
ffe
flat file extractor

Version 0.3.7, 22 January 2017

by Timo Savinen

This file documents version 0.3.7 of ffe, a flat file extractor.

Copyright c© 2014 Timo Savinen

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

Chapter 1: Preliminary information 1

1 Preliminary information

The ffe is a program to extract fields from text and binary flat files and to print them
in different formats. The input file structure and printing definitions are specified in a
configuration file, which is always required. Default configuration file is ~/.fferc (ffe.rc
in windows).

ffe is a command line tool developed for GNU/Linux and UNIX systems. ffe can read
from standard input and write to standard output, so it can be used as a part of a pipeline.

There is also binary distribution for windows.

Chapter 2: Samples using ffe 2

2 Samples using ffe

One example of using ffe for printing personnel information in XML format from fixed
length flat file:

$ cat personnel

john Ripper 23

Scott Tiger 45

Mary Moore 41

$

A file personnel contains three fixed length fields: ‘FirstName’, ‘LastName’ and ‘Age’, their
respective lengths are 9,13 and 2.

In order to print data above in XML, following configuration file must be available:

$cat personnel.fferc

structure personel {

type fixed

output xml

record person {

field FirstName 9

field LastName 13

field Age 2

}

}

output xml {

file_header "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n"

data "<%n>%t</%n>\n"

record_header "<%r>\n"

record_trailer "</%r>\n"

indent " "

}

$

Using ffe:

$ffe -c personnel.fferc personnel

<?xml version="1.0" encoding="ISO-8859-1"?>

<person>

<FirstName>john</FirstName>

<LastName>Ripper</LastName>

<Age>23</Age>

</person>

<person>

<FirstName>Scott</FirstName>

<LastName>Tiger</LastName>

<Age>45</Age>

</person>

<person>

Chapter 2: Samples using ffe 3

<FirstName>Mary</FirstName>

<LastName>Moore</LastName>

<Age>41</Age>

</person>

$

Chapter 3: How to run ffe 4

3 How to run ffe

ffe is a command line tool. Normally ffe can be invoked as:

ffe -o OUTPUTFILE INPUTFILE...

ffe uses the definitions from the configuration file and tries to guess the input file structure.

If the structure cannot be guessed the option -s must be used.

3.1 Program invocation

The format for running the ffe program is:

ffe option ...

ffe supports the following options:

-c file

--configuration=file

Configuration is read from file, instead of ~/.fferc (ffe.rc in windows).

-s structure

--structure=structure

Use structure structure for input file, suppresses guessing.

-p output

--print=output

Use output format output for printing. If not given, then the record or structure
related output format is used. Printing can be suppressed using format no.
Original data is printed using format raw.

-o file

--output=file

Write output to file instead of standard output.

-f list

--field-list=list

Print only fields and constants listed in the comma separated list list. Order of
names in list specifies also the printing order.

-e expression

--expression=expression

Print only those records for which the expression evaluates to true.

-a

--and Expressions are combined with logical and, default is logical or. Note that if
the same field and operator appear several time in expressions they are always
compared with logical or.

-X

--casecmp

Expressions are evaluated using case insensitive comparison

-v

--invert-match

Print only those records which don’t match the expression.

Chapter 3: How to run ffe 5

-l

--loose Normally ffe stops when it encounters an input line or binary block which
doesn’t match any of the records in selected structure. Defining this option
causes ffe continue despite the error. Note that invalid lines are reported only
for text input. In case of binary input next valid block is silently searched.

-r

--replace=field=value

Replace fields contents with value in output. value can contain same directives
as output option data.

-d

--debug All invalid input lines are written to ffe_error_<pid>.log, where <pid> is
the process ID.

-I

--info Show structure information in the configuration file and exit successfully. For
every structure following information in shown:
Structures: Name, type and maximum record length.
Records: Name and length
Fields: Name, position and length. First position is number one.

-?

--help Print an informative help message describing the options and then exit success-
fully.

-V

--version

Print the version number of ffe and then exit successfully.

All remaining options are names of input files, if no input files are specified or - is given,
then the standard input is read.

Expressions (option -e, --expression)

Expression can be used to select specific records comparing field values. Expression has
syntax fieldxvalue, where x is the comparison operator. Expression is used to compare
field’s contents to value and if comparison is successful the record is printed. Several
expressions can be given and at least one must evaluate to true in order to print a record.
If option -a is given all expressions must evaluate to true.

If value starts with string file: then the rest of value is considered as a file name. Every
line in file is used as value in comparison. Comparison evaluates true if one or more values
matches, so this makes possible use several different values in comparison. Note: The file
size is limited by available memory because the file contents is loaded to memory.

When comparing binary fields the value must have the representation which can be
shown using the %d output directive. Note that the printing option hex-caps takes effect in
comparison.

Expression notation:

field=value
Field field is equal to value.

Chapter 3: How to run ffe 6

field^value
Field field starts with value.

field~value
Field field contains value.

field!value Field field is not equal to value.

field?value Field field matches the regular expression value. ffe supports POSIX extended
regular expressions.

3.2 Configuration

ffe uses configuration file in order to read the input file and print the output.

Configuration file for ffe is a text file. The file may contain empty lines. Commands
are case sensitive. Comments begin with the #-character and end at the end of the line.
The string definitions can be enclosed in double quotation " characters. char is a single
character. string and char can contain following escape codes: \a, \b, \t, \n, \v, \f, \r,
\" and \#. A backslash can be escaped as \\.

