
Explicit Convertibility Proofs in Pure Type Systems

Floris van Doorn
Utrecht University

florisvandoorn@hotmail.com

Herman Geuvers
Radboud University Nijmegen

herman@cs.ru.nl

Freek Wiedijk
Radboud University Nijmegen

freek@cs.ru.nl

Abstract
We define type theory with explicit conversions. When type check-
ing a term in normal type theory, the system searches for convert-
ibility paths between types. The results of these searches are not
stored in the term, and need to be reconstructed every time again.
In our system, this information is also represented in the term.

The system we define has the property that the type derivation
of a term has exactly the same structure as the term itself. This has
the consequence that there exists a natural LF encoding of such a
system in which the encoded type is a dependent parameter of the
type of the encoded term.

For every Pure Type System we define a system in our style. We
show that such a system is always equivalent to the normal system
without explicit conversions (even for non-functional systems), in
the sense that the typability relation can be lifted. This proof has
been fully formalised in the Coq system, building on a formalisa-
tion by Vincent Siles.

In our system, explicit conversions are not allowed to be re-
moved when checking for convertibility. This means that all terms
in convertibility proofs are well typed, even in the sense of our sys-
tem.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Lambda calculus
and related systems

General Terms Reliability, Theory

Keywords Type Theory, Pure Type Systems, Conversion Rule,
Convertibility Proofs, Formalisation, Coq

1. Introduction
Dependent type systems are used as a basis for formalising math-
ematics through the well-known Curry-Howard formulas-as-types
embedding. Types are used to represent “sets” and “data types,”
but also to represent “formulas.” In that interpretation a proof of a
formulaA is a termM of typeA. So, proofs become first-class citi-
zens of the system and proof checking is the same as type checking:
verifying whetherM : A holds. A proof assistant like Coq is based
on this idea, using a type system called the ‘Calculus of Inductive
Constructions’. This system also includes a (small) functional pro-
gramming language: one can define data types as inductive types
and program functions over these data types by well-founded re-
cursion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
LFMTP 2013 23 September 2013, Boston, USA
Copyright c© 2013 ACM [to be supplied]. . . $15.00

In dependent type systems, terms occur in types, so one can
do (computational) reduction steps inside types. This includes
β-reduction steps, but, in case one has inductive types, also ι-
reduction and, in case one has definitions, also δ-reduction. A type
B that is obtained from A by a (computational) reduction step is
considered to be “equal” to A. A common approach to deal with
this equality between types is to use an externally defined notion of
conversion. In case one has only β-reduction, this is β-conversion
which is denoted by A 'β B. This is the least congruence con-
taining the β-reduction step. Then there is a conversion rule of the
form

Γ ` a : A Γ ` A′ : s
(A 'β A′)

Γ ` a : A′
. (conv)

Now, when you apply a term M : A → B to a term P : A′,
one needs to check if A 'β A′. There is a general way to do
this: reduce both types to β-normal-form, and check if these normal
forms are equal. Unfortunately, reducing a term to β-normal-form
might take hyperexponential time. In practice, proof checkers use
heuristics to check if two types are β-convertible without reducing
to normal form. However, there is in general no efficient way to
check β-convertibility.

The phenomenon that β-convertibility – which is a crucial and
non-trivial part of the correctness of a proof – is checked by an aux-
iliary program and not recorded in the proof-term goes against the
intuition of what a proof is. A proof should be “self evident” and
should encode all information to check its correctness; it should
not require additional computation or intelligence to verify a proof.
At present, the situation is far from that. Notably in the system
Coq, where βδι-conversion is used to implement proof search algo-
rithms and automated theorem proving algorithms inside the type
system, using the so called reflection approach, see for example
[8, 13]. The idea is to reflect part of the meta-language in the object
language and to write proof search algorithms that Coq needs to
execute during the type checking phase. Coq users clearly consider
this a feature: use Coq’s convertibility check to do proof automa-
tion.

So, the conversion rule allows one to trade proving (writing
explicit proof terms) for computing (the convertibility check in
the type checking algorithm). It is not so clear cut whether this
is a good idea. At the TYPES meeting in Kloster Irsee in 1998,
Henk Barendregt explained the use of the conversion rule in the
reflection method, and Per Martin-Löf seemed to consider this to
be a bug, because proofs were not “self explanatory” anymore.
Also Dick de Bruijn has often stressed the importance of weak
logical frameworks, e.g. [6]. He stressed the point that the logical
framework should be general and that additional rules for doing
logic or computation should be provided by the user.

