameters such that πk ∈ [0, 1] and
∑K
k=1 πk =

1. We can now compute the maximum likelihood estimate (MLE) by differentiating the

likelihood w.r.t. π̂d while obeying the constraint that the parameters sum to one. First,

starting with the likelihood alone:

` (π;Y) =
1

N

N∑
n=1

− log p(yn;π) =
1

N

N∑
n=1

− log

{
K∏
k=1

π
yn,k
k

}

=
1

N

N∑
n=1

K∑
k=1

− log π
yn,k
k = − 1

N

N∑
n=1

K∑
k=1

yn,k log πk.

(4)

Now we introduce a lagrange multiplier λ ∈ R to ensure the constraint:

˜̀(π, λ;Y) = − 1

N

N∑
n=1

K∑
k=1

yn,k log πk + λ ·

(
K∑
k=1

πk − 1

)
. (5)

Taking the derivative first w.r.t. a single parameter πd, we have:

∂

∂πd
˜̀(π, λ;Y) =

∂

∂πd

[
− 1

N

N∑
n=1

K∑
k=1

yn,k log πk

]
+ λ · ∂

∂πd

(
K∑
k=1

πk − 1

)

= − 1

N

N∑
n=1

yn,d
πd

+ λ.

(6)

Setting the derivative to zero and rearranging, we have:

0 = − 1

N

N∑
n=1

yn,d
πd

+ λ =⇒ πd =
1

λ

1

N

N∑
n=1

yn,d. (7)
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Now we have to solve for λ:

∂

∂λ
˜̀(π, λ;Y) =

∂

∂λ

[
− 1

N

N∑
n=1

K∑
k=1

yn,k log πk

]
+

∂

∂λ

[
λ ·

(
K∑
k=1

πk − 1

)]

=

K∑
k=1

πk − 1.

(8)

Now setting to zero and plugging in the expression for πd from Equation 7:

1 =

K∑
k=1

πk =

K∑
k=1

(
1

λ

1

N

N∑
n=1

yn,k

)

=
1

λ

1

N

K∑
k=1

N∑
n=1

yn,k.

(9)

Solving for λ we have:

λ =
1

N

K∑
k=1

N∑
n=1

yn,k.

For the final step, we plug in the expression for λ above into Equation 7:

π̂d =
1

λ

1

N

N∑
n=1

yn,d

=
1

1
N

∑K
k=1

∑N
n=1 yn,k

1

N

N∑
n=1

yn,d =

∑N
n=1 yn,d∑K

k=1

∑N
n=1 yn,k

=

∑N
n=1 yn,d
N

.

(10)

This estimator is simply the number of times the dth category appears in the training data

divided by the number of total observations.

1.3 Reinforcement Learning

Reinforcement learning (RL) considers sequential decision-making problems in which models

take actions so that their reward is maximized in an environment. Let s ∈ S be the space of

states, and let a ∈ A be the space of actions. RL usually consider the underlying generative

model to be a Markov Decision Process defined by

st+1 ∼ P(st+1|st, at), rt = R(st; at−1, , st−1)

where P(st+1|st, at) is the transition probability of moving from state st to st+1 by taking

action at. Moreover, R(st; at−1, , st−1) is a reward function that returns the reward of

transitioning to st from st−1 using action at−1. The reward not need be a function of

the previous state and action, e.g. rt = R(st). The goal of RL is to obtain a policy π :

S × A → [0, 1] that determines the appropriate action to take (such that long-term reward

is maximized) when in a given state: π(a|s) = Pr(at = a|st = st). The policy is determined

by parameters θ, so we write πθ(a|s). Collecting a T -length (with T possibly being infinite)
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series of state-action pairs

{(st, at)}Tt=1 where at ∼ πθ(a|st), st+1 ∼ P(st+1|st, at)

is called rolling out a policy, or a rollout.

Optimization Objective The goal is to learn a policy that maximizes return, which is

a function of a state st:

G (st; {at, at+1, . . .}) =

∞∑
t′=0

γt
′
· rt+t′

where γ ∈ [0, 1) is a discount factor that emphasizes near-term rewards. The return compute

the future rewards rt+t′ are obtained by following actions {at, at+1, . . .} from an initial state

st. Given the definition of return, we can then quantify the utility of a given state via the

value function. It quantifies the expected return from a given state:

V π(s) = Eπ [ G (st; {at, at+1, . . .}) | st = s ]

=
∑
a∈A

π(a|s) · Eπ [ G (st; {at, at+1, . . .}) | st = s, at = a ]

where the expectation is taken over rollouts of π. The final RL optimization objective,

known as the Bellman equation, is to find the policy whose stationary distribution over

states places high probability on ‘valuable’ states:

J (θ) =
∑
s∈S

dπ(θ)(s) · V π(θ)(s)

=
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) · Eπ(θ) [ G (st; {at, at+1, . . .}) | st = s, at = a ]︸ ︷︷ ︸
Qπ(θ)(s,a)

=
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) ·Qπ(θ)(s, a)

(11)

where dπ(θ) is the stationary distribution under policy πθ, meaning it is the marginal distri-

bution over state visitations. The expectation within the value function has its own name,

the Q-function, that quantifies the value of a state-action pair. I write π(θ) in the super-

scripts to emphasize that these quantities are dependent upon the parameters that are being

optimized. Ideally, we want to find a policy such that

θ∗ = arg max
θ∈Θ

J (θ).

There are many approaches to this optimization problem, of course, with crucial decisions

needed about how to calculate various statistics of the states visited during finite-sample

rollouts. We will mostly ignore these details, referring the reader to any standard text on

RL if needed.

Entropy-Regularized RL Often MDPs are non-smooth and in need of regularization.

Thus entropy-regularized MDPs are often considered, which use the modified reward func-
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tion:

RH(st; at−1, st−1, λ) = R(st; at−1, , st−1) + λ ·H [π(at|st)]

where λ ∈ R+ is a weighting constant and H [π(at|st)] is the entropy of the distribution

over actions at the current state. Hence the modified reward encourages policies that not

only obtain high reward but also lead to states that are not ‘dead ends,’ meaning that

there are relatively many actions with non-negligible probability with which to transition

out of the current state. Under entropy-regularization, the optimal policy has a nice (yet

self-referential) form:

π∗(a|s) = exp
{
λ−1

(
Qπ
∗
(s, a)− V π

∗
(s)
)}

. (12)

We see that the optimal policy is the exponentiated difference between the Q- and value

functions.

Advantage Function For a reference policy π, we may at times be curious what could

be gained by taking an alternative action, possibly sampled from a difference policy: a ∼ π′ .
This can be quantified by the advantage function, which is defined as:

Aπ(s, a) = Qπ(s, a) − V π(s).

We see it is the difference between the Q-function, evaluated at the current state and the

action under consideration, and the value function defined from the reference policy π.

Comparing this equation to Equation 12, we see that the optimal policy under entropy

regularization is just the exponentiated advantage function:

π∗(a|s) = exp
{
λ−1

(
Qπ
∗
(s, a)− V π

∗
(s)
)}

= exp
{
λ−1 ·Aπ

∗
(s, a)

} (13)

where λ is again the weight on the entropy term.

Performance Difference Lemma Lastly, the advantage function also has a useful the-

oretical property, which we show below in the form of the Performance Difference Lemma

(PDL) (Kakade and Langford, 2002).

Theorem 1.1. Performance Difference Lemma: For two policies π and π′, the

difference between their value functions is equivalently expressed in terms of the

advantage function:

V π
′
(s)− V π(s) =

1

1− γ
Es∼d(s;π′)Ea∼π′ [A

π(s, a)] (14)

where γ is the discount, d(s;π′) is the stationary distribution over states from fol-

lowing π′, and Aπ(s, a) is the advantage function under π.

See pages 6 and 7 of these notes for a proof: https://nanjiang.cs.illinois.edu/

files/cs542f22/note1.pdf. An alternative, more explicit proof can be found here: https:
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//wensun.github.io/CS4789_data/PDL.pdf. The intuition behind the PDL is that the

difference in the value of two policies can be expressed as the advantage of one policy under

rollouts (i.e the expectation) of the other. This will be a useful tool when comparing, for

example, a policy found through an approximation vs an optimal one.

1.4 Model Calibration

Consider a probabilistic classifier f : X 7→ ∆K , where X is a feature space and ∆K is a

space of probability measures on the label space Y. One can think of ∆K as a point on the

simplex, an output of a softmax function. A fundamental question to ask about f is: to

what extent does f capture the true underlying predictive distribution? That is, we are not

simply concerned with the accuracy of f but rather its ability to capture the full predictive

distribution, i.e. p(y|f(x)) ≈ P(y|x), where p(y|f(x)) denotes a categorical distribution over

the labels as defined by the model and P(y|x) is the true generative process of the data. If

this model is a good approximation for the underlying generative process, we call the model

well calibrated. I’ll define this more formally below.

Calibration and Decision Making But first, why should we care if a model is well-

calibrated? One major benefit of calibration is that it allows you to treat the f(x) values

as confidence scores. If the model is predicting class #1 with f1(x) = 90%, then that level

of confidence can be propagated into downstream decision making. In some settings, 90%

confidence is more than enough to take some action, but perhaps in a medical setting, we

require 99% or otherwise need to collect more data by running more tests. We can make

this property more rigorous through the lens of Bayesian decision theory. Consider some

loss function L(a(x), y), which computes the loss incurred when taking action / decision a(·)
for input features x when the true class is y. We then say that the risk for the decision rule

a(·) is:

R(a) = EP(x)EP(y|x) [L(a(x), y)] =

∫
x

P(x)

∫
y

P(y|x) · L(a(x), y) dy dx.

Classification can be formulated in the above framework by setting L(a(x), y) = I[a(x) 6= y],

where the ‘action’ is choosing a particular class as the final prediction.

Of course, we want to take actions that minimize this risk, and thus the Bayes optimal

decision is:

a∗ = arg min
a∈A

R(a),

where A is the space of all possible actions or decision rules. However, in the real world, we

don’t have access to P(y|x)—or else, why would we have to train a model to approximate

it?—and so we have to instead work with the model-based risk:

R̃(a) = EP(x)Ep(y|f(x)) [L(a(x), y)] =

∫
x

P(x)

∫
y

p(y|f(x)) · L(a(x), y) dy dx.

Yet, if we should be so lucky that our model is perfectly calibrated, i.e. p(y|f(x)) = P(y|x),

8
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then the decisions taken using the model will be Bayes optimal:

a∗ = arg min
a∈A

R(a) = arg min
a∈A

R̃(a).

This is the core benefit of (perfect) calibration: decisions made based on our model will be

principled (Grünwald, 2016; Noarov and Roth, 2024). Otherwise, any calibration error will

propagate, leading to sub-optimal actions in downstream decision making. As we will see

later, having a well-calibrated model is especially valuable when we want to do joint decision

making, such as when a model and human are working together (Chow, 1957b).

Forms of Calibration We now define calibration more precisely. Starting with the afore-

mentioned ideal case of perfect calibration, we call a classifier perfectly calibrated (or dis-

tribution calibrated or canonically calibrated) if it perfectly matches the probability assigned

by the true generative process:

P(y = y|fy(x)) = fy(x), ∀ x ∈ X , ∀ y ∈ Y.

Unfortunately, it is not only hard to achieve perfect calibration, it is even hard to check if a

classifier is perfectly calibrated (except in the case of binary classification). This is because

we usually only see one label per feature vector, and evaluating perfect calibration would

require multiple labels (exponentially many in the number of classes), in order to form a

histogram approximation of P(y|x).

In machine learning, it is instead common to check for confidence calibration, which

instead checks for calibration in the top-ranked class:

P

(
y = arg max

k∈[1,|Y|]
fk(x)

∣∣∣∣ max
k∈[1,|Y|]

fk(x)

)
= max

k∈[1,|Y|]
fk(x), ∀ x ∈ X ,

where arg maxk∈[1,|Y|] fk(x) denotes the modal prediction from the model and maxk∈[1,|Y|] f(x)

denotes the corresponding confidence score. This is a much more tractable quantity to eval-

uate since we have reduced the scope of concern from matching the probability of all classes

to just the most likely one (under the model). This will be tractable to quantify via a

reliability diagram. These are plots that report, for held-out data, the accuracy (y-axis) for

all points that evaluate to approximately the same confidence score, maxk∈[1,|Y|] fk(x). The

intuition can be had from weather forecasting: we collect all the past instances for which the

weatherperson said that there would be an X% chance of some weather event. We then look

to see, of those cases, how many times the event actually occurred. For a good forecaster,

their accuracy on all points at a stated confidence level should match that confidence score.

In practice, some binning of confidence scores is required to get reliable statistics (e.g. check

the accuracy for all forecasts with confidences between 27% and 33%, hoping for roughly

30% accuracy). A perfectly confidence calibrated model will have a reliability diagram with

results that lie perfectly on the y = x line. Of course, some degree of mis-calibration usually
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exists, and we can summarize this error via the expected calibration error (ECE):

ECE(f ;P(y|x)) =

∫
x

P (fmax(x)) ·
∣∣fmax(x)− EP(y|x)[y | fmax(x)]

∣∣ dx
≈

∑
v∈B(f)

P̂ (fmax(x) = v) ·
∣∣∣v − ÊP(y|x)[y | fmax(x) = v]

∣∣∣ , (15)

where fmax(x) = maxk∈[1,|Y|] fk(x). The second line represents the discrete approximation

used in practice, with B(f) denoting a binning of f ’s output range, P̂ (fmax(x) = v) denoting

a histogram estimate of the density, and ÊP(y|x) denoting a Monte Carlo approximation of

the expectation. The ECE can be thought of as measuring how far the model is from

achieving a perfect y = x reliability diagram.

Confidence calibration can be too blunt at times. Again let’s consider the weather

forecasting example. Confidence calibration is a statement about reliability over all classes,

but you may want to assess how good the weather forecaster is at predicting particular

weather events. In other words, if the forecaster is predicting there will be a hurricane

with 90% confidence, we may want to check all historical cases in which the forecaster

predicted hurricanes with 90% confidence, not any weather event with 90% confidence.

This calibration variant—where both the confidence and class prediction are conditioned

upon—is called top-label calibration (Gupta and Ramdas, 2022):

P

(
y = arg max

k∈[1,|Y|]
fk(x)

∣∣∣∣ max
k∈[1,|Y|]

fk(x), arg max
k∈[1,|Y|]

fk(x)

)
= max

k∈[1,|Y|]
fk(x), ∀ x ∈ X .

Measuring top-label calibration requires more data than confidence calibration since the data

is now stratified by confidence level and class prediction. Hence, while top-label calibration

gives a finer-grained notions of reliability, we must ‘pay’ in data when evaluating a model’s

degree of top-label calibration.

Generalization and Multi-Calibration For a complete generalization, we can think of

calibration as always being defined with respect to a reference class (Hájek, 2007). This

reference class is necessary as, when evaluating calibration in practice, we will need to pool

over this reference class for statistical signal. Let Φ : X 7→ ZΦ be a grouping function.