Configuration has two main parts: the structure, which specifies the input file structure
and the output, which specifies how the input data is formatted for output.

Common syntax

Common syntax for configuration file is:

#comment

‘command‘

const name value

filter name value

...

structure name {

option value ...

...

record name {

option value ...

...

}

record name {

option value ...

...

}

...

}

structure name {

...

}

...

output name {

option value ...

Chapter 3: How to run ffe 7

...

}

output name {

...

}

...

lookup name {

option value ...

...

}

lookup name {

...

}

...

Structure

Keyword structure is used to specify the input file content. An input file can contain
several types of records (lines or binary blocks). E.g. file can have a header, data and
trailer record types. Records must be distinguishable from each other, this can be achieved
defining different ’keys’ (id in record definition) or having different line lengths (for fixed
length) or different count of fields (for separated structure) for different records.

If binary structure has several records, then all records must have at least one key (id),
because binary blocks can be distinguished only by using keys.

The structure notation:

structure name {

option value ...

...

}

A structure can contain following options:

type fixed|binary|separated [char] [*]

The fields in the input are fixed length fields (text or binary) or text fields
separated by char. If * is given, multiple sequential separators are considered
as one. Default separator is comma.

quoted [char]

Fields may be quoted with char, default quotation mark is the double quotation
mark ’"’. A quotation mark is assumed to be escaped as \char or doubling the
mark as charchar in input. Non escaped quotation marks are not preserved in
output.

header first|all|no

Controls the occurrence of the header line. Default is no. If set as first or all,
the first line of the first input file is considered as header line containing the
names of the fields. first means that only the first file has a header, all means

Chapter 3: How to run ffe 8

means that all files have a header, although the names are still taken from the
header of the first file. Header line is handled according the record definition,
meaning that the name positions, separators etc. are the same as for the fields.
Binary files cannot have a header.

output name|no|raw

All records belonging to this structure are printed according output format
name. Default is to use output named as ‘default’. ‘no’ prints nothing and
‘raw’ prints only the original data.

record name {options ...}

Specifies one record for a structure. A structure can contain several record
types.

Record

A record specifies one type of input line or binary block in a file. Different records can be
distinguished using the id option or different line lengths or field counts. In multi-record
binary structure every record must have at least one id because binary records do not have
a special end of record marker as text lines have.

The record notation:

record name {

option value ...

...

}

A record can contain following options:

id position string

rid position regexp

Identifies a record in the input file. Records are identified by the string or
by the regular expression regexp in input record position position. For fixed
length and binary input the position is the byte position of input record and
for separated input the position is the position’th field of the input record.
Positions starts always from one.

A record definition can contain several id’s, then all id’s must match the input
line (id’s are and-ed).

Non printable characters can be escaped as ‘\xnn’, where ‘nn’ is characters
hexadecimal value.

field name|FILLER|* [length]|* [lookup]|* [output]|* [filter]

Defines a field in a text input structure. length is mandatory for fixed length
input structure.

The last field of a fixed length input structure can have a * in place of length.
That means that the last field has no exact length specified and it gets the
remainder of the input line after all other fields. This allows a fixed record to
have arbitrary long last field.

Length is also used for printing the fields in fixed length format (directive %D

in output definitions).

Chapter 3: How to run ffe 9

If * is given instead of the name, then the name will be the ordinal number of
the field, or if the header option has value first or all, then the name of the
field will be taken from the header line (first line of the input).

If lookup is given then the fields contents is used to make a lookup in lookup
table lookup. If length is not needed (separated format) but lookup is needed,
use asterisk (*) in place of length definition.

If output is given the field will be printed using output definition output. If
length and/or lookup are not needed use asterisk in place of them. Use asterisk
(*) if not needed.

If filter is given the raw contents of the field is filtered through a program
defined by filter and the output of the program is printed as field contents.

If field is named as FILLER, the field will not appear in output.

The order of fields in configuration file is essential, it specifies the field order in
a record.

field name|FILLER|* length|type [lookup]|* [output]|* [filter]

Defines a field in a binary structure. All other features are same as for text
structure fields except the type parameter.

type specifies the field length and type and can have the following values:

char Printable character.

short Short integer having current system length and byte order.

int Integer having current system length and byte order.

long Long integer having current system length and byte order.

llong Long long integer having current system length and byte order.

ushort Unsigned short integer having current system length and byte order.

uint Unsigned integer having current system length and byte order.

ulong Unsigned long integer having current system length and byte order.

ullong Unsigned long long integer having current system length and byte
order.

int8 8 bit integer.

int16_be Big endian 16 bit integer.

int32_be Big endian 32 bit integer.

int64_be Big endian 64 bit integer.

int16_le Little endian 16 bit integer.

int32_le Little endian 32 bit integer.

int64_le Little endian 64 bit integer.

uint8 Unsigned 8 bit integer.

uint16_be

Unsigned big endian 16 bit integer.