Contribution In this paper we define the framework PTSf ,
which are Pure Type Systems (PTS) with type-conversions explic-
itly recorded in the proof terms. This implies that type checking is
linear in the size of the term and that types are not only determined

up to beta conversion. In particular for functional specifications
every term has a unique type. We state and prove the equivalence
of the two frameworks: we show that every PTS λS is equivalent
to its PTSf companion λfS. The proof proceeds by showing that
every PTSe judgement can be transformed into a PTSf judge-
ment, where PTSe are Pure Type Systems with an explicit equality
judgment, but no equality-proofs recorded in the terms (It has been
shown by Siles and Herbelin [15] that PTSe and PTS are equiv-
alent frameworks). Our equivalence proof involves a number of
subtle technical steps, so we have completely formalised this proof
in Coq.

Approach The idea is to introduce proof terms of equalities and
add these proof terms to the term when the conversion rule is used.
So, there is a separate equality judgement of the form Γ `f H :
A = A′, which means that H codes the proof that A and A′ are
convertible in context Γ. The conversion rule now becomes

Γ `f a : A Γ `f A′ : s Γ `f H : A = A′

Γ `f aH : A′
. (conv)

Note that the convertibility proof H is added to the term. A con-
sequence of this change in the conversion rule is that there is a
unique derivation of the typing judgement of a term. The equiva-
lence of this formulation of PTS with the original, uses the PTSe,
that uses typed judgemental equality. In PTSe, there are also sep-
arate equality judgements, but now of the form Γ `e A = A′ : B.
The difference with PTSf lies in the fact that

• in PTSe, the terms A and A′ are forced to have the same type,
• in PTSe, there is no proof term witnessing the equality.

In PTSe, the conversion rule is
Γ `e a : A Γ `e A = A′ : s

Γ `e a : A′
. (conv)

We don’t prove our equivalence result for one type system, but
work in the general setting of Pure Type Systems (PTSs), which
allows to build meta-theory for a whole family of type systems.
This is to avoid having to build this meta-theory for all type systems
one by one. It has already been shown in the literature that a PTSe
is equivalent to the corresponding PTS. In [2] it is shown that these
two systems are equivalent for a special family of functional PTSs.
In [15] this result is generalised to arbitrary PTSs.

Overview of the paper In Section 2 we recall the definition of
Pure Type Systems. We assume familiarity with type theory and
PTSs, so we don’t go into much detail. The article [4] gives a
more detailed introduction to Pure Type Systems. As a matter of
fact, we do not use the original variant of Pure Types Systems, but
an equivalent descriptions (that we have also formally proved to be
equivalent in Coq). This version of PTSs uses a judgment to denote
that a context is well-formed. The advantage of this version is that
then a term uniquely codes for the typing derivation. In Section
3 we describe PTSes, Pure Type Systems with typed judgemental
equality λeS. We state the equivalence between λS and λeS.

In Section 4 we introduce PTSf , Pure Type Systems with typed
convertibility proofs λfS. This system is a generalisation of the
system λF in paper [7], which is about one particular PTS, λP ,
the system corresponding to LF. We study the PTSf λF , which we
call λfP in this paper more closely in Section 7. We also prove an
important property about λfS, which is that every judgement has a
unique derivation.

In Section 5 we prove the equivalence between the PTS λS
and the PTSf λfS. In Section 5.1 we study the erasure map
in judgements, which is a map from λfS-terms to λS-terms and
we also use this map to prove ‘λfS ⇒ λS’, which states that
a judgement in λfS can be transformed to a similar judgement

λS ks Th. 3.1 +3 λeS

Th. 5.10y� zzzzzzz

zzzzzzz

λfS
Th. 5.2

]eCCCCCCC

CCCCCCC

Figure 1.1. Proven implications.

in λS. Then we prove in Section 5.2 the crucial technical result
that states that equality is preserved under substitutions. In the
final section, 5.3 we prove ‘λeS ⇒ λfS’. Together with the other
implication and the equivalence between λS and λeS we conclude
that the systems λS and λfS are equivalent. We finish by proving
an injectivity statement for products. The proven implications are
displayed in Figure 1.1. The equivalence (Theorem 3.1) is the work
of Siles.

Because the proof of the equivalence between λS and λfS
is technical and involves large proofs with many cases, we have
also formalised the proof in the proof assistant Coq. In Section 6
we describe this formalisation. Using Coq as proof assistant, we
can profit from the fact that Siles has formalised the equivalence
between λS and λeS in Coq. We have built the formalisation of
our proof on top of the formalisation of Siles, to be able to use
his results. The formalisation can be found at http://www.cs.
ru.nl/~freek/ptsf/. Lemmas and Theorems which have been
formalised (mainly in Section 5) state the name of the result in the
Coq code using the format [Coq name].