The equivalence classes of this grouping function then define the reference classes: [x]Φ =

{x′ : Φ(x) = Φ(x′)}. For a general reference class structure defined via Φ, we can define

calibration with respect to this choice of reference classes as:

E [P(y = y|x) | x ∈ [x]Φ] = P(y = y | Φ(x)) = f(x), ∀ x ∈ X , ∀ y ∈ Y.

When Φ is the identity function, then this definition recovers perfect (or canonical) cal-

ibration. However, this formulation is not useful for all definitions of Φ. For example,

if Φ is a constant function, e.g. Φ : X 7→ 1, then E [P(y = y|x) | x ∈ X ] is simply the

marginal class probability, which is 1/K for data with a balanced number of classes. Thus,

a constant model, f : X 7→ 1/K will be calibrated under this definition, while in practice

such a model would be meaningless. Confidence calibration can be recovered by choosing

Φ : X 7→ fmax(x) and only evaluating the class that is the mode of f(x). This generalized

definition is a gateway to considering even more general definitions with other aggregation
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functions, such as the median, and has deep connections to algorithmic fairness (Höltgen and

Williamson, 2023). Due to this flexibility in the underlying definition, one may worry that

they are evaluating calibration for an appropriate grouping function. This is the motivation

for multi-calibration (Hebert-Johnson et al., 2018): calibrating with respect to a series of

grouping functions with increasing granularity. Yet, still the choice of grouping functions

as simply uniformly random subsets of X allows a predictor to be approximately multi-

calibrated by simply outputting the marginal class probability (the aforementioned trivial

case). In the other extreme, if the grouping functions become so granular as to uniquely

identify the points in X , then it is testing for perfect (canonical) calibration. Thus, like

before, some balance must be struck in the resolution for which to partition X , but at least

mutli-calibration allows us to ‘hedge our bets’ over multiple resolutions.

Improving Calibration If one’s model is not satisfactorily calibrated, then there are

several strategies to improve it. The most basic is to simply improve the model in all of the

traditional ways : more data, hyper-parameter tuning, parameters, etc. If the model cannot

be improved in the traditional sense or already has satisfactory accuracy, then one could

attempt to improve calibration by optimizing the expected calibration error itself (Bohdal

et al., 2023; Karandikar et al., 2021). Yet a simpler strategy that is commonly employed for

neural networks is temperature scaling (Guo et al., 2017). Let a(x) = [a1(x), . . . , aK(x)]

be the logits of a neural-network-based classifier for K classes. Temperature scaling adds a

temperature parameter T ∈ R+ as follows: softmax (a1(x)/T, . . . , aK(x)/T ) . As T → 0+,

the softmax output concentrates to the dimension of the maximum logit. As T → ∞, the

softmax output has higher and higher entropy. Usually T is fit on a held-out set using

a log-likelihood objective (while keeping all other model parameters fixed). Temperature

scaling, notably, preserves the ranking of the original logit values, meaning that it does not

affect the model’s accuracy.

Conformal Prediction Conformal prediction (CP) (Shafer and Vovk, 2008) constructs a

confidence interval (or set) for predictive inference. In the traditional multiclass classification

setting, given a new observation xn+1, we wish to determine the correct associated label

yn+1 = y∗n+1, where y∗n+1 denotes the true class label. CI allows us to construct a confidence

set C(xn+1) that will cover the true label with marginal probability 1− α:

P
(
y∗n+1 /∈ C(xn+1)

)
≤ α.

Denote the test statistic as S(x, y;D). It is known as a non-conformity function: a higher

value of S means that (x, y) is less conforming to the distribution represented (empirically)

by D. Despite this guarantee, CP is only as good as its test statistic in practice. For

instance, the marginal coverage is naively satisfied if we construct the set randomly by

setting C(x) = Y with probability 1− α and returning the empty set otherwise.

CI is implemented by calculating the non-conformity function on a validation set and

computing the empirical 1− α quantile (with a finite sample correction). At test time, ele-

ments are added to the set until the non-conformity function passes the previously-computed

quantile. For multi-class classification, a common way to define the aforementioned non-

conformity score is via the model’s softmax scores, f(x) ∈ ∆K . Let π1, . . . , πK denote the
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indices for a descending ordering of the softmax scores, i.e. fπ1(x) is the score corresponding

to the modal prediction. The resulting non-conformity function and test statistic are:

S (x, y;D) =

J∑
k=1

fπk(x) (16)

where πJ = y, the index that matches the true label. Hence J = K only when the classifier

ranks the true label last and J < K otherwise. CP can be thought of as a re-calibration

method that, instead of improving the individual confidence scores, computes a threshold

for which we can apply an interpretable level of confidence.

2 Supervised Learning from Human-Generated Labels

When conducting supervised learning, we often don’t have access to some objective mech-

anism for obtaining the labels. Rather, we need to ask usually several human annotators

to provide one. This process is also known as crowdsourcing and whole platforms such as

Amazon Mechanical Turk exist in order to make it easy to query human annotators at scale.

Specifically, assume we have N feature vectors {xn}Nn=1, pass them to L annotators, and

they each produce a response yn,l ∈ {0, 1}K , where K is the total number of classes (i.e. a

multi-class classification task) and yn,l,k = 1 denotes that the annotator has produced a

label for the kth class. All other dimensions are zero.

We can, of course, train a supervised model on this data directly by assuming each

response is an independent observation:

p
(
{yn,1, . . . ,yn,L}Nn=1|xn, . . . ,xN

)
=

N∏
n=1

L∏
l=1

p (yn,l|xn) ,

but this model is in jeopardy of being mislead by noisy labelers. Alternatively, one could

use all data, but give a weight to each annotator that reflects their quality:

N∏
n=1

L∏
l=1

[(p (yn,l|xn)]
wl , where wl ≥ 0.

This is a better option, but the weights wl are hard to determine without access to a

ground-truth label to separate the experts from the incompetent labelers.

Given these challenges of using all provided labels, methods that infer some ground-truth

label have received much attention. The simplest and most common of these methods—

already alluded to above—is majority voting:

t̂n,k = 1 if k = arg max
k∈[1,K]

L∑
l=1

yn,l,k.

All methods for inferring ground-truth work by checking for some form of consensus across

the annotators. This has the drawback that there may be one expert annotator and four

incompetent ones, but if the incompetent ones all agree, then the expert will be seen as an

outlier and likely in the wrong. But, of course, this problem is nearly impossible to prevent
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without an external signal of quality.

Below we will consider more sophisticated models that estimate a confusion matrix to

understand how the crowd is generating their labels. A crucial modeling in this setting is

whether to model the ability of the human labelers. Doing so, of course, incurs a significant

modeling and computational overhead, which can lead one astray if the number of labels

observed per annotator is small. Below we present two common probabilistic models for

determining consensus labels in crowdsourcing applications—pooled and unpooled. Here,

‘pooling’ refers to whether we pool all annotators together or try to model their individual

abilities.

2.1 Pooled: Multinomial Model

The simplest model of this annotation scheme is a pooled multinomial model—pooled because

we don’t model individual annotators. Rather, we assume we have K × K parameters

πk,j ∈ [0, 1], which represents the probability that the labelers will return class j when

the true class is k. This implies that these parameters are normalized across potential

mislabelings:
∑K
j=1 πk,j = 1. We can think of the full K ×K matrix of parameters, denote

it as C, as a confusion matrix, again, representing the crowd’s mislabeling tendencies. We

will see how to extend this model to assess the quality of individual annotators in the next

sub-section.

Observed Truth We first discuss an easier case of the model above where we assume that

we know the true annotation, denoted by an indicator vector t such that tk = 1 denotes

that the true class is k and all other dimensions are zero. The generative process can then

be written as:

tn ∼ Categorical(p∗), yn,l ∼ Categorical (yn,l; 〈C, tn〉) ,∀ n ∈ [1, N ], l ∈ [1, L] (17)

where p∗ are the underlying truth (i.e. class) probabilities, which are unknown. The inner

product 〈C, t〉 = πk, and thus we can think of t as an indicator vector, selecting out a

particular row of C corresponding to the ground-truth class. Assume we have observed a

data set Y =
{
{yn,l}Ll=1

}N
n=1

and the corresponding ground-truths T = {tn}Nn=1. We can

13



write the log-likelihood for the above model as:

`
(
{πk,j}Kk,j=1;Y,T

)
= log

{
N∏
n=1

K∏
k=1

L∏
l=1

p (yn,l|tn,k)

}

= log


N∏
n=1

K∏
k=1

[
L∏
l=1

Categorical (yn,l;πk)

]tn,k
= log


N∏
n=1

K∏
k=1

 L∏
l=1

K∏
j=1

π
yn,l,j
k,j

tn,k
= log


N∏
n=1

K∏
k=1

 K∏
j=1

π
∑
l yn,l,j

k,j

tn,k
=

N∑
n=1

K∑
k=1

tn,k ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j .

(18)

Now to find a maximum likelihood estimator (MLE) for πk,j , we can take the derivative

and set it equal to zero. Yet, since
∑K
j=1 πk,j = 1, we also need to incorporate this constraint

as a lagrangian:

∂

∂πk,j
`
(
{πk,j}Kk,j=1, λ;Y,T

)
=

∂

∂πk,j
`
(
{πk,j}Kk,j=1;Y,T

)
+

∂

∂πk,j
λ

K∑
k=1

1−
K∑
j=1

πk,j


=

[
N∑
n=1

tn,k

(
L∑
l=1

yn,l,j

)
· 1

πk,j

]
− λ

(19)

Setting this equation to zero, we have

0 =

[
N∑
n=1

tn,k

(
L∑
l=1

yn,l,j

)
· 1

πk,j

]
− λ

πk,j =
1

λ

[
N∑
n=1

tn,k

L∑
l=1

yn,l,j

]
.

(20)

Now making sure we obey the sum-to-one constraint, we have

1 =

K∑
j=1

πk,j

=
1

λ

K∑
j=1

N∑
n=1

tn,k

L∑
l=1

yn,l,j

λ =

K∑
j=1

N∑
n=1

tn,k

L∑
l=1

yn,l,j .

(21)
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Algorithm 1: Expectation-Maximization for Pooled Model

Input: Labels Y, prior p(t), initialized confusion matrix C0, max number of EM
iterations T

for t = [1, T ] do

update truth posterior p
(
t | Y, Ĉt−1

)
(Equation 24)

update confusion matrix to obtain Ĉt (Equation 26)
end

Output: Estimated confusion matrix ĈT

Putting everything together, we then have the final form for the MLE:

π̂k,j =

∑N
n=1 tn,k

∑L
l=1 yn,l,j∑K

i=1

∑N
n=1 tn,k

∑L
l=1 yn,l,i

. (22)

We can interpret this quantity as the number of times class j is reported by an annotator

when the true class is k, divided by the total number of annotations of any result when the

true class is k.

Unobserved Truth Previously we assumed we had access to the ground-truth class tn,

but often this is an unrealistic assumption. If we have the ground-truth, then we probably

wouldn’t need to query the annotators in the first place. Luckily, this model is amenable to

a standard missing data treatment via the expectation-maximization (EM) algorithm. We

can construct a conditionally conjugate posterior distribution over t, compute its expected

value, and then perform the maximization step above using these expectations instead of the

ground-truth. Firstly, the aforementioned posterior can be obtained via a prior distribution

over t:

p (tn,k = 1 | yn,1, . . . ,yn,L) ∝

(
L∏
l=1

p (yn,l|tn,k = 1)

)
· p (tn,k = 1)

= pk ·
L∏
l=1

Categorical (yn,l;πk)

(23)

where pk = p (tn,k = 1), as it is assumed to be the same across all n. Normalizing this

distribution, we have

p (tn,k = 1 | yn,1, . . . ,yn,L) =
pk ·

∏L
l=1 Categorical (yn,l;πk)∑K

i=1 pi ·
∏L
l=1 Categorical (yn,l;πi)

=
pk ·

∏K
j=1 π

∑
l yn,l,j

k,j∑K
i=1 pi ·

∏K
j=1 π

∑
l yn,l,j

i,j

= p̂tn,k

(24)

where the denominator is simply a sum over all classes. If the prior probabilities are equal

(pk = pi, ∀i ∈ [1,K]), then these terms would cancel out. We denote the above quantity as

p̂tn,k for the sake of notational brevity.

Now, formally, the expectation step (i.e. E-step) of the EM procedure computes the
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expected log-likelihood:

ET|Y
[
`
(
{πk,j}Kk,j=1;Y,T

)]
= ET|Y

 N∑
n=1

K∑
k=1

tn,k ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j


=

N∑
n=1

K∑
k=1

Et|y [tn,k] ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j

=

N∑
n=1

K∑
k=1

p̂tn,k ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j .

(25)

The M-step is to maximize this equation, just as before, which yields the estimator:

π̂k,j =

∑N
n=1 p̂

t
n,k

∑L
l=1 yn,l,j∑K

i=1

∑N
n=1 p̂

t
n,k

∑L
l=1 yn,l,i

(26)

which can be interpreted as a ‘soft’ version of the MLE presented in Equation 22. The

EM procedures is summarized by iteratively computing Equation 24 and Equation 26 until

convergence.

2.2 Unpooled: Dawid-Skene Model

In many applications with crowdsourced data, we want models that can not only understand

how the crowd is mislabeling, but we want that information per annotator. Having such

information allows poor annotators to be excluded from either the current or future requests.

That can be done with the multinomial model above but with one change, having a confusion

matrix Cl for every labeler, l ∈ [1, L].Doing so expands the number of parameters fromK×K
to L×K×K. Let πl,k,j denote the probability of the l-th labeler reporting class j when the

true class is k. And again,
∑
j πl,k,j = 1. This model is known as the Dawid-Skene model,

named after the authors of the paper in which it was first introduced (Dawid and Skene,

1979).

Observed Truth Again we first discuss the easier case of having access to the true an-

notation, denoted by an indicator vector t such that tk = 1 denotes that the true class is k

and all other dimensions are zero. The generative process can then be written as:

tn ∼ Categorical(p∗), yn,l ∼ Categorical (yn,l; 〈Cl, tn〉) ,∀ n ∈ [1, N ], l ∈ [1, L] (27)

where p∗ are the underlying truth (i.e. class) probabilities, which are unknown. Assume

we have observed a data set Y =
{
{yn,l}Ll=1

}N
n=1

and the corresponding ground-truths
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T = {tn}Nn=1. We can write the log-likelihood for the above model as:

`
(
{Cl}Ll=1;Y,T

)
= log

{
N∏
n=1

K∏
k=1

L∏
l=1

p (yn,l|tn,k)

}

= log


N∏
n=1

K∏
k=1

[
L∏
l=1

Categorical (yn,l;πl,k)

]tn,k
= log


N∏
n=1

K∏
k=1

 L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k
=

N∑
n=1

K∑
k=1

tn,k ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j .