Chapter 3: How to run ffe 10

uint32_be

Unsigned big endian 32 bit integer.

uint64_be

Unsigned big endian 64 bit integer.

uint16_le

Unsigned little endian 16 bit integer.

uint32_le

Unsigned little endian 32 bit integer.

uint64_le

Unsigned little endian 64 bit integer.

float Float having current system length and byte order.

float_be Float having current system length and big endian byte order.

float_le Float having current system length and little endian byte order.

double Double having current system length and byte order.

double_be

Double having current system length and big endian byte order.

double_le

Double having current system length and little endian byte order.

bcd_be_len

Bcd number having length len and nybbles in big endian order.

bcd_le_len

Bcd number having length len and nybbles in little endian order.

hex_be_len

Hexadecimal data in big endian order having length len.

hex_le_len

Hexadecimal data in little endian order having length len.

If length is given instead of the type, then the field is assumed to be a printable
string having length length. String is printed until length characters are printed
or NULL character is found.

Bcd number (bcd_be_len and bcd_le_len) is printed until len bytes are read or
a nybble having hexadecimal value f is found. Bcd number having big endian
order is printed in order: most significant nybble first and least significant
nybble second and bcd number having little endian order is printed in order:
least significant nybble first and most significant nybble second. Bytes are
always read in big endian order.

Hexadecimal data (hex_be_len and hex_le_len) is printed as hexadecimal
values. Big endian data is printed starting from lower address and little endian
data starting from upper address.

Chapter 3: How to run ffe 11

field-count number

Same effect as having "field *" number times. This can be used in sepa-
rated structure instead of writing sequential "field *" definitions. Several
field-counts can be used in the same record and they can be mixed with
field.

fields-from record

Fields in this record are the same as in record record. field and fields-from

are mutually exclusive.

output name|no|raw

This record is printed according to output format name. Default is to use
output format specified in structure.

level number [element_name|*] [group_name]

Levels can be used to print the file in hierarchical multi-level nested form doc-
ument. number is the level of the record, starting from number one (highest
level), element name is the name for the record, group name is used to group
records in the same and lower levels. Only number is mandatory. Use * instead
of the element name if group name is needed.

record-length strict|minimum

strict Input record length (fixed format) or field count (separated format)
must match the record definition in order to get it processed. This
is the default value.

minimum Input record length or field count can be the same or longer as
defined for the record. The rest of the input line is ignored.

variable-length record_length variable_length_field adjust

record length and variable length field are the names of two fields in the record
and adjust is a signed integer. Record length is read from field record length.
record length is assumed to be an integer type for binary structures or contain
only decimal numbers in fixed length structure. record length is assumed to
contain the total length of the record. variable length field is the field having
variable length. The length of variable length field is calculated by subtracting
the total length of the all other fields from the length read from record length.
The length given by keyword field for variable length field is ignored. After
calculating the length it is adjusted by adjust. adjust can be used in cases
where the length read from variable length field does not contain the total
length of the record. variable-length can be used with binary or fixed lengths
structures only.

Output

Keyword output specifies a output format for formatting the input data for output. For-
matting is controlled using options and printf style directives. An output definition is
independent from structure, so one output format can be used with different input file
formats.

The output notation:

Chapter 3: How to run ffe 12

output name {

option value ...

...

}

Actual formatting and printing is controlled using pictures in output options. Pictures
can contain following printf style directives:

%f Name of the input file.

%s Name of the current structure.

%r Name of the current record.

%o Input record number in current file.

%O Input record number starting from the first file.

%i Byte offset of the current record in the current file. Starts from zero.

%I Byte offset of the current record starting from the first file. Starts from zero.

%n Field name.

%t Field contents, without leading and trailing white-spaces.

%d Field contents. Binary integer is printed as a decimal value. Floating point
number is printed in the style [-]ddd.ddd, where the number of digits after
the decimal-point character is 6. Bcd number is printed as a decimal number
and hexadecimal data as consecutive hexadecimal values.

%D Field contents, right padded to the field length (requires length definition for
the field).

%C Field contents, right padded to the field length (requires length definition for
the field). Contents is cut if the input field is longer than output length.

%x Unsigned hexadecimal value of a binary integer. Other fields are printed as
directive %d would be used.

%l Lookup value which has been found using current field as a search key.

%L Lookup value, right padded to the field length.

%p Fields start position in a record. For fixed and binary structure this is field’s
byte position in the input line and for separated structure this is the ordinal
number of the field. Starts from one.

%h Hexadecimal dump of a field. Byte values are printed as consecutive xnn values,
where the nn is the hexadecimal value of a byte. Data is printed before any
endian conversion.

%e Does not print anything, causes still the "field empty" check to be performed.
Can be used when only the names of non-empty fields should be printed.

%g Group name given by the keyword group_name in record definition.

%m Element name given by the keyword element_name in record definition.

Chapter 3: How to run ffe 13

%% Percent sign.

Output options:

file_header picture

picture is printed once before file contents.

file_trailer picture

picture is printed once after file contents.

header picture

If given, then the header line describing the field names is printed before records.
Every field name is printed according the picture using the same separator and
field length as given for the fields. Picture can contain only %n directive.

data picture

Field contents is printed according picture.

lookup picture

If current field is related to lookup table, then this picture is used instead of
picture from data. This makes possible to use different picture when the field
is related to a lookup table. Default is to use the picture from data.

separator string

All fields are terminated by string, except the last field of the record. Default
is not to print separator.

record_header picture

picture is printed before the record content. Default is not to print the record
header.

record_trailer picture

picture is printed after the record content. Default is newline.

justify left|right|char

The output from the data option is left or right justified. char justifies output
according the first occurrence of char in the data picture. Default is left.

indent string

Record contents is intended by string. Field contents is intended by two times
the string. Default is not to indent. If file contents is printed in hierarchical
form (keyword level in record definition) then contents is indented according
the level of a record.

field-list name1,name2,...

Only fields and constants named as name1,name2,. . . are printed, same effect as
has option -f. Default is print all fields and no constants. Fields and constants
are also printed in the same order as they are listed.

no-data-print yes|no

If field-list is given and and this is set as no and none of the fields in
field-list does not belong to the current record, then the record_header

and record_trailer are not printed. Default is yes.

Chapter 3: How to run ffe 14

field-empty-print yes|no

When set as no, nothing is printed for the fields which consist entirely of char-
acters from empty-chars. If none of the fields of a record are printed, then the
printing of record_trailer is also suppressed. Default is yes.

empty-chars string

string specifies a set of characters which consist an "empty" field. Default is
" \f\n\r\t\v" (space, form-feed, newline, carriage return, horizontal tab and
vertical tab).

output-file file

Output is written to file instead of the default output (standard output or given
by -o, --output). If - is given the output is written to standard output.

group_header picture

If a record has a level and a group name defined, picture is printed before the
first record in a group or if the group name has changed in the same level. Note:
Level related pictures can contain printing directives %g and %n only.

group_trailer picture

If a record has a level and a group name defined, picture is printed after the
records in lower levels are printed or if the group name has changed in the same
level or if a higher level record is found.

element_header picture

If a record has a level and a element name defined, picture is printed before the
records contents.

element_trailer picture

If a record has a level and a element name defined, picture is printed after the
records contents or after the following lower level records.

hex-caps yes|no

Print hexadecimal numbers in capital letters. Default is no.

Lookup

Keyword lookup specifies a lookup table which can be searched using field contents. Found
values can be printed using output directives %l and %L.

The lookup table notation:

lookup name {

option value ...

...

}

Lookup options:

search exact | longest

Search method for this table. Either exact or longest match is used when
searching the table. Default is exact.

Chapter 3: How to run ffe 15

pair key value

Defines a key/value pair for the lookup table. In case of binary file key must
have the same representation as can be shown using the %d printing directive.

file name [separator]

Data for the lookup table is read from file name. Each line in file name is con-
sidered as a key/value pair separated by a single character separator. Default
separator is semicolon. Lines without separator are silently omitted. Note: The
file size is limited by available memory because the file contents is loaded to
memory.

default-value value

If searching the lookup table is unsuccessful then value is used in printing.
Default is empty string.

Constants

Keyword const specifies one name/value pair which can be used as an additional output
field. Constants can be used only in field lists (option -f,--field-list, or output option
field-list).

Constants can be used to add fields to output which do not appear in input. E.g. new
fields for separated output or adding spaces after a fixed length field (changing the field
length).

Note that value is printed as it is for every record. It cannot be changed record by
record.

If a constant has the same name as one of the input fields, the value value is printed
instead of the input field contents.

The constant notation:

const name value

When name appears in field list it is treated as one of the input fields having contents
value.

Filter

Keyword filter defines a command that can be used to format field raw contents. Com-
mand must read the standard input and write to standard output and it must not block.
Field raw contents is filtered through the command and the output is printed as field con-
tents.

The filter notation:

filter name command

name is referred in field definition. command is the shell command to be executed.

Anonymization

Keyword anonymize defines a set of fields which will be anonymized by using command
line option -A,--anonymize is given. Ffe uses non-reversible anonymization methods and
preserves the original field length.

Chapter 3: How to run ffe 16

Notation:

anonymize name {

method ...

...

}

The anonymization will be done if command line option -A,--anonymize is given with
name. Anonymize options:

method field method start length parameter

All fields named as field in the current structure will be anonymized using
method method. As default the whole field is anonymized. Some parts of
the field can be left non-anonymized using start and length. start is the byte
position where the anonymization starts, first byte is number 1. If start is
negative the anonymization starts from the end of the field. If length is given
then length number of bytes is anonymized after start position, default value 0
means the rest of the field. Only field and method are mandatory.

Values for method:

MASK Field will be masked with character ’0’. Different character can be
given with parameter.

RANDOM

NRANDOM Field will be filled with randomly selected bytes.

HASH

NHASH Field will be filled with data from hash calculated from the original
field. This method yields always the same result with same input.
The hash length in bytes can be given with parameter. Default
hash length is 16, valid values for hash length are 16, 32 and 64.

Methods RANDOM and HASH use characters 0-9,A-Z,a-z and space for text
fields. Methods NRANDOM and NHASH use only characters 0-9. For binary
fields all byte values are used. BCD coded fields are always filled with BCD
values 0-9.

Command Substitution

Command Substitution allows the output of a command to replace parts of the configuration
file. Syntax for command substitution is:

‘command‘

The command is executed and the ‘command‘ is substituted with the standard output of the
command, with any trailing newlines deleted. Command substitutions may not be nested.

Before executing the command ffe sets following environment variables:

FFE_STRUCTURE

The name of the structure from -s,--structure.

Chapter 3: How to run ffe 17

FFE_OUTPUT

The name of the output file from -o,--output.

FFE_FORMAT

The name of the output format from -p,--print.

FFE_FIRST_FILE

The name of the first input file.

FFE_FILES

A space-separated list of all input files.

If variable is already set it will not be replaced.