(28)

Now to find a maximum likelihood estimator (MLE) for πl,k,j , we can take the derivative

and set it equal to zero. Yet, since
∑K
j=1 πl,k,j = 1, we also need to incorporate this

constraint as a lagrangian:

∂

∂πl,k,j
`
(
{Cl}Ll=1, λ;Y,T

)
=

∂

∂πl,k,j
`
(
{Cl}Ll=1;Y,T

)
+

∂

∂πl,k,j
λ

K∑
k=1

1−
K∑
j=1

πl,k,j


=

[
N∑
n=1

tn,k · yn,l,j ·
1

πl,k,j

]
− λ

(29)

Setting this equation to zero, we have

0 =

[
N∑
n=1

tn,k · yn,l,j ·
1

πl,k,j

]
− λ

πl,k,j =
1

λ

[
N∑
n=1

tn,k · yn,l,j

]
.

(30)

Making sure we obey the sum-to-one constraint, we have

1 =

K∑
j=1

πl,k,j

=
1

λ

K∑
j=1

N∑
n=1

tn,k · yn,l,j

λ =

K∑
j=1

N∑
n=1

tn,k · yn,l,j .

(31)

Putting everything together, we then have the final form for the MLE:

π̂l,k,j =

∑N
n=1 tn,k · yn,l,j∑K

i=1

∑N
n=1 tn,k · yn,l,i

. (32)

We can interpret this quantity as the number of times class j is reported by annotator l

when the true class is k, divided by the total number of annotations reported by annotator
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l, of any result, when the true class is k.

Unobserved Truth We again turn to the more interesting case in which the ground-truth

class tn is not observed. Again we can apply the EM algorithm to fill in the missing truth

variables. The first step is the same as above: placing a prior distribution over t:

p (tn,k | yn,1, . . . ,yn,L) ∝

(
L∏
l=1

p (yn,l|tn,k)

)
· p (tn,k)

= pk ·
L∏
l=1

Categorical (yn,l;πl,k)

(33)

where pk = p (tn,k), as it is assumed to be the same across all n. Normalizing this distribu-

tion, we have

p (tn,k | yn,1, . . . ,yn,L) =
pk ·

∏L
l=1

∏K
j=1 π

yn,l,j
l,k,j∑K

i=1 pi ·
∏L
l=1

∏K
j=1 π

yn,l,j
l,i,j

= p̂tn,k (34)

where the denominator is simply a sum over all classes. Again the expectation step (i.e. E-

step) of the EM procedure computes the expected log-likelihood:

ET|Y
[
`
(
{Cl}Ll=1;Y,T

)]
= ET|Y

 N∑
n=1

K∑
k=1

tn,k ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j


=

N∑
n=1

K∑
k=1

Et|y [tn,k] ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j

=

N∑
n=1

K∑
k=1

p̂tn,k ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j .

(35)

The M-step is to maximize this equation, just as before, which yields the estimator:

π̂l,k,j =

∑N
n=1 p̂

t
n,k · yn,l,j∑K

i=1

∑N
n=1 p̂

t
n,k · yn,l,i

(36)

which can be interpreted as a ‘soft’ version of the MLE presented in Equation 32. The

EM procedures is summarized by iteratively computing Equation 34 and Equation 36 until

convergence.

2.3 Jointly Learning Ground-Truth and a Predictive Model

In the setting of unobserved truth, the Multinomial and Dawid-Skene models are first applied

to infer a ground-truth label, which would then be used to train a traditional classifier.

However, if obtaining this downstream classifier is our ultimate, then perhaps it is sub-

optimal to have learning be decoupled into a two-stage process. Rather, as proposed by

Raykar et al. (2010), it is better to have a joint formulation. A joint objective can be defined

as follows. Let p(t|x,θ) denote the classifier defined by the conditional probability of the

ground-truth variable t, given the features x and classifier parameters θ. The generative
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Algorithm 2: Expectation-Maximization for Dawid-Skene Model

Input: Labels Y, prior p(t), initialized L confusion matrices C1,0, . . . ,CL,0, max
number of EM iterations T

for t = [1, T ] do

update truth posterior p
(
t | Y, Ĉ1,t−1, . . . , ĈL,t−1

)
(Equation 34)

for l = [1, L] do

update confusion matrix to obtain Ĉl,t (Equation 36)
end

end

Output: L estimated confusion matrices Ĉ1,T , . . . , ĈL,T

process is then:

tn ∼ p(tn|xn,θ), yn,l ∼ Categorical (yn,l; 〈Cl, tn〉) ,∀ n ∈ [1, N ], l ∈ [1, L]. (37)

Note that this model is essentially the Dawid-Skene model but with now the classifier gen-

erating the higher-level distribution over truth.

To learn in this model, the conditional probability of just the annotations can be written

by marginalizing out the ground-truth:

p (Y | x1, . . . ,xN ,θ) =

N∏
n=1

p (yn,1, . . . ,yn,L | xn,θ)

=

N∏
n=1

∑
tn

p (yn,1, . . . ,yn,L | tn) · p (tn | xn,θ)

=

N∏
n=1

∑
tn

(
L∏
l=1

p (yn,l | tn)

)
· p (tn | xn,θ)

=

N∏
n=1

∑
tn

K∏
k=1

[
p (tn,k | xn,θ) ·

L∏
l=1

p (yn,l | tn,k = 1)

]tn,k

=
N∏
n=1

∑
tn

K∏
k=1

[
p (tn,k | xn,θ) ·

L∏
l=1

Categorical (yn,l; πl,k)

]tn,k

=

N∏
n=1

∑
tn

K∏
k=1

p (tn,k | xn,θ) ·
L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k

(38)

where we see that this joint model is essentially the Dawid-Skene model with the truth

variable t marginalized away via the classifier.

Learning can again be done via the EM algorithm, but here we need to work with a
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Algorithm 3: Expectation-Maximization for Raykar et al. Model

Input: Labels Y, features X , prior p(t), initialized L confusion matrices
C1,0, . . . ,CL,0, max number of EM iterations T

for t = [1, T ] do

update truth posterior p
(
t | Y, Ĉ1,t−1, . . . , ĈL,t−1

)
(Equation 34)

fit classifier to posterior probabilities to obtain parameters θ̂t (Equation 42)
for l = [1, L] do

update confusion matrix to obtain Ĉl,t (Equation 41)
end

end

Output: L estimated confusion matrices Ĉ1,T , . . . , ĈL,T , classifier parameters θ̂T

lower-bound on the marginal likelihood from above:

`
(
{Cl}Ll=1,θ;Y

)
= log


N∏
n=1

∑
tn

K∏
k=1

p (tn,k | xn,θ) ·
L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k
=

N∑
n=1

log

∑
tn

K∏
k=1

p (tn,k | xn,θ) ·
L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k
≥

N∑
n=1

∑
tn

K∑
k=1

tn,k · p (tn,k | xn,θ) ·
L∑
l=1

K∑
j=1

yn,l,j · logπl,k,j

=

N∑
n=1

K∑
k=1

p (tn,k = 1 | xn,θ) ·
L∑
l=1

K∑
j=1

yn,l,j · logπl,k,j

= ˜̀
(
{Cl}Ll=1,θ;Y

)

(39)

where the inequality is obtained via Jensen’s inequality for convex functions.

Now finding an estimator for πl,k,j :

∂

∂πl,k,j
˜̀
(
{Cl}Ll=1,θ, λ;Y

)
=

∂

∂πl,k,j
˜̀
(
{Cl}Ll=1,θ;Y

)
+ λ

K∑
k=1

1−
K∑
j=1

πl,k,j


=

N∑
n=1

p (tn,k = 1 | xn,θ) · yn,l,j ·
1

πl,k,j
− λ

πl,k,j =
1

λ

[
N∑
n=1

p (tn,k = 1 | xn,θ) · yn,l,j

]

λ =

K∑
j=1

N∑
n=1

p (tn,k = 1 | xn,θ) · yn,l,j .

(40)

Putting it all together, we then have:

π̂l,k,j =

∑N
n=1 p (tn,k = 1 | xn,θ) · yn,l,j∑K

i=1

∑N
n=1 p (tn,k = 1 | xn,θ) · yn,l,i

(41)

Then given the confusion matrix parameters, we can estimate the classifier as follows. Com-
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puting the posterior over truth values via Equation 34, the training objective for the classifier

is:

ET|Y [`(θ; T,X)] = ET|Y [log p(T|X,θ)]

= ET|Y

[
N∑
n=1

log p(tb|xn,θ)

]

= ET|Y

[
N∑
n=1

log Categorical(tb; f(xn;θ))

]

= ET|Y

[
N∑
n=1

K∑
k=1

tn,k log fk(xn;θ)

]

=

N∑
n=1

K∑
k=1

ET|Y [tn,k] log fk(xn;θ)

=

N∑
n=1

K∑
k=1

p̂tn,k log fk(xn;θ)

(42)

where p̂tn,k is again from Equation 34. We can see this is the usually classifier loss but with

‘soft’ labels. If the classifier would perfectly recreate these posterior probabilities, then they

would be plugged into Equation 41, which in turn would recover Equation 36.

Alternative Formulation Yan et al. (2010) proposed a variant of this model that con-

ditions both the truth and observed label on the features:

tn ∼ p (tn|xn,θt) , yn,l ∼ p (yn,l|xn, tn,θl) , ∀ n ∈ [1, N ], l ∈ [1, L]. (43)

The logic behind this alteration is that, by having y ∼ p(y|t), the Raykar et al. (2010)

model assumes that the observation is a noisy version of the ground-truth and that noise is

completely determined by the ground-truth class. However, in many real-world cases, the

label error might be due to noise in the input features as well. For example, perhaps the

human is annotating an image, and the image is of very poor quality. The low-quality of the

input could be the reason why the annotator produces the wrong label—i.e. the noise from

the input propagating into the label—and not due to any systematic labeling bias they have

for a particular class. This model also has benefits for active learning, as we will consider

in the next subsection.

2.4 Active Learning

In the previous subsection, we were mostly concerned with how to filter out noise or come

to consensus when given multiple annotations. This subsection focuses on how we obtain

labels from humans in the first place and, ideally, through the most efficient means possible.

Collecting human annotations is expensive as it costs humans their time. For example,

annotating the words in an audio recording takes about ten times longer than the audio

recording itself. In turn, the person wanting the labels often must compensate the workers

with payment. Hence we’d like methodologies that minimize these costs by minimizing the

number of labels collected. This brings us to the sub-field of active learning ; most of the
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information from this section is reproduced from the authoritative survey of Settles (2012).

Definition & Types Active learning (AL) allows predictive models to choose their own

training data, similarly to how a math student might ask their teacher for guidance on a

particular problem they find difficult. The high-level idea is that the model will inspect an

unlabeled data point and then determine if its label were acquired, then the model’s perfor-

mance would substantially improve. This process is repeated until the model’s performance

has either reached an acceptable level or plateaus to the level yielded by training on all

available data. There are three standard scenarios considered for AL:

• Membership Query Synthesis (MQS): This is the most general form of AL. In this

setting, the model can request any feature vector in the feature space X as well as

its label. This works well when every point in the feature space has a clearly defined

label. For example, the task of predicting if a robot arm, in a particular configuration,

can hold a glass of water without spilling is a good use case for MQS (assuming X
does not contain any impossible arm configurations). For every feature vector chosen

by the model, it is quite easy to test if the arm position is good or not simply by

running the experiment and seeing if any water spills from the cup. On the other

hand, MQS is not good for image classification since it is very likely feature vectors

could be requested for which there is no discernible label. For example, if we are

considering the space of binary images representing digits, there are many possible

binary images that correspond no recognizable digit.

• Stream-Based Selective Sampling: In this setting, feature vectors are assumed to

appear sequentially, and the model must decided whether to request its label or discard

the vector as ‘uninteresting.’ This use case is prevalent in data collection on low-

resource devices. Imagine there is an autonomous vehicle driving in a new location, and

its designers would like the car to save its sensor readings during ‘interesting’ sections

of the road or during novel events. It would be too costly to save all information from

the whole driving run and so the system must decide for itself which data points to

save for later annotation.

• Pool-Based Active Learning: This setting—which is the most commonly studies

formulation—assumes that there is an unlabeled data set known as the pool set, and

the model is allowed to request the label for a particular member of the pool set. Once

the label is acquired, that point is removed from the pool, and the model is retrained

to include that newly selected point and label. The process repeats until the model

reaches a satisfactory performance or the pool set is empty. There is also a batch

variant in which the model can request multiple points for labeling at each round.

Acquisition Functions for Pool-Based Active Learning We will discuss pool-based

AL exclusively from here forward, and thus when writing ‘AL’, we mean the pool-based

formulation. The setting can be defined more formally as follows. We consider a predictive

model p(y|x,θ), where y is the label, x are the features, and θ ∈ Θ are the parameters.

We assume this model is trained on an initial labeled dataset D0 = {xn,yn}Nn=1, and

thus we denote this model as p(y|x,θt=0) where the subscript on the parameter indexes

time. In addition to the initial dataset D0, we assume access to (i) an unlabeled pool
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set X t=0
p = {xm}Mm=1, and (ii) an oracle labeling mechanism which can provide labels

Yp = {ym}Mm=1 for the corresponding features in the pool set.

At each step in the AL loop, an acquisition function (AF) A(x;θt) is evaluated for every

member of the pool set. A is written as a function of θt because the AF changes along with

the state of the predictive model. We want the AF to acquire the most interesting point

to the current model and thus will collect the label of the point that maximizes the AF,

denoted x∗:

x∗ = arg max
x∈X tp

A(x;θt). (44)

Once the point has been chosen, the oracle provides it’s label, and the new labeled set

becomes:

Dt+1 = Dt ∪ {x∗,y∗}.

Moreover, the chosen point is removed from the pool set: Xt+1
p = Xt

p \ {x∗}. The model is

then re-trained on Dt+1 to produce a new set of parameters θt+1, and the process repeats

by collecting a new point to form Dt+2, which in turn produces θt+2, and so on until either

the pool set is empty or a satisfactory level of performance is reached (which would require

evaluating the model on a held-out set after every re-training step). We now go on to

describe several ways to implement the AF.

Idealized Setting: Error Reduction Ideally, we want to collect (x∗,y∗) that, once

the model is trained on the pair, will reduce the model’s error on all future data points

the model might see. This formulation as been called optimal active learning (Roy and

McCallum, 2001), and the corresponding idealized AF is:

x∗ = arg max
x∈X tp

∫
x

(D [P(y|x) || p (y|x,θt)] − D [P(y|x) || p (y|x,θ(x,y∗))]) P(x) dx (45)

where θ(x,y∗) denotes the parameters produced by training on Dt ∪ {x,y∗} and D is some

measure of discrepancy or divergence between the true generative process P(y|x) and the

model—either at the current time step (θt) or updated with x (θ(x,y∗)). If D is the

Kullback–Leibler divergence, then this AF is picking the point that results in the best

improvement under maximum likelihood estimation. Thus we can think of this—again

idealized—AF as looking ahead to the future, if we were to train the model on a particular

point from the pool set, and see if that new model would better minimize the divergence

between the model and the true distribution that is generating the data. This construction

is called ‘idealized’ because we never have access to P(x), P(y|x), and even if we did, it

requires collecting the labels for all elements of the pool set—the very thing we wish to

avoid. If (D [P(y|x) || p (y|x,θt)] − D [P(y|x) || p (y|x,θ(x,y∗))]) < 0 for every element of

the pool set, then AL should be stopped with θt being the final model.