Input Preprocessor

It is possible to define an input preprosessor for ffe. An input preprocessor is simply an
executable program which writes the contents of the input file to standard output which
will be read by ffe. If the input preprosessor does not write any characters on its standard
output, then ffe uses the original file.

To set up an input preprocessor, set the FFEOPEN environment variable to a command
line which will invoke your input preprocessor. This command line should include one
occurrence of the string %s, which will be replaced by the input filename when the input
preprocessor command is invoked.

The input preprocessor is not used if ffe is reading standard input.

Convenient way is to use lesspipe (or lesspipe.sh), which is available in many UNIX-
systems, for example

export FFEOPEN="/usr/bin/lesspipe %s"

Using the example above is it possible to give a zipped input file to ffe, then the input
processor will unzip the file before it is processed by ffe.

3.3 Guessing

If -s is not given, ffe tries to guess the input structure.

When guessing binary data ffe reads the first block of input data and tries to match
the structure definitions from configuration file to that block. The input block size is the
maximum binary block size found in configuration file.

When guessing text data ffe reads the first 10 000 lines or 1 MB of input data and tries
to match the structure definitions from configuration file to input stream. If all lines match
one and only one structure, the structure is used for reading the input file.

Guessing uses following execution cycle:

1. A input line or a binary block is read

2. All record id’s are compared to the input data, if all id’s of a record match the input
date and the records line length matches the total length (or total count for separated
structure) of the fields, the record is considered to match the input line. If there are
no id’s, only the line length or field count is checked. In case of binary data only id’s
are used in matching.

Chapter 3: How to run ffe 18

3. In case of text data: If all lines match at least one of the records in a particular
structure, the structure is considered as selected. There must be only one structure
matching all lines used for guessing.

In case of binary data: If the first block matches at least one record of a structure, the
structure is considered as selected. Only one structure must match.

3.4 Limitations

At least in GNU/Linux ffe should be able to handle big files (> 4 GB), other systems are
not tested.

Regular expression can be used in operator ? in option -e, --expression and in record
key word rid only in systems where regular expression functions (regcomp, regexec, . . .)
are available.

Chapter 4: How ffe works 19

4 How ffe works

Following examples use two different input files:

Fixed length example

Fixed length personnel file with header and trailer, line (record) is identified by the first
byte (H = Header, E = Employee, B = Boss, T = trailer).

$cat personnel.fix

H2006-02-25

EJohn Ripper 23

BScott Tiger 45

EMary Moore 41

ERidge Forrester 31

T0004

$

Structure for reading file above. Note that record ‘boss’ reuses fields from ‘employee’.

structure personel_fix {

type fixed

record header {

id 1 H

field type 1

field date 10

}

record employee {

id 1 E

field EmpType 1

field FirstName 9

field LastName 13

field Age 2

}

record boss {

id 1 B

fields-from employee

}

record trailer {

id 1 T

field type 1

field count 4

}

}

Separated example

Same file as above, but now separated by comma.

$cat personnel.sep

H,2006-02-25

Chapter 4: How ffe works 20

E,john,Ripper,23

B,Scott,Tiger,45

E,Mary,Moore,41

E,Ridge,Forrester,31

T,0004

$

Structure for reading file above. Note that the field lengths are not needed in separated
format. Length is need if the separated data is to be printed in fixed length format.

structure personel_sep {

type separated ,

record header {

id 1 H

field type

field date

}

record employee {

id 1 E

field type

field FirstName

field LastName

field Age

}

record boss {

id 1 B

fields-from employee

}

record trailer {

id 1 T

field type

field count

}

}

Printing in XML format

Data in examples above can be printed in XML using output definition like:

output xml {

file_header "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"

data "<%n>%t</%n>\n"

record_header "<%r>\n"

record_trailer "</%r>\n"

indent " "

}

Example output using command (assuming definitions above are saved in ~/.fferc)

ffe -p xml personnel.sep

<?xml version="1.0" encoding="UTF-8"?>

Chapter 4: How ffe works 21

<header>

<type>H</type>

<date>2006-02-25</date>

</header>

<employee>

<type>E</type>

<FirstName>john</FirstName>

<LastName>Ripper</LastName>

<Age>23</Age>

</employee>

<boss>

<type>B</type>

<FirstName>Scott</FirstName>

<LastName>Tiger</LastName>

<Age>45</Age>

</boss>

<employee>

<type>E</type>

<FirstName>Mary</FirstName>

<LastName>Moore</LastName>

<Age>41</Age>

</employee>

<employee>

<type>E</type>

<FirstName>Ridge</FirstName>

<LastName>Forrester</LastName>

<Age>31</Age>

</employee>

<trailer>

<type>T</type>

<count>0004</count>

</trailer>

Printing sql commands

Data in examples above can be loaded to database by generated sql commands. Note that
the header and trailer are not loaded, because only fields ‘FirstName’,‘LastName’ and ‘Age’
are printed and ‘no-data-print’ is set as no. This prevents the ‘record_header’ and
‘record_trailer’ to be printed for file header and trailer.

output sql {

file_header "delete table boss;\ndelete table employee;\n"

record_header "insert into %r values("

data "’%t’"

separator ","

record_trailer ");\n"

file_trailer "commit\nquit\n"

no-data-print no

Chapter 4: How ffe works 22

field-list FirstName,LastName,Age

}

Output from command

ffe -p sql personnel.sep

delete table boss;

delete table employee;

insert into employee values(’john’,’Ripper’,’23’);

insert into boss values(’Scott’,’Tiger’,’45’);

insert into employee values(’Mary’,’Moore’,’41’);

insert into employee values(’Ridge’,’Forrester’,’31’);

commit

quit

Human readable output

This output format shows the fields in format suitable for displaying in screen or printing.

output nice {

record_header "%s - %r - %f - %o\n"

data "%n=%t\n"

justify =

indent " "

}

Output from command

ffe -p nice personnel.fix

personel - header - personnel.fix - 1

type=H

date=2006-02-25

personel - employee - personnel.fix - 2

EmpType=E

FirstName=John

LastName=Ripper

Age=23

personel - boss - personnel.fix - 3

EmpType=B

FirstName=Scott

LastName=Tiger

Age=45

personel - employee - personnel.fix - 4

EmpType=E

FirstName=Mary

LastName=Moore

Age=41

Chapter 4: How ffe works 23

personel - employee - personnel.fix - 5

EmpType=E

FirstName=Ridge

LastName=Forrester

Age=31

personel - trailer - personnel.fix - 6

type=T

count=0004

HTML table

Personnel data can be displayed as HTML table using output like:

output html {

file_header "<html>\n<head>\n</head>\n<body>\n<table border=\"1\">\n<tr>\n"

header "<th>%n</th>\n"

record_header "<tr>\n"

data "<td>%t</td>\n"

file_trailer "</table>\n</body>\n</html>\n"

no-data-print no

}

Output from command

ffe -p html -f FirstName,LastName,Age personnel.fix

<html>

<head>

</head>

<body>

<table border="1">

<tr>

<th>FirstName</th>

<th>LastName</th>

<th>Age</th>

<tr>

<td>John</td>

<td>Ripper</td>

<td>23</td>

<tr>

<td>Scott</td>

<td>Tiger</td>

<td>45</td>

<tr>

<td>Mary</td>

<td>Moore</td>

<td>41</td>

Chapter 4: How ffe works 24

<tr>

<td>Ridge</td>

<td>Forrester</td>

<td>31</td>

</table>

</body>

</html>

Using expression

Printing only Scott’s record using expression with previous example:

ffe -p html -f FirstName,LastName,Age -e FirstName^Scott personnel.fix

<html>

<head>

</head>

<body>

<table border="1">

<tr>

<th>FirstName</th>

<th>LastName</th>

<th>Age</th>

<tr>

<td>Scott</td>

<td>Tiger</td>

<td>45</td>

</table>

</body>

</html>

Using replace

Make all bosses and write a new personnel file printing the fields in fixed length format
using directive %D:

Output definition:

output fixed

{

data "%D"

}

Write a new file:

$ffe -p fixed -r EmpType=B -o personnel.fix.new personnel.fix

$cat personnel.fix.new

H2006-02-25

BJohn Ripper 23

Chapter 4: How ffe works 25

BScott Tiger 45

BMary Moore 41

BRidge Forrester 31

T0004

$

Using constant

The length of the fields FirstName and LastName in fixed length format will be made two
bytes longer. This will be done by printing a constant after those two fields. We use dots
instead of spaces in order to make change more visible.

Because we do not want to change header and trailer we need specially crafted configu-
ration file. Employee and boss records will be printed using new output fixed2 and other
records will be printed using output default.

New definition file new_fixed.rc:

const 2dots ".."

structure personel_fix {

type fixed

record header {

id 1 H

field type 1

field date 10

}

record employee {

id 1 E

field EmpType 1

field FirstName 9

field LastName 13

field Age 2

output fixed2

}

record boss {

id 1 B

fields-from employee

output fixed2

}

record trailer {

id 1 T

field type 1

field count 4

}

}

output default

{

data "%D"

Chapter 4: How ffe works 26

}

output fixed2

{

data "%D"

field-list Emptype,FirstName,2dots,LastName,2dots,Age

}

Print new flat file:

$ ffe -c new_fixed.rc personel_fix

H2006-02-25

EJohn ..Ripper ..23

BScott ..Tiger ..45

EMary ..Moore ..41

ERidge ..Forrester ..31

T0004

$

Using lookup table

Lookup table is used to explain the EmpTypes contents in output format nice:

Lookup definition:

lookup Type

{

search exact

pair H Header

pair B "He is a Boss!"

pair E "Not a Boss!"

pair T Trailer

default-value "Unknown record type!"

}

Mapping the EmpType field to lookup:

structure personel_fix {

type fixed

record header {

id 1 H

field type 1

field date 10

}

record employee {

id 1 E

field EmpType 1 Type

field FirstName 9

field LastName 13

field Age 2

}

record boss {

Chapter 4: How ffe works 27

id 1 B

fields-from employee

}

record trailer {

id 1 T

field type 1

field count 4

}

}

Adding the lookup option to output definition nice.

output nice {

record_header "%s - %r - %f - %o\n"

data "%n=%t\n"

lookup "%n=%t (%l)\n"

justify =

indent " "

}

Running ffe:

$ffe -p nice personnel.fix

personel_fix - header - personel_fix - 1

type=H

date=2006-02-25

personel_fix - employee - personel_fix - 2

EmpType=E (Not a Boss!)

FirstName=John

LastName=Ripper

Age=23

personel_fix - boss - personel_fix - 3

EmpType=B (He is a Boss!)