However, Roy and McCallum (2001) gives the procedure that aims to approximate the

above idealized AF. Firstly, when D is taken to be the KL divergence, notice that:

KLD [P(y|x) || p (y|x,θt)] − KLD [P(y|x) || p (y|x,θ(x,y∗))]

= EP(y|x) [log p (y|x,θ(x,y∗))− log p (y|x,θt)] + H [P(y|x)]−H [P(y|x)]

= EP(y|x) [log p (y|x,θ(x,y∗))− log p (y|x,θt)] .

(46)
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Secondly, they use the pool set to approximate the integral over the underlying feature

distribution: P(x) ≈ 1
M

∑M
m=1 δ [|x− xn|]. Thirdly, this still leaves the expectation over the

unknown distribution P(y|x); they recommend to approximate this with the current model:

P(y|x) ≈ p (y|x,θt). Note that under this assumption, the difference of divergences further

simplifies to:

EP(y|x) [log p (y|x,θ(x,y∗))− log p (y|x,θt)]

≈ Ep(y|x,θt) [log p (y|x,θ(x,y∗))] + H [p (y|x,θt)] ,
(47)

where the second term is the entropy of the current model, and when integrated over the

empirical distribution of the pool set, will be a constant (and thus can be dropped). The

only remaining difficulty is that the above expression still depends on the true label y∗,

which we do not want to assume is know. Roy and McCallum (2001) again leverage the

existing model for this, assuming that y∗ ∼ p (y|x,θt). The final realizable AF is then:

x∗ = arg max
x∈X tp

1

M

M∑
m=1

Ep(y′|x,θt)Ep(y|xm,θt) [log p (y|xm,θ(x,y′))]

≈ arg max
x∈X tp

1

M
· 1

J
· 1

S

M∑
m=1

J∑
j=1

S∑
s=1

log p
(
ŷs|xm,θ(x, ŷ′j)

) (48)

where the approximation in the second line uses J samples of the proxy true label, ŷ′j ∼
p (y′|x,θt), and S samples ŷs ∼ p (y|xm,θt) to approximate the two expectations. The

intuition behind this AF is that it will look for points from the pool set that will result

in models that ‘agree’ with the current distribution. Or as Roy and McCallum (2001) put

it: “An example will be selected if it dramatically reinforces the learner’s existing belief

over unlabeled examples for which it is currently unsure.” While it may seem this could

cause a self-reinforcing effect, with the model selecting points that are already probable

under the current model, this behavior is prevented by calculating the outer sum (over M)

over the pool set, which by definition, are points that have not yet been used for training.

Despite the aggressive approximations used above, the above AF is still computationally

expensive as it requires the model be re-trained J times for one evaluation of the AF. Roy

and McCallum (2001) get around this problem by using naive Bayes classifiers that can be

built using one-pass sufficient statistics. Thus, ‘re-training’ simply requires the sufficient

statistics be changed by one count.

Uncertainty Sampling Now that we have covered an optimal (but unrealizable) AF,

we turn to simpler alternatives. A very popular approach to constructing AFs is known as

uncertainty sampling, which simply takes the point from the pool set for which the model

is most uncertain. One way of quantifying this uncertainty is through the entropy of the
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current model:

x∗ = arg max
x∈X tp

A(x;θt)

= arg max
x∈X tp

H [p(y|x,θt)]

= arg max
x∈X tp

−
∫
y

p(y|x,θt) · log p(y|x,θt) dy.

An often-competitive alternative is to simply look for the predictive distribution with the

least-confident mode:

x∗ = arg max
x∈X tp

A(x;θt)

= arg max
x∈X tp

1 − max
y∈Y

p(y|x,θt).

For binary models, recall that both their entropy and modal probability are maximized at

p(y|x,θt) = 0.5. So for logistic regression, the logistic function equals 0.5 when its input is

0, and thus uncertainty sampling looks for the point in the pool set that is closest to the

decision boundary of the current model.

Query-by-Committee Another well known AF construction is Query-by-Committee

(QC). This method uses a C-sized ensemble of models to perform AL: p(y|x,θ1,t), . . . , p(y|x,θC,t).
The standard AF then checks for disagreement across these models, e.g. in a pair-wise fash-

ion:

A(x;θ1,t, . . . ,θC,t) =

C∑
c=1

∑
j 6=c

disagreement [p(y|x,θc,t) || p(y|x,θj,t)]

where p(y|x,θc,t) and p(y|x,θj,t) are two ensemble different models. Higher-order compar-

isons are possible but become expensive. For implementing the disagreement function, one

simple procedures is to compare the top-ranked predictions:

A(x;θ1,t, . . . ,θC,t) =

C∑
c=1

∑
j 6=c

I [ŷc 6= ŷj ]

where ŷc = arg maxy∈Y p(y|x,θc,t), the prediction from the cth model and I is an indicator

function equal to one when its argument is true. Another example would be to compare

the models via some statistical divergence function. Like uncertainty sampling, QC is also

computing a notion of uncertainty but across an ensemble, not just via one model.

Bayesian Active Learning by Disagreement For a Bayesian predictive model, the

most popular approach at AL is known as Bayesian active learning by disagreement (BALD)

(MacKay, 1992; Houlsby et al., 2011). For a model

y ∼ p(y|x,θ), θ ∼ p(θ),
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where p(θ) is the prior, the BALD AF is the mutual information between the parameters

and labels, i.e.:

A(x;Dt) = I[y,θ|x,Dt]

=

∫
θ

∑
y

p(y|x,θ)p(θ|Dt) log
p(y|x,θ)p(θ|Dt)
p(y|x,Dt) p(θ|Dt)

dθ

=

∫
θ

∑
y

p(y|x,θ)p(θ|Dt) log
p(y|x,θ)

p(y|x,Dt)
dθ

= Eθ|DtKLD [p(y|x,θ) || p(y|x,Dt)] ,

which, as seen above, can be written as the KL divergence between the likelihood and

predictive distribution, averaged over the posterior distribution. However, Houlsby et al.

(2011) recommend working with an equivalent formulation, written in terms of entropy:

A(x;Dt) = I[y,θ|x,Dt]

= H [p(y|x,Dt)] − Eθ|Dt [H [p(y|x,θ)]]

where the first term is the entropy of the posterior predictive distribution and the second

term is the expected entropy of the likelihood, with the expectation taken over the posterior.

The intuition behind this AF is that it will be maximized by the feature vector yielding the

most marginal uncertainty (high-entropy posterior predictive) but for which the likelihood

demonstrates certainty (low entropy) for any given setting of the parameters. Or as Houlsby

et al. (2011) say: it “seek[s] the x for which the parameters under the posterior disagree

about the outcome the most,”—hence the word disagreement in the name BALD.

Batch Active Learning While AL that acquires single points greedily can be near-

optimal in certain cases (Golovin and Krause, 2011; Dasgupta, 2005), it becomes severely

limited in large-scale settings. One reason is the burden of re-training the model after

every acquired data point: re-training a deep neural networks thousands of times is clearly

impractical. Even if computation was not a concern, adding just one single point to the

labeled set will often result in a negligible change to the updated parameters (Sener and

Savarese, 2018). Moreover, since changes in the model will be small, subsequent AL steps

will result in acquiring very similar points.

Due to these limitations of single-point acquisition, there is wide interest in batch AL

methodologies. Given a maximum batch size of B, we can write the batch AL AF as:

X∗ = arg max
{xb}Bb=1∈X tp

A (x1, . . . ,xB ;θt) , (49)

where X∗ = {x∗1, . . . ,x∗B} are the B points that maximize the joint AF A (x1, . . . ,xB ;θt).

Unsurprisingly, this general formulation of batch AL is quite challenging, as it is a combi-

natorial optimization problem that requires checking the AF for all B-sized subsets of the

pool set. Often a greedy approximation is made in which the AF is assumed to decompose

point-wise:

A (x1, . . . ,xB ;θt) ≈
B∑
b=1

A (xb;θt) . (50)
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(a) Entropy (b) BALD (c) Bayesian Coreset

Figure 1: Batch construction of different AL methods on cifar10, shown as a t-SNE projec-
tion (Maaten and Hinton, 2008). Given 5000 labeled points (colored by class), a batch of
200 points (black crosses) is queried.

This approximation is comparatively easy to implement: compute the AF for each point in

the pool set and choose the B points who have the highest values of their AF. However,

such naive batch construction methods still result in highly correlated queries Sener and

Savarese (2018). We demonstrate this in Figure 1, where Subfigure (a) shows a the batch

(black dots) collected by maximizing point-wise entropy and Subfigure (b) shows a batch

collected by point-wise BALD. On the other hand, Subfigure (c) shows a batch AL method

(Pinsler et al., 2019) that does encourage diversity across the batch. See Kirsch et al. (2019)

for a batch AL extension of BALD.

Active Learning with Noisy Labels So far we have assumed that an oracle mechanism

exists that can provide the true label y∗. As discussed in the previous section on crowd-

sourcing, such a mechanism does not always—and usually does not—exist. Thus, at each

acquisition step, we may be provided with one or more noisy labels: y1, . . . , yL, where L

is the number of annotators. Thus this situation would require marrying the consensus-

making techniques from crowdsourcing with the AL loop. This synthesis can be done most

simply by using a naive aggregation mechanism over the labels, such as majority voting.

In this case, the label with the most votes would then be added to the label set as the

ground-truth. On the other hand, if we are using a more sophisticated model from Section

2, the first step would be to update the label model p(y|·). Then the updated posterior over

the truth, p(t|y), can be used in several ways. One would be to take the mode of p(t|y) and

use that as y∗. Note that one major departure from the usual AL framework is that, in

the case of noisy labelers, we are learning more about the label noise at every AL iteration,

and thus we may want to use the new observations to update the truth inference for points

obtained during previous iterations. In other words, the labeled set Dt—which we usually

assume is fixed except for the newly collected point / batch—can have arbitrary changes

over time, driven by the updated model of label noise. If obtaining the labels is especially

costly, we may want to go a step further and only query one of multiple labelers for each

AL iteration. This is the setting considered and addressed by Yan et al. (2011). They use

the conditional label model pl(yl|x, t) from Yan et al. (2010) to query the (estimated) best

labeler at each AL step.
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3 Imitation Learning

Imitation learning (IL) is a variant of RL in which the reward function (R) is unknown, and

instead, observations of human behavior are provided instead. It is assumed that this human

behavior is drawn from a policy that is nearly (but not exactly) optimal under the unknown

reward function. Below I describe variants of IL, including reductions to supervised learning

and ones that allow multiple human queries.

3.1 Behavior Cloning

Behavior cloning (BC) is the simplest of IL strategies, essentially reducing the problem to

that of traditional supervised learning. BC assumes access to a data set:

D = {(sn, an)}Nn=1 , at ∼ πE(a|st) (51)

where πE is the human expert’s policy. These state-action pairs do not have to be sequential

in time. BC then fits a policy πθ(a|s) to this dataset using traditional supervised learning:

θ̂ = arg min
θ∈Θ

N∑
n=1

` (an, πθ(·|sn)) (52)

where ` is a suitable loss function that quantifies the distance between the expert’s action

and the one suggested by the policy. For example, one could use maximum likelihood

estimation:

θ̂ = arg min
θ∈Θ

Es [KLD [ πE(a|s) || πθ(a|s) ]] ≈ arg max
θ∈Θ

N∑
n=1

log πθ(an|sn) + const.

Notice that the expectation over states is defined by the expert interacting with the environment—

not the policy we aim to learn—this is a problem in that our policy is disconnected with the

underlying MDP. Thus, while easy to implement, BC suffers from some obvious limitations:

• Training the policy is disconnected from the underlying MDP. In other words, the

policy never ‘sees’ states that are generated by itself.

• The efficacy of BC depends on having excellent coverage of the state space.

• The policy could have good supervised learning performance, but this does not guar-

antee good performance under the MDP. In fact, theory has shown that supervised

learning error can be small, but the policy still has quadratic error w.r.t. the reward.

Hence, BC seems best suited for fine-tuning policies that are already quite performant.

We can quantify BC’s sub-optimality as follows. Assume that supervised learning has

succeeded such that the optimal policy and the learned policy agree in their top-ranked

action with high probability:

Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]]

= P (π∗ 6= π̂|s) ≤ ε (53)
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where ε is a small non-negative constant ε ∈ R≥0 and the expectation is taken w.r.t. π∗’s

stationary distribution over states. We are then interested in the difference in value functions

under the optimal and learned policies, which can be founded as follows:

Proposition 3.1. Assume a normalized reward function rt ∈ [−1, 1] and both poli-

cies are deterministic such that they choose the top-ranked action. Moreover, assume

that P (π∗ 6= π̂|s) ≤ ε for ε ∈ R≥0. The difference in value functions is then:

V π
∗
(s) − V π̂(s) ≤ 2

(1− γ)2
· ε

where γ ∈ [0, 1) is the discount factor.

The upper bound is linear in the supervised learning error ε but quadratic in the discount,

meaning that the more future rewards are considered (i.e. γ closer to one), the worse the

performance gap will be when the policy is deployed in the MDP. Thus we can say 2/(1−γ)2

‘amplifies’ the supervised learning error ε.

Before going to the proof, first note that the maximum value of the value function is

when the reward is maximized at one at every state:
∑∞
t=0 γ

trt =
∑∞
t=0 γ

t = 1/(1 − γ),

where the infinite series converges due to it being a standard geometric series. Similarly, the

value functions can take a minimum of −1/(1− γ). Thus 2/(1− γ) ≥ V π
∗
(s)− V π̂(s) ≥ 0

and so we’d like an upper bound that’s a function of ε. The proof is then:

V π
∗
(s)− V π̂(s) =

1

1− γ
· Es∼d(π∗)

[
Aπ̂(s, arg max

a∈A
π∗(a|s))

]
=

1

1− γ
· Es∼d(π∗)

[
Qπ̂(s, arg max

a∈A
π∗(a|s)) − V π̂(s)

]
=

1

1− γ
· Es∼d(π∗)

[
Qπ̂(s, arg max

a∈A
π∗(a|s))−

∑
a′∈A

I[a′ = arg max
a∈A

π̂(a|s)] ·Qπ̂(s, a′)

]

=
1

1− γ
· Es∼d(π∗)

[
Qπ̂(s, arg max

a∈A
π∗(a|s))−Qπ̂(s, arg max

a∈A
π̂(a|s))

]
≤ 1

1− γ
· Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]
· 2

1− γ

+ I
[
arg max
a∈A

π∗(a|s) = arg max
a∈A

π̂(a|s)
]
· 0
]

=
1

1− γ
· Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]
· 2

1− γ

]
=

1

1− γ
· 2

1− γ
· Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]]

=
1

1− γ
· 2

1− γ
· ε

=
2

(1− γ)2
· ε.

where the first identify is the performance difference lemma. The upper-bound created in

the fifth line arises from the fact that if the policies choose the same actions (π∗ = π), then

the difference in the Q-functions is zero. Otherwise, we assume the difference is maximal at
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2/(1 − γ). This then reduces the problem into the probability of the policies being equal,

which we have already defined to be ε. Perhaps a tighter bound exists by making a stronger

assumption than that the difference in returns will be less than maximal.

3.2 Policy Learning via an Interactive Demonstrator

Policy Learning via an Interactive Demonstrator (PLID) is an extension of Behavior Cloning

that allows the expert to be queried multiple times. Again we start with a set of demon-

strations:

D0 = {(s0,n, a0,n)}Nn=1 , a0,t ∼ πE(a|s0,t). (54)

Moreover, assume that we have used BC to fit a policy pi0(a|s) to D0. PLID then proceeds

with the following loop:

1. For m = [1,M ]:

2. Rollout πm−1(a|s) to collect a sequence of states {sm,n}Nn=1.

3. Query expert to gather corresponding actions for the observed states:

Dm = {(sm,n, am,n)}Nn=1 , am,t ∼ πE(a|sm,t).

4. Apply BC to fit a policy πm(a|s) to D0:m = D0 ∪ . . . ∪ Dm.

The PLID formulation above is known as DAGGER (Ross et al., 2011), as it aggregates the

data collected from each loop. Alternatively, policies could be trained individually at each

loop and then some form of model fusion performed. This is a better approach when Dm is

large such that re-training on the combined data set takes a long time.

PLID solves BC’s problems of being disconnected from sequential decision making (by

rolling out the current policy at step #2) and possibly having limited state coverage (by

re-querying the expert). We can see this explicitly by considering the behavior cloning

objective after one step of interactive demonstration:

θ̂1 = arg min
θ∈Θ

Es∼π0 [KLD [ πE(a|s) || πθ0(a|s) ]] ≈ arg max
θ∈Θ

N∑
n=1

log πθ0(an|sn) + const.

Unlike above, where the expectation over states was under rollouts of the expert’s policy,

here they are states obtained by rolling out π0 (the policy we’re learning). This comes at the

price, of course, of needing much more participation and effort from the expert. Moreover,

if the state-space is continuous, it may be difficult for the expert to provide a demonstration

exactly at the state found during the rollout. Imagine the case of finding a policy for driving

a car: the car’s position and the exact configuration of the controls must re-created and the

expert thrust into the task of driving at that exact instant.

3.3 Distribution Matching

Distribution matching (DM) aims to solve BC’s problems (namely, disconnection from se-

quential decision making / the underlying MDP) while not having PLID’s limitation of

intensive expert supervision. The key insight that differentiates DM is to consider the
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joint distribution over actions and states, instead of just the conditional distribution of ac-

tions given states. Call a T -length sequence of states an actions a trajectory, denoted as

τ = (s0, a1, s1, . . . , aT , sT ), and consider a distribution over trajectories:

pπ(τ) = p(s0)

T∏
t=1

π(at|st−1) P(st|st−1, at) (55)

where π is a policy and P(st+1|st, at) is the MDP’s transition probability. Let the proba-

bility of a trajectory under the model be denoted pπ(θ)(τ) and the expert demonstrator’s

distribution be denoted pE(τ). We will not have an exact analytical form for pE(τ); rather

we see only samples

D = {(sn,0, an,1, sn,1, . . . , an,T , sn,T )}Nn=1 , aj,t ∼ πE(a|sj,t), sj,t+1 ∼ P(st+1|sj,t, aj,t),

with the expert’s policy πE(a|s) again being assumed to be near optimal.

Figure 2: Imitation learning can fail when the target policy is multi-modal and the learned
policy is not sufficiently expressive to cover multiple modes. Image reproduced from Ke
et al. (2021).

Divergence Function Consider fitting a policy πθ by defining a divergence function

that measures a notion of distance or dissimilarity between the model’s distribution over

trajectories and the expert’s:

D
[
pπ(θ)(τ) || pE(τ)

]
.

Specifically, Englert et al. (2013) proposes the Kullback–Leibler divergence:

KLD
[
pE(τ) || pπ(θ)(τ)

]
=

∑
τ∈(S×A)T

pE(τ) log
pE(τ )

pπ(θ)(τ )

≈
N∑
n=1

− log pπ(θ)(τn) + const.

(56)

where the second line corresponds to the negative log-likelihood computed under N samples.

This formulation can be thought of as similar to BC (with a log-likelihood objective) but

different in that the distribution over states is modeled as well as the conditional distribution

over actions. However, sampling whole trajectories can be statistically difficult (for large
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T ), and thus a factorization over state-action pairs is often assumed (Englert et al., 2013):

KLD
[
pE(τ) || pπ(θ)(τ)

]
≈

T∑
t=1

KLD
[
pE(st, at) || pπ(θ)(st, at)

]
≈

N∑
n=1

T∑
t=1

−{log πθ (an,t|sn,t−1) + log qθ (sn,t)} + const.

(57)

where qθ is a marginal distribution over states. We can think of this objective as a form

of regularized BC, as we don’t just want to fit the policy but also a regularizer that en-

sures the distribution over states matches that of the expert’s trajectories. Despite the

success of the above formulation, Ke et al. (2021) point out a general limitation in using

the Kullback–Leibler divergence from expert to model, as pπ will be forced to place sup-

port everywhere that pE does, and if our model is not sufficiently expressive, then we will

learn solutions that try to interpolate across modes but capture none of them. Figure 2

demonstrates this problem: due to the unimodal distribution’s need to cover both modes,

the model tries to satisfy both modes, which causes the car to crash directly into the thing it

was trying to avoid. One may then wish to turn to the reverse KLD, which is mode seeking

since the expectation is now taken w.r.t. pπ(θ):

KLD
[
pπ(θ)(τ) || pE(τ)

]
=

∑
τ∈(S×A)T

pπ(θ)(τ ) log
pπ(θ)(τ )

pE(τ )
. (58)

However, this objective is hard to optimize due to needing to evaluate probability density /

mass for pπ and pE—the latter of which we only can observe through samples.

Adversarial Imitation Learning Generative Adversarial Imitation Learning (GAIL)—

inspired by the similarly named Generative Adversarial Networks (GANs)—are one scalable

approach to estimate high-dimensional, mode-seeking divergences. They operate by chang-

ing the problem to one of two-sample testing: given samples from the model τj ∼ pπ and

expert τn ∼ pE , can a binary classifier correctly predict the source of each?

Jψ
(
pπ(θ), pE

)
= EE [− log h (τ;ψ)] + Eπ [− log(1− h (τ;ψ))]

≈

(
1

N

N∑
n=1

− log h (τn;ψ)

)
+

 1

J

J∑
j=1

− log(1− h (τj ;ψ))

 (59)

where h (τ ;ψ) : τ 7→ (0, 1) represents the binary classifier. Jψ will be minimized when

the model’s and expert’s sample trajectories are perfectly discriminated. GAIL can also be

formulated over state-action pairs, if full trajectories are too challenging, as done above:

≈

(
1

N

N∑
n=1

T∑
t=1

− log h (sn,t, an,t;ψ)

)
+

 1

J

J∑
j=1

T∑
t=1

− log(1− h (sj,t, aj,t;ψ))

 . (60)

With the adversarial objective in hand, we can use it to optimize the policy πθ by an

adversarial max-min problem where the classifier seeks to minimize the classification loss

while the policy seeks to maximize it (so that the samples look to be from indistinguishable
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sources):

(θ∗,ψ∗) = arg max
θ

arg min
ψ

Jψ
(
pπ(θ), pE

)
. (61)

The optimal discriminator ψ∗ satisfies:

log h (τ;ψ∗) − log (1− h (τ;ψ∗)) = log
pE(τ)

pπ(θ)(τ)
, (62)

and hopefully the ratio pE(τ)/pπ(θ∗)(τ) ≈ 1, meaning that the distributions have been

successfully matched. In summary, GAIL is an attractive method as it does not require any

instantiation of a density / mass function and can operate solely using samples from the

expert and policy (i.e. rollouts). This comes at some cost to sample efficiency and a more

difficult optimization problem, but those tradeoffs seem to not be a limitation in practice.

3.4 Inverse Reinforcement Learning

Inverse RL (IRL) aims to learn the reward function from expert demonstrations. Hence the

term inverse since RL usually assumes the reward function is given. A policy is learned as

well, using the learned reward function. Thus, learning both functions could be a challenge,

but IRL assumes that learning the reward function is statistically easier than learning the

policy. Specifically, we assume the reward is a parameterized function: R(st) ≈ Rφ(st)

where φ are the parameters of the model used to learn the reward function. For simplicity,

we assume the reward is only a function of the current state. Now the RL optimization

objective is a function of both the policy’s parameters (θ) and reward model’s (φ):

J (θ,φ) =
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) · Eπ(θ) [ Gφ (st; {at, at+1, . . .}) | st = s, at = a ]

=
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) · Eπ(θ)

[ ∞∑
t′=1

γt′ ·Rφ (st+t′) | st = s, at = a

]
.

(63)

As we will see below, solving this difficult optimization problem will require assuming some

constraints on the policy and/or reward function. Yet in general, IRL follows the algorithmic

sketch below.

1. Fit Rφ to the expert demonstrations.

2. Given Rφ, fit πθ using traditional RL.

3. Compare πθ vs πE , the model and expert policies.

4. If the difference in policies is sufficiently large, repeat the loop.

This sketch should make clear that IRL can be computationally expensive, since traditional

RL is an inner loop of the procedure. Yet we must pay some price for training under a

sequential setting and not assuming repeated queries to the human.

Linear Reward Function Let’s start simple, by considering a linear reward function:

Rφ(s) = φ>ψ(s)
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where φ ∈ RD, such that |φ|1 ≤ 1, are the parameters and ψ : S 7→ [0, 1]D is a binary

vector of features that describes state s. Under this assumption, the value function is also

linear:

V π(s) = Eπ [ G (st; {at, at+1, . . .}) | st = s ]

= Eπ

[ ∞∑
t′=1

γt′ ·Rφ (st+t′) | st = s

]

= Eπ

[ ∞∑
t′=1

γt′ ·φ>ψ (st+t′) | st = s

]

= φ> Eπ

[ ∞∑
t′=1

γt′ ·ψ (st+t′) | st = s

]
︸ ︷︷ ︸

µπ(s)

where µπ is a feature vector quantifying the states expected to be visited under policy π. For

the expert, we see a finite set of states and thus can compute the demonstrator’s empirical

embedding as:

µE =
1

N

N∑
n=1

∞∑
t′=1

γt′ ·ψ (sn,t′) .

Writing the IRL objective from Equation 63, we have:

J (θ,φ) =
∑
s∈S

dπ(θ)(s) · V π(s)

=
∑
s∈S

dπ(θ)(s) φ> Eπ

[ ∞∑
t′=1

γt′ ·ψ (st+t′) | st = s

]

= φ>
∑
s∈S

dπ(θ)(s) Eπ

[ ∞∑
t′=1

γt′ ·ψ (st+t′) | st = s

]
= φ>

∑
s∈S

dπ(θ)(s) µπ (s)

= φ> Ed(s;θ) [µπ (s)]

(64)

We can then consider the difference between the objective achieved by the expert and model:

L(φ) = | J (θ∗E ,φ) − J (θ,φ) |

=
∣∣∣ φ> µE − φ> Ed(s;θ) [µπ (s)]

∣∣∣
≤
∣∣∣∣ µE − Ed(s;θ) [µπ (s)]

∣∣∣∣2
2

(65)

where the inequality arises from the assumption that |φ|1 is bounded. Firstly, this in-

equality demonstrates a fundamental connection to distribution matching, as under these

assumptions, matching the first moment of the state features upper-bounds L(φ). Thus,

minimizing the difference between the expected state features (i.e. moment matching) will

minimize the gap in between the expert’s and model’s objectives J , for any choice of φ.

However, simply examining the state distribution neglects learning φ, and in turn, ob-

taining a form for the reward function. One could question why a form for the reward is
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even needed, if obtaining the policy simply by distribution matching will do, but if it is,

then φ can be obtained as follows. Abbeel and Ng (2004) propose an iterative max-margin

approach that first fits φ, runs RL to find θ, and repeats. Yet a more general approach was

proposed by Syed and Schapire (2007) based on an adversarial game:

θ∗ = arg max
θ

min
φ

(
φ> Ed(s;θ) [µπ (s)] − φ> µE

)
. (66)

The intuition is that, for a fixed reward (i.e. given θ), the policy can be chosen so that the

model achieves a better reward than the expert achieved. However, the environment is then

free to change the reward in order to minimize the quantity, thus choosing in favor of the

expert. This bares some similarity to GAIL, with φ acting in the spirit of the discriminator.

Yet, of course, now the ‘discriminator’ has the interpretation as a reward function.

Another approach to IRL of note is maximum entropy inverse reinforcement learning

(MaxEnt IRL). This approach provides a more explicit bridge between distribution matching

and previous IRL approach. Let the state features for one of the expert’s trajectories be

denoted µE,n =
∑
t′=1 γt′ · ψ(sn,t′), such that µE = (1/N)

∑
n µE,n. MaxEnt IRL then

models the probability of a trajectory by exponentiating the linear reward model from above:

p (τn;φ) =
1

Z(φ)
exp

{
φ>µE,n

}
, Z(φ) =

∫
τ∈(S,A)T

exp
{
φ>µτ

}
dτ (67)

where Z(φ) is known as the partition function (or normalizing constant) that ensures the

probability is normalized by computing the exponentiated reward over all possible states.

Now consider optimizing φ via gradient ascent of the log-likelihood under the expert’s

demonstrations. The gradient calculation is:

∇φ
1

N

N∑
n=1

log p (τn;φ) =
1

N
∇φ

N∑
n=1

[
φ>µE,n − logZ(φ)

]
=

1

N

N∑
n=1

∇φ
[
φ>µE,n

]
− N

N
∇φ logZ(φ)

=
1

N

N∑
n=1

µE,n −
1

Z(φ)

∫
τ∈(S,A)T

∇φ exp
{
φ>µτ

}
dτ

= µE −
1

Z(φ)

∫
τ∈(S,A)T

exp
{
φ>µτ

}
µτ dτ

= µE −
∫
τ∈(S,A)T

p (τ ;φ) µτ dτ

= µE − Eτ|φ [µτ ]

(68)

where µE is the expert’s state features (over all trajectories) and Eτ|φ [µτ ] is the expected

state features under p (τ;φ). Note the similarity to the upper-bound above where the

expert’s and policy’s expected features are matched.