FirstName=Scott

LastName=Tiger

Age=45

personel_fix - employee - personel_fix - 4

EmpType=E (Not a Boss!)

FirstName=Mary

LastName=Moore

Age=41

personel_fix - employee - personel_fix - 5

EmpType=E (Not a Boss!)

FirstName=Ridge

LastName=Forrester

Age=31

Chapter 4: How ffe works 28

personel_fix - trailer - personel_fix - 6

type=T

count=0004

External lookup file

In previous example the lookup data could be read from external file like:

$cat lookupdata

H;Header

B;He is a Boss!

E;Not a Boss!

T;Trailer

$

Lookup definition using file above:

lookup Type

{

search exact

file lookupdata

default-value "Unknown record type!"

}

Making universal csv reader using command substitution

Command substitution can be used to make a configuration for reading any csv file. The
number of fields will be read from the first file using awk. Input file names and date are
printed in the file header:

structure csv {

type separated ,

header first

record csv {

field-count ‘awk "-F," ’FNR == 1 {print NF;exit;}’ $FFE_FIRST_FILE‘

}

}

output default {

file_header "Files: ‘echo $FFE_FILES‘\n‘date‘\n"

data "%n=%d\n"

justify =

}

Reading binary data

A binary block having a 3 byte text (ABC) in 5 bytes long space, one byte integer (35), a
32 bit integer (12345678), a double (345.385), a 3 byte bcd number (45112) and a 4 byte
hexadecimal data (f15a9188) can be read using following configuration:

structure bin_data

{

Chapter 4: How ffe works 29

type binary

record b

{

field text 5

field byte_int int8

field integer int

field number double

field bcd_number bcd_be_3

field hex hex_be_4

}

}

output default

{

data "%n = %d (%h)\n"

}

The %h directive gives a hex dump of the input data.

Hexadecimal dump of the data:

$ od -t x1 example_bin

0000000 41 42 43 00 08 23 4e 61 bc 00 5c 8f c2 f5 28 96

0000020 75 40 45 11 2f f1 5a 91 88

0000031

Using ffe:

$ffe -c example_bin.fferc -s bin_data example_bin

text = ABC (x41x42x43x00x08)

byte_int = 35 (x23)

integer = 12345678 (x4ex61xbcx00)

number = 345.385000 (x5cx8fxc2xf5x28x96x75x40)

bcd_number = 45112 (x45x11x2f)

hex = f15a9188 (xf1x5ax91x88)

Note that the text has only 3 characters before NULL byte. Because this example was
made in little endian machine, same result can be achieved with different configuration:

structure bin_data

{

type binary

record b

{

field text 5

field byte_int int8

field integer int32_le

field number double_le

field bcd_number bcd_be_3

field hex hex_be_4

}

}

Chapter 4: How ffe works 30

This configuration is more portable in case the same data is to be read in a different
architecture because endianess of integer and double are explicit given.

If the bcd number is read with bcd_le_3 it would look as

bcd_number = 5411 (x45x11x2f)

Note that nybbles are swapped and last byte is handled as f2 (f stops the printing)
causing only first two bytes to be printed.

and if hexadecimal data is read with hex_le_4 it would look as

hex = 88915af1 (xf1x5ax91x88)

Bytes are printed starting from the end of the data.

Printing nested XML

The keyword level in record definition can be used to print data in multi-level nested form.
In this example a parent row is in level one and a child row is in level two. Children after a
parent row belongs to the parent before child rows, so they are enclosed in a parent element.

Example data:

P,John Smith,3

C,Kathren,6,Blue

C,Jimmy,4,Red

C,Peter,2,Green

P,Margaret Eelers,2

C,Aden,16,White

C,Amanda,20,Black

A parent row consists of ID (P), parent name, and the count of the children. A child
row consists of id (C), child name, age and favorite color.

This can be printed in nested XML using rc file:

structure family

{

type separated ,

record parent

{

id 1 P

field FILLER

field Name

field Child_count

level 1 parent

}

record child

{

id 1 C

field FILLER

field Name

field Age

field FavoriteColor

Chapter 4: How ffe works 31

level 2 child children

}

}

output nested_xml

{

file_header "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"

data "<%n>%t</%n>\n"

indent " "

record_trailer ""

group_header "<%g>\n"

group_trailer "</%g>\n"

element_header "<%m>\n"

element_trailer "</%m>\n"

}

Output:

<?xml version="1.0" encoding="UTF-8"?>

<parent>

<Name>John Smith</Name>

<Child_count>3</Child_count>

<children>

<child>

<Name>Kathren</Name>

<Age>6</Age>

<FavoriteColor>Blue</FavoriteColor>

</child>

<child>

<Name>Jimmy</Name>

<Age>4</Age>

<FavoriteColor>Red</FavoriteColor>

</child>

<child>

<Name>Peter</Name>

<Age>2</Age>

<FavoriteColor>Green</FavoriteColor>

</child>

</children>

</parent>

<parent>

<Name>Margaret Eelers</Name>

<Child_count>2</Child_count>

<children>

<child>

<Name>Aden</Name>

<Age>16</Age>

<FavoriteColor>White</FavoriteColor>

Chapter 4: How ffe works 32

</child>

<child>

<Name>Amanda</Name>

<Age>20</Age>

<FavoriteColor>Black</FavoriteColor>

</child>

</children>

</parent>

Some examples put in a single file

structure personel_fix {

type fixed

record header {

id 1 H

field type 1

field date 10

}

record employee {

id 1 E

field EmpType 1 Type

field FirstName 9

field LastName 13

field Age 2

}

record boss {

id 1 B

fields-from employee

}

record trailer {

id 1 T

field type 1

field count 4

}

}

structure personel_sep {

type separated ,

record header {

id 1 H

field type

field date

}

record employee {

id 1 E

field type

field FirstName

Chapter 4: How ffe works 33

field LastName

field Age

}

record boss {

id 1 B

fields-from employee

}

record trailer {

id 1 T

field type

field count

}

}

structure bin_data

{

type binary

record b

{

field text 5

field byte_int int8

field integer int32_le

field number double_le

field bcd_number bcd_be_3

field hex hex_be_4

}

}

output xml {

file_header "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"

data "<%n>%t</%n>\n"

record_header "<%r>\n"

record_trailer "</%r>\n"

indent " "

}

output sql {

file_header "delete table boss;\ndelete table employee;\n"

record_header "insert into %r values("

data "’%t’"

separator ","

record_trailer ");\n"

file_trailer "commit\nquit\n"

no-data-print no

field-list FirstName,LastName,Age

}

Chapter 4: How ffe works 34

output nice {

record_header "%s - %r - %f - %o\n"

data "%n=%t\n"

lookup "%n=%t (%l)\n"

justify =

indent " "

}

output html {

file_header "<html>\n<head>\n</head>\n<body>\n<table border=\"1\">\n<tr>\n"

header "<th>%n</th>\n"

record_header "<tr>\n"

data "<td>%t</td>\n"

file_trailer "</table>\n</body>\n</html>\n"

no-data-print no

}

output fixed

{

data "%D"

}

lookup Type

{

search exact

pair H Header

pair B "He is a Boss!"

pair E "Not a Boss!"

pair T Trailer

default-value "Unknown record type!"

}

Anonymization

Anonymize fields FirstName, LastName and Age for personnel data:

anonymize personnel

{

method FirstName HASH 2

method LastName HASH 2

method Age NRANDOM

}

Data before anonymization:

$cat personnel.fix

H2006-02-25

EJohn Ripper 23

BScott Tiger 45

EMary Moore 41

Chapter 4: How ffe works 35

ERidge Forrester 31

T0004

Anonymize the data to new file personnel_anon.fix (using the default configuration
file ~/.fferc and raw output):

ffe -A personnel -praw -o personnel_anon.fix personnel.fix

Anonymized data:

$cat personnel_anon.fix

H2006-02-25

EJQIQ9C5oBR2rDU0qiSTv7E62

BSqUcsYzSTTNTuTraspsG4154

EMTsXkHltVMsV8qmK1tkgq 00

ER1e90zv1dFjP4 xgflVGQF87

T0004

$ffe -pnice personnel_anon.fix

personel - header - personnel_anon.fix - 1

type=H

date=2006-02-25

personel - employee - personnel_anon.fix - 2

EmpType=E

FirstName=JQIQ9C5oB

LastName=R2rDU0qiSTv7E

Age=62

personel - boss - personnel_anon.fix - 3

EmpType=B

FirstName=SqUcsYzST

LastName=TNTuTraspsG41

Age=54

personel - employee - personnel_anon.fix - 4

EmpType=E

FirstName=MTsXkHltV

LastName=MsV8qmK1tkgq

Age=00

personel - employee - personnel_anon.fix - 5

EmpType=E

FirstName=R1e90zv1d

LastName=FjP4 xgflVGQF

Age=87

personel - trailer - personnel_anon.fix - 6

type=T

count=0004

Chapter 4: How ffe works 36

FirstName and LastName have preserved the first letter because anonymization started
from the second byte. Age is a two digit random number. Name fields will get the same
anonymized value for each run, but Age will have a random value for each run.

Using ffe to test file integrity

ffe can be used to check flat file integrity, because ffe checks for all lines the line length
and id’s for fixed length structure and field count and id’s for separated structure.

Integrity can be checked using command

ffe -p no -l inputfiles...

Because option -p has value no nothing is printed to output except the error messages.
Option -l causes all erroneous lines to be reported, not just the first one.

Example output:

ffe: Invalid input line in file ’inputfileB’, line 14550

ffe: Invalid input line in file ’inputfileD’, line 12

Chapter 5: Reporting Bugs 37

5 Reporting Bugs

If you find a bug in ffe, please send electronic mail to tjsa@iki.fi. Include the version
number, which you can find by running ‘ffe --version’. Also include in your message the
output that the program produced and the output you expected.

If you have other questions, comments or suggestions about ffe, contact the author via
electronic mail to tjsa@iki.fi. The author will try to help you out, although he may not
have time to fix your problems.

mailto:tjsa@iki.fi
mailto:tjsa@iki.fi

i

Table of Contents

1 Preliminary information . 1

2 Samples using ffe . 2

3 How to run ffe . 4
3.1 Program invocation . 4
3.2 Configuration . 6
3.3 Guessing . 17
3.4 Limitations . 18

4 How ffe works . 19

5 Reporting Bugs . 37

	Preliminary information
	Samples using ffe
	How to run ffe
	Program invocation
	Configuration
	Guessing
	Limitations

	How ffe works
	Reporting Bugs