Yet also note that no policy has been introduced here. To parameterize a policy, MaxEnt

IRL now assumes the following implied policy: π(a|s) ∝ Qπ(s, a), which is simply the policy

that chooses actions with probability proportional to their expected return. Now consider

that p (τ;φ) also places high probability on states with the highest rewards. Thus the
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contribution of the partition function in the gradient is approximated with a policy as:

Eτ|φ [µτ ] ≈ Ed(s;θ) [µπ (s)] (69)

where the RHS term is the expected state features under policy πθ(a|s). Mechanistically,

this is doing the correct thing as the gradient will be zero when Ed(s;θ) [µπ (s)] and µE have

been matched, i.e. their difference is zero. The full gradient update can be computed as:

φt+1 = φt + α ·
(
µE − Ed(s;θt) [µπ (s)]

)
where θt is obtained by running RL using the reward function Rφt(s) = φ>t ψ(s).

3.5 Reinforcement Learning with Human Feedback

Reinforcement Learning with Human Feedback (RLHF) (Christiano et al., 2017) is a form

of IRL that has been made popular by its success in finetuning ChatGPT. Like previous

methods, its core goal is to (i) learning a reward function from human demonstrations, and

then (2) train (or more often, finetune an already trained model) using the learned reward

function as the learning signal. Unlike previous imitation learning strategies discussed above,

RLHF assumes we have access to ranked or paired demonstrations:

D+,− =
{(
τ+
n , τ

−
n

)}N
n=1

where τ+
n is a positive trajectory (i.e. a sequences of states and actions) that has been

deemed by a human to encode more desirable behavior than the negative trajectory τ−n .

These trajectory pairs could be describing a similar state in the environment or could simply

be randomly paired by have two large batches of positive and negative demonstrations.

Given these ranked trajectories, the next step is to define a reward model Rφ : T 7→ R≥0

with parameters φ. We then define a Bradley-Terry model (Bradley and Terry, 1952) that

encodes the probability of one trajectory being better than another, as a function of the

reward model:

pφ(τ+ � τ−) = σ
(
R
(
τ+;φ

)
− R

(
τ−;φ

))
(70)

where σ(·) denotes the logistic function. Thus we see that the probability of one trajectory

being preferable over another is simply the difference in their reward functions normalized

to (0, 1). Using this model, we can then define likelihood of the reward parameters φ:

` (φ;D+,−) = log

{
N∏
n=1

pφ(τ+
n � τ−n )

}

=

N∑
n=1

log pφ(τ+
n � τ−n )

=

N∑
n=1

log σ
(
R
(
τ+
n ;φ

)
− R

(
τ−n ;φ

))
.

Usually the reward function is taken to be a neural network of some form and ` (φ;D+,−)

is optimized with gradient ascent. After the reward model is fit, then R (τ+
n ;φ) can be
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plugged into any suitable RL framework to learn a policy.

Difference from Traditional Inverse RL Notice that this setup is much simpler than

the inverse RL formulations above, which usually require additional assumptions about the

form of the reward function or how it can be learned in tandem with a policy. In other words,

before we only has positive demonstrations and thus couldn’t train a reward function on

them directly since it has no exampled of what negative behaviors might look like. One had

to assume that roughly everything not in the demonstration set was a negative behavior.

Here have positive and negative trajectories allows the reward model to see both extremes

and thus be learned directly without an inner-loop of RL / policy fitting.

Why won’t Behavior Cloning suffice? Given that we have demonstrations from re-

liable humans, it is tempting to also consider a behavior cloning objective that uses both

positive and negative examples:

θ̂ = arg min
θ∈Θ

Eτ−
[
log πθ(a−|s−)

]
− Eτ+

[
log πθ(a+|s+)

]
(71)

where this objective aims to directly maximize the probability of the positive trajectories

while minimizing the probability of the negative trajectories under the policy. This could

work in the usual cases in which BC succeeds (such as a small state space). Yet, especially

in domains such as language in which there are multiple equivalent solutions, interacting

with the underlying MDP allows a policy to discover these symmetries instead of overfitting

to precisely what’s given in the positive demonstrations.

Direct Preference Optimization One method that bridges RLHF and behavior cloning

is direct preference optimization (DPO) (Rafailov et al., 2023). It works as follows. Firstly,

they notice that in RLHF, the final policy is usually trained with a regularized objective,

to keep the final policy near the initial (assuming some good scheme exists for pre-training

the policy, like next-token modeling with language):

θ∗ = arg max
θ∈Θ

Eτ∼πθ
[R (τ;φ) − KLD [πθ(a|s)||π0(a|s)]] .

Under this optimization problem, the optimal policy has the form:

π∗(a|s) = π0(a|s) · 1

Z(φ)
· exp {R (τ;φ)} , Z(φ) =

∑
τ∈T

exp {R (τ ;φ)}
∑

(s,a)∈τ

π0(a|s).

Solving for the reward function (outside of Z(φ)), we then have:

R (τ;φ) =
∑

(s,a)∈τ

log
π∗(a|s)
π0(a|s)

+ logZ(φ).
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Plugging in this form for the reward function into the Bradley-Terry model, we have:

pφ(τ+ � τ−) = σ
(
R
(
τ+;φ

)
− R

(
τ−;φ

))
= σ

 ∑
(s+,a+)∈τ+

log
π∗(a+|s+)

π0(a+|s+)
+ logZ(φ) −

∑
(s−,a−)∈τ−

log
π∗(a−|s−)

π0(a−|s−)
− logZ(φ)


= σ

 ∑
(s+,a+)∈τ+

log
π∗(a+|s+)

π0(a+|s+)
−

∑
(s−,a−)∈τ−

log
π∗(a−|s−)

π0(a−|s−)

 .

(72)

where the difficult-to-compute term Z(φ) cancels out. This equation is in terms of the

optimal policy π∗ for a specific (implied) reward model R (τ+;φ), but we can instead

directly parameterize the policy to devise a learning objective that by-passes learning a

reward function as an intermediate step:

` (θ;D+,−) =

N∑
n=1

log p(τ+
n � τ−n )

=

N∑
n=1

log σ

 ∑
(s+,a+)∈τ+

n

log
πθ(a+|s+)

π0(a+|s+)
−

∑
(s−,a−)∈τ−n

log
πθ(a−|s−)

π0(a−|s−)

 .

Removing the pre-trained policy π0, we have:

` (θ;D+,−) =

N∑
n=1

log σ

 ∑
(s+,a+)∈τ+

n

log πθ(a+|s+) −
∑

(s−,a−)∈τ−n

log πθ(a−|s−)

 .

Going back to the behavior cloning approach in Equation 71, we see that these objectives

are very similar, and the only material difference is that DPO wraps the policy terms inside

the logsistic function. We can get a better understanding of the mechanics by looking at

the gradient:

∇θ` (θ;D+,−) =

N∑
n=1

(1− p(τ+
n � τ−n ))

 ∑
(s+,a+)∈τ+

n

∇θ log πθ(a+|s+) −
∑

(s−,a−)∈τ−n

∇θ log πθ(a−|s−)

 ,
and thus we see the gradient of the difference in the policies is weighted by one minus the

probability of the positive trajectory being preferred. Thus the policy is updated only when

the implied reward model has the incorrect preference and cannot continue to optimize the

policy forever to overfit on the positive trajectory. This is experimentally confirmed by

Rafailov et al. (2023), as their experiments show the model does not perform well without

the (1− p(τ+
n � τ−n )) term.
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4 Human-AI Collaboration

These notes so far have only considered the setting in which the human generates a training

signal of some form. Once this is done and the model trained, it is assumed the usual

predictive modeling workflow will be followed, with the model acting autonomously in the

world. We now move on to the setting in which, even after deployment, the human and model

work in tandem. There are not yet precise terms and definitions for human-AI collaboration,

so these notes may use terms like “human-AI collaboration,” “human-AI cooperation,”,

“human-AI teaming” or “hybrid intelligence” interchangeably, reflecting their use in the

literature. No matter the name, human-AI collaboration (HAIC) must satisfy at least one

of the following two criteria in order to be well-motivated:

• Synergy : The human-AI team must perform the task better than the human or AI

model could perform the task alone.

• Semi-Automation: The human-AI team must perform the task approximately no worse

than the human would perform it alone, while having the benefit of automation.

The degree of ‘approximately no worse’ depends on the gains had by introducing

automation.

If the HAIC is performing worse than the human would alone and then there is no benefit

to the automation, then the use of HAIC is not justified. Similarly, if a fully-automated

system performs at an acceptable level, then there is no point to involving a human. Often

humans are preferred, even when models have better benchmark performance, due to safety

and risk concerns. In the above presentation, I consider the use of ‘performance’ to include

other aspects and metrics, such as safety, that factor into whether a model is deployed.

4.1 Design Patterns

Most methods for HAIC follow or are compositions of four basic design patterns. They are

shown in Figure 3. Pattern #1 in Subfigure 3a is likely most common in practice today,

as giving the human final control is attractive from a safety and policy standpoint. Yet

this has the downside that there is no improvements to automation. Rather we only expect

the principle of synergy : the human’s performance is improved by, at times, considering

the model’s output. Pattern #2 (Subfigure 3b) represents the inverse workflow, with the

human informing the model’s decision and the machine having the final say. This pattern is

uncommon in the case of the human always providing advice to the machine. If the human

is always engaged in this way, it likely makes better sense to use pattern #1. However, if

the human is only sometimes providing input, then this pattern can be thought of as a form

of semi-automation, with the model acting fully autonomously at times and being helped

by the human at other times. Pattern #3 (Subfigure 3c) differs from the first two as it does

not represent a sequential setting. Rather, decisions are allocated to either the human or

machine, with presumably the riskier or more difficult decisions going to the human. This

pattern enjoys the potential for both HAIC goal criteria: semi-automation cab be achieved

since the human does not have to be involved in all decisions, and synergy can be achieved

if the human and model have complementary strengths. Lastly, pattern #4 (Subfigure 3d)

shows an alternative design in which the human and machine are independently queried
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(a) Pattern #1: Human’s prediction is in-
formed by the model’s.

(b) Pattern #2: Model’s prediction is in-
formed by the human’s.

(c) Pattern #3: An allocation mechanism
decides if the human or model should make
the prediction.

(d) Pattern #4: Human’s and model’s pre-
dictions are made independently and com-
bined.

Figure 3: Design Patterns for Human-AI Collaboration. The four diagrams above show
common design patterns for how to combine human and machine decisions / predictions.

and their predictions / decisions combined to form a final, hopefully superior, one. Semi-

automation is not possible here since the human is assumed to be queried for all test-time

decisions.

4.2 Combining Predictions from Humans and Models

I now introduce a model that falls into design pattern #4 (Subfigure 3d): the human

and model jointly produce a prediction for every case at test-time. As mentioned above,

such a workflow clearly has no benefits of automation (since the human is always engaged

in decision making), and thus the benefit must be that of synergy (better performance

than the human or model could achieve alone). Consider the usual setting of multi-class

classification, where x ∈ X denotes the features and y ∈ Y denotes the labels, of there there

are K possibilities. Let D = {(xn, yn}Nn=1 denote the training examples. Assume we have

already trained a classifier on this data set: f : X 7→ ∆K . We can then parameterize a

categorical distribution over labels, denoted p(y|f(x)). Moreover, assume we have access to

a human who, when shown a feature vector, will output a classification label: h : X 7→ Y.

We do not ask the human for any additional information, such as their confidence in the

prediction, as we deem it to be unreliable and/or for the sake of generality. We also assume

that the cost of query the human is inconsequential. Given the model f and the human h,

how might we fuse or ensemble their predictions into a final prediction that is more reliable

and performant that either predictor alone? Of course, if h(x) = arg maxy fy(x), then this

is a good sign that they have converged to the correct prediction. But what if they do not

agree?

Kerrigan et al. (2021a) propose the following model for this setting, with the key insight

being that we need to obtain some notion of confidence for the human. This can be done

by estimating a confusion matrix for them on the training set D. Let Π denote this matrix
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such that πk,j ∈ [0, 1] and
∑K
j=1 πk,j = 1. We then collect the human’s predictions for

every element of D—{mn = h(xn)}Nn=1—and estimate the confusion matrix’s parameter

via maximum likelihood estimation: π̂k,j =
∑N
n=1(I[yn = k] · I[mn = j])/Nk where Nk are

the number of points in the training set that have class k.

With this confusion matrix in hand, we can combine the predictions via the following

probabilistic model:

p(y|h(x), f(x)) =
p(h(x), y|f(x))

p (h(x)|f(x))

=
p(h(x)|y, f(x)) · p(y|f(x))

p (h(x)|f(x))

≈ p(h(x)|y) · p(y|f(x))

p (h(x)|f(x))

(73)

where the first line is obtained via Bayes rule and the second assumes that the first term on

the LHS is independent of the classifier: p(h(x)|y, f(x)) ≈ p(h(x)|y). This is a reasonable

assumption if the human has not looked at the classifier’s output when making her predic-

tion. Plugging in the confusion matrix entry for the first term and the classifier’s softmax

confidence for the second, we have:

p(y = y|h(x), f(x)) ≈ p(h(x)|y = y) · p(y = y|f(x))∑
y′ p(h(x)|y = y′) · p(y = y′|f(x))

=
π̂y,h(x) · fy(x)∑
y′ π̂y′,h(x) · fy′(x)

.

(74)

We can interpret this expression as re-weighting the classifier’s outputs by the confusion

matrix. However, for this formulation to work, the classifier must be reasonably well cali-

brated. In the pathological case, if fy(x) = 1, then the human’s prediction will not influence

the posterior: (π̂y,h(x) · fy(x))/(π̂y,h(x) · fy(x)) = 1. Thus, prior to combination, Kerrigan

et al. (2021b) apply temperature scaling to calibrate f(x).

4.3 AI-Assisted Decision Making

Instead of the above workflow in which human and machine predictions are combined to

produce the final prediction, a more common design pattern is to have a model’s output

or prediction inform but not dictate a human’s decision. This workflow is more palatable

from the standpoint of regulation and policy since the human retains ultimate control (and

blame). Returning to the four design patterns that started this section, this workflow is

an instance of design pattern #1 (Subfigure 3a). Again there are no gains in automation,

since the human is involved in every decision, and thus the goal is to have the AI-human

combination perform better than either could alone.

At first glance, one may assume this workflow is trivial to implement. The human

simply looks at the confidence scores associated with each class: f(x) = [30%, 40%, 30%].

Assuming the classifier is sufficiently calibrated, the human is then free to propagate that

uncertainty into their final decision, trusting the classifier to whatever degree the confidence

statements warrant trust. In an ideal world, the classifier would also output some notion of

interpretability or explainability for its decisions, but this often gets into application-specific
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models and workflows. For the sake of generality, we will just assume confidence statements

are given. Unfortunately, humans are known not to be well-calibrated decision makers

themselves and often misinterpret probabilistic statements (Kahneman and Tversky, 1972).

In turn, the confidence statements output by the classifier can range from being useless to

even being misinterpreted by the human.

4.3.1 Recalibrating to Improve Human Performance

Vodrahalli et al. (2022) addressed this issue by modeling the AI-assistance process in a

binary task in which the human is asked to give a confidence score of a statement being

true. Such a model allows the end-to-end decision-making process to be optimized to improve

the human’s decision making via re-calibrating the AI’s output. I reproduce the spirit of

Vodrahalli et al. (2022)’s model below (e.g. the two step nature) but with some of my

own modifications. Let x ∈ X denote the feature space, and y ∈ {0, 1} denote the label

space (i.e. a binary prediction task). Let h(x) ∈ [0, 1] denote the human’s confidence that

y = 1, let f(x) ∈ [0, 1] denote the AI confidence score, and let h (x, f(x)) ∈ [0, 1] denote

the human’s confidence score after seeing the model output. The goal will be to learn a

transformation of the model’s output that results in the human making better decisions:

gα,β ◦ f(x) = logistic(α · logit(f(x)) + β) =
1

1 + exp {−α · logit(f(x))− β}

where α, β ∈ R are the parameters to be learned. This transformation is a well-known

re-calibration method known as Platt scaling (Platt, 1999). Essentially, it re-calibrates by

applying logistic regression to the model’s original logit values.

Activation Model The model takes the form of a two-step process, with the first step be-

ing to predict if the human will be ‘activated,’ meaning that their prediction will incorporate

and therefore be influenced by the model’s output:

a ∼ Bernoulli ( pa = φ(x, h(x), gα,β ◦ f(x)) )

where a ∈ {0, 1} is the random variable denoting activation. If a = 1, then we should not

have that h(x) and h (x, f(x)) are close in value. φ(·, ·, ·) ∈ (0, 1) is the model (e.g. a neural

network with logistic output) that parameterizes the Bernoulli success probability pa. φ is

pre-trained using the original AI confidence score f(x) and fixed thereafter.

Integration Model The second step is to determine the human’s final prediction with an

‘integration’ model. The activation variable is essentially used as a ‘switch’ that determines

if the final prediction will be the one the human produced before or after seeing the AI’s

output:

m = (1− a) · h(x) + a · h (x, gα,β ◦ f(x)) .

Unfortunately, the final prediction depends upon h (x, gα,β ◦ f(x))—what the human would

predict if the model is re-calibrated with a particular value of α and β. To evaluate this

exactly, we would need to ask the human to produce confidence scores for every step of an

iterative optimization procedure. One option is to train a surrogate model of the human’s
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decision-making process using the original f(x) scores, similarly to how φ is trained:

h (x, gα,β ◦ f(x)) ≈ ψ (x, h(x), gα,β ◦ f(x))

where the h(x) term is also included as input so that the surrogate only needs to model

∆h = h (x, gα,β ◦ f(x)) − h(x). A simpler but surely biased alternative is to just use the

human’s original scores: h (x, gα,β ◦ f(x)) ≈ h (x, f(x)) . In this case, optimizing α, β would

only account for the activation potential rather than the human’s precise score. We will

proceed with the surrogate-based approach.

Training Objective Given true labels y ∈ {0, 1}, we can minimize the expected Brier

score, with the expectation taken over the activation variable (and data):

`(α, β) = Ex,yEa
[
(y−m)

2
]

= Ex,y

[
(y− Ea [m])

2
+ Vara [m]

]
≈ 1

N

N∑
n=1

(yn − Ean [mn])
2

+ Varan [mn] ,

where Ea [m] = (1− pa) · h(x) + pa · ψ (x, gα,β ◦ f(x)) ,

Vara [m] = pa(1− pa)(h(x)− ψ (x, gα,β ◦ f(x)))2.

(75)

The approximation arises from having a finite training set of N samples. We can interpret

the first term, (y− Ea [m])
2
, as representing the Brier score of the expected final prediction.

The Brier score is a well-motivated choice, as is it a common approach to quantify forecasting

error. The second term, Varan [mn], is more interesting. Recall that we want to minimize

this objective and therefore we can minimize the variance term in two ways. The first

way is to minimize (h(x)−ψ (x, gα,β ◦ f(x)))2, the squared difference between the human’s

predictions with and without the machine’s advice (as approximated by the surrogate).

When this is small, the whole Varan [mn] term is small and therefore has little effect. Yet

when the gap between the predictions is large, then the whole term can only be reduced

via the terms pa(1− pa). This is the variance of the activation variable, and this is reduced

when the probability of activation is strong in either direction. In other words, the second

term in the objective is pushing the activation variable to confidently make a choice in the

cases in which there is a large discrepancy for with and without AI assistance. Obtaining

α∗, β∗ = arg minα,β `(α, β) then gives us a function with which we can re-calibrate future

AI assistance: logistic(α∗ · f(x) + β∗).

4.3.2 Assisting Humans with Prediction Sets

Given the challenge in assisting humans with confidence scores, Babbar et al. (2022) and

Straitouri et al. (2023) propose an alternative approach that uses confidence sets instead of

scores. Imagine we have a classification problem in which the features are an image of an

animal and the label is the species. Instead of showing the human some representation or

reproduction of the softmax confidence scores (possibly for every possible species or just the

J highest ranked), the human instead sees:

C(x) = {cat, tiger, lion, leopard}

43



and is told that the true label is within this set with high-probability. Continuing with

design pattern #1 (Subfigure 3a), the human would then choose one label from the set to

make the final prediction. Prediction sets are quite natural from a user-interface perspective

since, like in search and product recommendations, users are accustomed to having a few

candidates from which to select. Furthermore, by not showing the user the confidence scores,

we bypass the aforementioned issue of humans not being good at reasoning with explicit

probabilities.

I now summarize the approach of Straitouri et al. (2023), which builds the aforementioned

prediction sets using conformal prediction (CP). Conceptually, given a confidence level 1−α
(e.g. 90%), CP tries not to calibrate confidence scores per label but finds a threshold τ

for which the (presumably) un-calibrated confidence scores will cover the true label with

probability 1 − α. See Section 1.4 for background information on CP. Angelopoulos and

Bates (2021) also provides an accessible introduction. The naive approach to apply CP to

HAIC would simply be to choose a reasonable α, say 5%, and show the user the resulting

CP sets Cα(x; τ), where τ would be fit on validation data to ensure the mis-coverage rate is

at most α: P(y∗ /∈ C(x; τ)) ≤ α. However, this approach does not adapt the CP to the user.

If the user is forced to choose an element of the set, then we want the sets to be adaptive to

the abilities of the human. If the human is a skilled predictor, then we can afford to make

the sets larger, since the set can prioritize coverage without sacrificing the human’s ability

to find the correct label. If the human is unskilled, however, then the set should be small,

to steer the human toward a better label than they might pick from the complete label set.

Straitouri et al. (2023) formalize and provide an approach to user-adaptive CP sets as

follows. Firstly, they define the goal of a prediction set in the HAIC setting to be:

P (ŷ = y∗ | Cα) > P (ŷ = y∗ | Y)

where P (ŷ = y∗ | ·) is the human’s marginal probability of success, across all test instances—

or in other words, the human’s accuracy. So this statement says that the human’s accuracy

when given the set should be strictly better than their accuracy without the set—an instan-

tiation of our synergy principle. Ideally, we’d like to choose an α value that maximizes the

probability on the LHS:

α∗ = arg max
α∈(0,1)

P (ŷ = y∗ | Cα) .

Since α directly controls the size of the sets, the above optimization problem captures the

interplay between set size and human skill mentioned above.

Unfortunately, we cannot optimize through P (ŷ = y∗ | Cα) directly since this would

mean that we are optimizing through the human. Instead, Straitouri et al. (2023) propose

to approximate the human’s success probability as follows. First, consider the expert’s

accuracy when the true label is included in the prediction set, P (ŷ = y∗ | y∗ ∈ Cα(x)).

They model that quantity using a discrete choice model :

P (ŷ = y∗ | y∗ ∈ Cα(x)) ≈ p (ŷ = y∗ | y∗ ∈ Cα(x)) =
exp {φ(y∗, y∗)}∑

y′∈Cα(x) exp {φ(y∗, y′)}
(76)

where φ(y∗, y′) ∈ R quantifies the human’s preference for selecting label y′ when the true

label is y∗. Note that the denominator is just summed over the labels in the prediction
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set. Given a held-out data set, Straitouri et al. (2023) propose computing φ(y∗, y′) using

a confusion matrix: φ(y∗, y′) = log π̂y∗,y′ where π̂y∗,y′ is the confusion matrix entry that

represents the fraction of times the human said label y′ when the true label was y∗. The

model of expert accuracy can then be written as:

p̂ (ŷ = y∗ | y∗ ∈ Cα(x)) =
π̂y∗,y∗∑

y′∈Cα(x) π̂y∗,y′
, (77)

which is the confusion matrix re-normalized over just the column elements included in the

prediction set. Given that the true label is in the set (which is guaranteed by CP to happen

(1− α)% of the time), then the above equation makes clear how restricting the decision to

the conformal set improves the human’s accuracy simply because the denominator usually

is smaller than if it were summed over all of Y, making it less than one. Given this model

and a second held-out set, we can estimate the humans accuracy, conditioned on seeing the

CP set, as:

P (ŷ = y∗ | Cα)

= Ex,y∗ [P (y∗ ∈ Cα(x))P (ŷ = y∗ | y∗ ∈ Cα(x)) + P (y∗ /∈ Cα(x))P (ŷ = y∗ | y∗ /∈ Cα(x))]

≈ 1

M

∑
xm

I[y∗m ∈ Cα(xm)] · p̂ (ŷm = y∗m | y∗m ∈ Cα(xm))

+ I[y∗m /∈ Cα(xm)] · P (ŷm = y∗m | y∗m /∈ Cα(xm))︸ ︷︷ ︸
=0

=
1

M

∑
xm

I[y∗m ∈ Cα(xm)] · p̂ (ŷm = y∗m | y∗m ∈ Cα(xm))
∆
= µ̂α,

where M is the number of calibration samples. The term P (ŷm = y∗m | y∗m /∈ Cα(xm)) is

zero because we assume that the human cannot choose labels that are not in the prediction

set. Thus when the true label is outside the prediction set, the human’s accuracy is zero.

The procedure concludes by choosing the α that maximizes µ̂α:

α∗ = arg max
α∈A

µ̂α

where A denotes the space of coverage levels to search across. Note that this optimiza-

tion does not require re-computing the confusion matrix, only the CP set with a different

confidence level, which just requires re-computing τ̂ . In practice, Straitouri et al. (2023) in-

corporate additional tricks, such as adding a finite-sample correction to µ̂α, and recognizing

that the number of α values to test in A depends on the size of the calibration set used for

CP. See the paper for these details.

4.3.3 Indistinguishability: When is Human Effort Helpful?

As mentioned above, design pattern #1 does not benefit from autonomy since the human

is always engaged in decision making. Yet, it would be nice if we could use the human

selectively, only when their predictions improve upon the model’s. Alur et al. (2024) propose

a framework for doing just this, calling it algorithmic indistinguishability. The idea is that

humans outperform predictive models not because they are ’smarter’ but because they have
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additional information not captured by the feature space that’s accessible to the model. The

trick, then, is to find the subsets of the feature space where the algorithm can no longer

contribute information and check if the human can still contribute an informative prediction.

Again assume the setting of a binary prediction task y ∈ {0, 1} using a feature space

x ∈ X . Assume the human generates predictions m = h(x) and that we also train a binary

classifier that outputs confidence scores f(x) ∈ [0, 1]. Let f come for a set of classifiers

f ∈ F . Alur et al. (2024) define an α-indistinguishable subset as a set S ⊆ X if for α ≥ 0

and for all f ∈ F : ∣∣Cov [y, f(x) | x ∈ S]
∣∣ ≤ α

where Cov[y, f(x)|x ∈ S] denotes the covariance between the model output and the label1,

conditioned on the features being in S. That is, once the feature space is restricted to S, any

variation if f(x) is not informative about the label. One way to have Cov [y, f(x) | x ∈ S] =

0 is if the label or classifier’s value is constant throughout the subset. If we can partition

X into K α-indistinguishable subsets, then we call the partitioning an α-multicalibrated

partition. The same intuition extends from the single subset case: the partition has extracted

all predictive power from F .

With these partition in hand (assume it is easy to find them), we can then check if the

human still has predictive power to contribute:
∣∣Cov [y,m | x ∈ S]

∣∣ > α. This implies that

the human has additional knowledge that can explain how the label varies within this subset

of feature space. Notice the absolute value implies that, even if the human’s prediction is

negatively correlated with the true label, this is still a useful signal to exploit. Alur et al.

(2024) exploit these insights via Algorithm 4 below.

Algorithm 4: Incorporating Human Expertise into Algorithmic Predictions

Input: Training data {xn, yn}Nn=1, an α-multicalibrated partition {Sk}Kk=1, a
binary classifier learning algorithm R, a test observation xN+1.

for k = [1,K] do
Collect human predictions to form dataset: Zk = {(yn,mn) : xn ∈ Sk}
Fit subset specific classifier: gk = R(Zk), such that ŷ = gk(m).

end
Let j be the index of the subset containing xN+1.
Query human to obtain prediction mN+1 = h(xN+1).
Output: Prediction gj(mN+1)

Unfortunately, the practical utility of this model relies upon finding the α-multicalibrated

partition, which will be very challenging to do for complex model classes F and in high-

dimensional feature spaces.

4.4 Learning to Reject

All methods discussed so far have assumed that both the model and human will make

predictions for all test cases. This does not allow for any of the benefits of autonomy.

We now turn to an alternative pattern, #3, that allows some decisions to be predicted

by the model and others by the classifier. Core to this design paradigm is the concept of

a rejector—r : X → {0, 1}—some function that acts as a meta-classifier, deciding if the

1Recall that the empirical covariance is estimated as: Ĉov [y, f(x)] = (1/N)
∑

n(y − ȳ)(f(x) − ¯f(x))
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predictive model should make the prediction or not:

f⊥(x) =

arg maxy∈Y fy(x) if r(x) = 0

⊥ if r(x) = 1

where f(x) is the traditional classifier and ⊥ denotes the rejection decision. Learning this

rejector is known as learning to reject (L2R). While presumably a human or backup system

would make the prediction if r(x) = 1, the performance of this backup system is not explic-

itly modeled. This downside will be addressed in the next section on learning to defer to an

expert.

4.4.1 Chow’s Rule: Rejection via Calibrated Confidence Scores

L2R can be derived from first principles using Bayesian decision theory. Consider the

following cost function for a decision δ : X → {Y ∪ ⊥}:

cL2R (δ(x), y) =


0 if δ(x) = y

1 if δ(x) 6= y

λ if δ(x) = ⊥

where λ ∈ (0, 1) represents the cost incurred for choosing to reject. This cost is equal to the

canonical 0 − 1 loss when the classifier makes a prediction, only changing for the rejection

option. As λ → 1, the cost of rejection approaches the cost of making a wrong prediction,

and as λ→ 0, the cost approaches that of making the correct prediction. Thus, in practice,

λ is usually set such that 0.01 < λ < (K − 1)/K, where values closer to .01 would only be

used for extreme safety critical scenarios.

The Bayes risk for the rejection problem is written as:

R(x, δ) =
∑
y∈Y

P(y|x) · c (δ(x), y) .

When a prediction is made, the risk is the usual Bayes risk for a classifier. Let δ = ŷ =

arg maxy P(y|x)):

R(x, δ = ŷ) =
∑
y 6=δ

P(y|x) = 1− P(y = δ|x).

When the rejection option is chosen, δ = ⊥, the risk is:

R(x, δ = ⊥) =
∑
y∈Y

P(y|x) · λ = λ ·
∑
y∈Y

P(y|x) = λ · 1 = λ.

Thus, the decision function that minimizes the Bayes risk is:

δ∗ (x) =

arg maxy P(y = y|x) if 1−maxy P(y = y|x) ≤ λ

⊥ otherwise.
(78)

Of course, in practice, we never have access to the real underlying conditional distribution
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P(y|x). Instead, we have a model-based approximation:

δ̂ (x) =

arg maxy fy(x) if maxy fy(x) ≥ 1− λ

⊥ otherwise,
(79)

where the model has be substituted for the Bayes classifier and the inequality has been

rearranged to make clear that the Bayes optimal rejector is ensuring that the model class

has a sufficiently high probability. Equation 79 is known as Chow’s rule, named after the

author who first presented the derivation (Chow, 1957a). Given a perfect / canonically

calibrated f(x), then Chow’s rule is the Bayes optimal rejection decision. Unfortunately,

models are often not calibrated in practice, leading to poor rejection behavior.

4.4.2 Rejection via Optimizing Selective Risk

Given the difficulty of obtaining a calibrated model, Geifman and El-Yaniv (2017) proposed

an alternative framework that seeks to control the selective risk (SR):

SR(r) =
Ex,y [(1− r(x)) · `0,1(f(x), y)]

Ex [1− r(x)]
(80)

where `0,1 is the usual 0− 1 loss. The SR trades off the classification loss (numerator) with

the coverage (denominator), with both always being bounded between 0 and 1. Samples

can be rejected, lowering the classification loss, but the SR will balance this behavior by

decreasing the denominator, increasing the overall SR.

Geifman and El-Yaniv (2017) propose parameterizing the rejector via a ranking function

κ(x), which orders the points by decreasing difficulty, meaning that the higher the score,

the more likely the model should make the correct prediction. The rejector, then, chooses

all points below some threshold τ to be rejected:

r(x;κ, τ) =

0 if κ(x) ≥ τ

1 if κ(x) < τ.

Ideally, κ(x) would order the points by their (descending) Bayes risk: κ(x0) < κ(x1)

if maxy P(y|x0) < maxy P(y|x1). But, as mentioned above, P(y|x) is unknown. Yet,

while Chow’s rule depends on the exact value of the confidence score, this ranking only

requires matching the ordering—a much easier task. Geifman and El-Yaniv (2017) pro-

pose using the softmax score as the ranking function, and finds this works well in practice:

κ(x) = maxy fy(x). In practice, Geifman and El-Yaniv (2017) find a value τ0 for which

SR(r) < ε by doing binary search for the threshold over a calibration set (with finite

sample corrections). As τ approaches 0, then the model rejects less frequently and more

frequently as τ approaches 1.

4.4.3 Consistent Surrogate Loss for Rejection Learning

While optimizing SR, as done above, does not rely upon having a calibrated model, it makes

a sacrifice by considering a marginal quantity—that is, the selective risk is an average. The

framework does not have the ability to reject particular sample. However, in applications
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such as medicine, we might be concerned about a patient’s individual probabilities. Charoen-

phakdee et al. (2021) addressed this problem by having the insight that, if the rejection cost

λ is chosen prior to model fitting, we do not need a canonically calibrated classifier. Rather,

we just need a classifier that is calibrated at the threshold point maxy fy(x) ≥ 1− λ. This

is much more manageable. Cao et al. (2022) then drove this insight to its full capabili-

ties, deriving a consistent surrogate loss for multi-class classification with arbitrary losses.

‘Consistent’ here means that the minimizers of the surrogate loss correspond to the Bayes

optimal solutions for the rejector and classifier that were identified in Section 4.4.1. For

the cross-entropy loss, the consistent surrogate is written as follows. Let g1(x), . . . , gK(x),

such that gk : X 7→ R, be K real valued functions, which are often taken to be the logits of

a neural network classifier. Let g⊥(x) be given the same definition, possibly implemented

by having an additional logit output in a neural network. The L2R surrogate loss is then

defined point-wise as:

`L2R(x, y;λ, g1, . . . , g⊥) = − log
exp {gy(x)}∑

y′∈Y⊥ exp {gy′(x)}
− (1− λ) log

exp {g⊥(x)}∑
y′∈Y⊥ exp {gy′(x)}

where Y⊥ = Y ∪ {⊥}. This loss can be interpreted as a traditional softmax-based classi-

fication loss but with K + 1 outputs instead of the usual K. In turn, the denominators

are summed over K + 1 terms, which includes the rejection model g⊥. The classifier is

obtained by taking the maximum over the g functions corresponding to class dimensions:

ŷ = arg maxk∈[1,K] gk(x). The rejection function is given as: r(x) = I[g⊥(x) ≥ maxk gk(x)].

Thus when the value of g⊥(x) is greater than the other K functions, the model rejects.

Otherwise, it makes a prediction corresponding to the maximum over gk(x) for k ∈ [1,K].

4.5 Learning to Defer to an Expert

L2R does not model what happens to the data point if it is rejected beyond assigning the

uniform cost λ. In practice, if the predictive model cannot make an accurate prediction, a

human often must step in and make the prediction. Learning to defer (L2D) is similar to

L2R except that the downstream decision maker’s performance is also modeled. This allows

the model to make predictions in cases where, even if the model is not strongly confident,

the human is even less confident. Fortunately, a lot of the machinery we used to formulate

rejection learning, as we will see below.

4.5.1 Bayesian Decision Theory for Deferral

Like L2R, L2D can be derived from first principles using Bayesian decision theory. Consider

the following cost function for a decision δ : X → {Y ∪ {⊥}}, where ⊥ again represents

rejection / deferral:

cL2D (δ(x), y,m) =


0 if δ(x) = y

1 if δ(x) 6= y

I[m 6= y] if δ(x) = ⊥.

There are two crucial differences to the L2R cost. The first is that the cost now takes as

input m ∈ Y, which is the human’s prediction. We assume the human generates predictions
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according to the underlying distribution Pm(m|x). The second is that, instead of a fixed

cost λ, deferral (akin to rejection) now incurs a dynamic cost I[m 6= y], which is one when

the human’s prediction does not match the label, zero when it does match. This is how we

will ultimately incentivize the system to understand the human’s abilities, since the system

should not defer when the human will be wrong as this is no better than the classifier making

the wrong prediction.

We can define the risk of the deferral problem similarly to L2R’s above, but now we will

also incorporate the human’s distribution Pm(m|x) as well as the classifier’s Py(y|x):

R(x, δ) =
∑
y∈Y

∑
m∈Y

Py(y|x) · Pm(m|x) · c (δ(x), y,m) . (81)

When the model makes a prediction, i.e. δ(x) = ŷ, the above risk is equivalent to L2R (and

that of traditional 0-1 loss classification). In the case of deferral, i.e. δ = ⊥, the risk is:

R(x, δ = ⊥) =
∑
y∈Y

∑
m∈Y

Py(y|x) · Pm(m|x) · c (⊥, y,m)

=
∑
y∈Y

∑
m∈Y

Py(y|x) · Pm(m|x) · I[m 6= y]

= 1 −
∑
y∈Y

Py(y|x) · Pm(y|x)

= 1 − Py,m(m = y|x)

= Py,m(m 6= y|x).

(82)

Thus, the decision function that minimizes the Bayes risk is:

δ∗L2D (x) =

arg maxy Py(y|x) if 1−maxy Py(y|x) ≤ Py,m(m 6= y|x)

⊥ otherwise.
(83)

Like with L2R, in practice we will need to substitute a model for Py(y|x). Yet with L2D we

encounter an additional challenge in that Py,m(m 6= y|x) is unknown as well. In turn, directly

implementing this decision rule will require two models, f(x) ≈ Py(y|x) and fm 6=y(x) ≈
Py,m(m 6= y|x). Plugging these two models into the decision rule, we have:

δ̂L2D (x) =

arg maxy fy(x) if maxy f(x) ≥ 1− fm 6=y(x)

⊥ otherwise.
(84)

Here there are two sources of calibration error, f(x) and fm 6=y(x), making a practical im-

plementation challenging.

4.5.2 Consistent Surrogate Loss for L2D

Fortunately, we can use a similar formulation as the L2R consistent surrogate loss to derive

a consistent surrogate for L2D. However, before giving the surrogate, first note that L2D

expects we have access to predictions from the human / backup system to which we are

deferring; denote this prediction as m ∈ Y. An N -sized training dataset is then D =

{(xn, yn,mn)}Nn=1. As human labels alone are usually expensive to obtain (as we discussed
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with crowdsourcing), training an L2D system is even more expensive as it requires the

ground-truth label y in addition to the human label m.

Moving on to the cross-entropy surrogate loss for L2D, it is formulated written as follows

(Mozannar and Sontag, 2020). Let g1(x), . . . , gK(x), such that gk : X 7→ R, be K real valued

functions, which are often taken to be the logits of a neural network classifier. Let g⊥(x)

be given the same definition, possibly implemented by having an additional logit output in

a neural network. The L2D surrogate loss is then defined point-wise as:

`L2D(x, y,m; g1, . . . , g⊥) = − log
exp {gy(x)}∑

y′∈Y⊥ exp {gy′(x)}
− I [m = y] log

exp {g⊥(x)}∑
y′∈Y⊥ exp {gy′(x)}

where Y⊥ = Y ∪ {⊥}. Like with L2R, this loss can be interpreted as a traditional softmax-

based classification loss but with K + 1 outputs instead of the usual K. In turn, the

denominators are summed over K + 1 terms, which includes the deferral model g⊥. The

classifier is obtained by taking the maximum over the g functions corresponding to class

dimensions: ŷ = arg maxk∈[1,K] gk(x). The deferral function is given as: r(x) = I[g⊥(x) ≥
maxk gk(x)]. Thus when the value of g⊥(x) is greater than the other K functions, the model

defers to the human. Otherwise, it makes a prediction corresponding to the maximum over

gk(x) for k ∈ [1,K].

The close relationship to the L2R surrogate may not be clear at first glance, but observe

that:

ExEy,m|x

[
I [m = y] log

exp {g⊥(x)}∑
y′∈Y⊥ exp {gy′(x)}

]

= Ex

[
Ey,m|x [I [m = y]] log

exp {g⊥(x)}∑
y′∈Y⊥ exp {gy′(x)}

]

= Ex

[
Py,m (m = y|x) log

exp {g⊥(x)}∑
y′∈Y⊥ exp {gy′(x)}

]

= Ex

(1− Py,m (m 6= y|x)︸ ︷︷ ︸
R(x,δ=⊥)

) log
exp {g⊥(x)}∑

y′∈Y⊥ exp {gy′(x)}

 .

(85)

Thus we see that the term in front of the deferral function loss is equal to (1−RL2D(x, δ =

⊥)). L2R had this same form: (1−RL2R(x, δ = ⊥)) = (1−λ). Here, though, the analogous

cost must be estimated from data, as we need to learn about the expert’s abilities.

4.5.3 L2D to Multiple Experts

Often complex problems require the expertise of multiple individuals. L2D can be extended

to multiple experts as follows (Verma et al., 2023). Assume there are J experts to which we

can defer (exclusively), and denote the decision to defer to expert-j as ⊥j . The multi-expert

decision function is then δ : X → {Y ∪ {⊥1, . . . ,⊥J}}. Let mj ∈ Y denote the prediction

from the jth expert, whose predictive distribution is P(mj |x). The cost function then takes
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all J expert predictions as input:

cmulti-L2D (δ(x), y,m1, . . . ,mJ) =



0 if δ(x) = y

1 if δ(x) 6= y

I[m1 6= y] if δ(x) = ⊥1

...

I[mJ 6= y] if δ(x) = ⊥J .

The Bayes optimal decision rule is then:

δ∗multi-L2D (x) =

arg maxy Py(y|x) if 1−maxy Py(y|x) ≤ minj Py,mj (mj 6= y|x)

⊥i otherwise, where i = arg minj Py,mj
(mj 6= y|x).

It is then straightforward to derive the consistent cross-entropy surrogate loss:

`multi-L2D(x, y,m1, . . . ,mJ ; g1, . . . , gK , g⊥1
, . . . , g⊥J ) =

− log
exp {gy(x)}∑

y′∈Y⊥×J exp {gy′(x)}
−

J∑
j=1

I [mj = y] log
exp

{
g⊥j (x)

}∑
y′∈Y⊥×J exp {gy′(x)}

where Y⊥×J = {Y ∪ {⊥1, . . . ,⊥J}}. This is very similar to the single-expert L2D surrogate

loss, but now there are J rejection functions with corresponding terms in the loss function.

4.6 Sequential Learning with Rejection or Deferral

Say we formulate a policy such that π : S 7→ A⊥ where A⊥ = {A ∪ {⊥}}, where A denotes

the traditional space of actions and ⊥ again notes the option to reject or defer. There are

several ways to formulate this problem, which are outlined below.

Rejection as Termination We first consider the simplest setting: the policy can choose

to reject, and the system will essentially terminate its operation. Let the cost of rejecting

again be denoted as λ, and assume the environment’s reward function is bounded in [0, 1].

We assume that, if the policy chooses to reject, then the system will deterministically stay

in a state s⊥ for the rest of the infinite horizon, receiving a reward of (1− λ) at each time

step:

V πL2R(s) =
∑
a∈A⊥

π(a|s) ·Qπ(s, a)

= π(⊥|s) ·Qπ(s,⊥) +
∑
a∈A

π(a|s) ·Qπ(s, a)

= π(⊥|s) · ((1− λ) + Qπ(s⊥,⊥)) +
∑
a∈A

π(a|s) ·Qπ(s, a)

= π(⊥|s) ·

(
(1− λ) +

∞∑
t=1

γt · (1− λ)

)
+
∑
a∈A

π(a|s) ·Qπ(s, a)

= π(⊥|s) · 1− λ
1− γ

+
∑
a∈A

π(a|s) ·Qπ(s, a)

(86)
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Sequential Learning to Defer We can devise a similar formulation but with deferring

to an expert. However, in this case, we need some access to the expert’s policy πH(a|s). If

we make a similar assumption that, once the policy defers to the human it can never regain

control, we have that the value function is:

V πL2D(s) =
∑
a∈A⊥

π(a|s) ·Qπ(s, a)

= π(⊥|s) ·QπH (s,⊥) +
∑
a∈A

π(a|s) ·Qπ(s, a)
(87)

where QπH (s,⊥) is the crucial quantity that captures the expected return from the human

taking over the sequential task.
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