In Section 7 we look more closely at the PTS λfP and to
a subfamily of PTSs called functional PTSs. We prove that in
functional PTSs every term has a unique type, and that if we have
a convertibility proof between terms, the corresponding types are
also convertible. We also present some simplifications to the rules
used for PTSs in these particular cases.

2. λS: Pure Type Systems
In this section we introduce the notion of Pure Type Systems
(PTSs). This is a broad family of type systems, and in this paper
will we only treat type systems which can be described as PTS.
The specification S of a PTS consists of three sets S = (S,A,R),
where S is the set of sorts, A ⊆ S × S is the set of axioms, and
R ⊆ S × S × S is the set of relations. We will use the letters s, t
for sorts, possibly adorned with primes or subscripts.

We fix a countably infinite set of variables V . We will denote
variables by x, y, z possibly adorned with primes or subscripts.
Given a specification S, then we construct the PTS λS consisting of
a set of pseudoterms, pseudocontexts, pseudojudgements and rules
to inductively define the judgements. The set T of pseudoterms is
constructed using the following grammar:

T = V | S | T T | ΠV:T .T | λV:T .T .
We will use the letters a, b, c, d, A,B,C,D,M,N , possibly adorned
with primes or subscripts, for pseudoterms. Next we define beta re-
duction. One step beta reduction is the compatible closure of the
relation

(λx:A.M)N β M [x := N] (1)
and denoted by→β . Beta reduction is the reflexive transitive clo-
sure of one step beta reduction and denoted by �β . Beta conver-
sion is the reflexive symmetric transitive closure of (one step) beta
reduction, i.e. the smallest equivalence relation containing (one
step) beta reduction, and denoted by 'β .

Two important properties about beta conversion are stated in the
following theorem. Statement 1 is called confluence or the Church-
Rosser theorem.

http://www.cs.ru.nl/~freek/ptsf/
http://www.cs.ru.nl/~freek/ptsf/

` (nil)

Γ ` A : s x 6∈ dom Γ
Γ, x : A ` (cons)

Γ ` (s1, s2) ∈ A
Γ ` s1 : s2

(sort)

Γ ` (x : A) ∈ Γ
Γ ` x : A

(var)

Γ ` A : s1 Γ, x : A ` B : s2
(s1, s2, s3) ∈ R

Γ ` Πx:A.B : s3
(prod)

Γ ` A : s1 Γ, x : A ` b : B : s2
(s1, s2, s3) ∈ R

Γ ` λx:A.b : Πx:A.B
(abs)

Γ ` F : Πx:A.B Γ ` a : A
Γ ` Fa : B[x := a]

(app)

Γ ` a : A Γ ` A′ : s
(A 'β A′)

Γ ` a : A′
(conv)

Figure 2.1. rules for λS

Theorem 2.1.

1. [Betas diamond] If for pseudoterms A,B,C we have A�β

B and A �β C, then there is a pseudoterm D such that
B �β D and C �β D.

2. [Betac confl] If for pseudoterms A,B we have A 'β B
then there is a pseudoterm C such thatA�β C andB �β C.

Next, we define the set C of pseudocontexts by

C = · | C,V : T .

Here · is called the empty context. Pseudocontexts are denoted by Γ
or ∆, possibly adorned with subscripts or primes. All pseudocon-
texts Γ are of the form (we leave out the dot)

Γ ≡ x1 : A1, x2 : A2, . . . , xn : An

for some n ≥ 0. We define dom Γ = {x1, . . . , xn} and (x : A) ∈
Γ if x ≡ xi and A ≡ Ai for some i. We write Γ[x := a] for the
context

x1 : A1[x := a], x2 : A2[x := a], . . . , xn : An[x := a].

Given two contexts Γ and ∆, we will write the concatenation of
these contexts simply by Γ,∆.

Furthermore we have pseudojudgements of the form

J = C ` | C ` T : T .

Here Γ ` is a legality pseudojudgement, meaning that Γ is a legal
context and Γ ` a : A is a typing pseudojudgement. We use the
abbreviation Γ ` A : B : C for “Γ ` A : B and Γ ` B : C.”

Alternative rules The rules we gave for judgements is not stan-
dard in literature. The most common way to define this, is given
in Figure 2.2. Note that in these rules only the typing judgement
occurs, and there’s no judgement dedicated to stating that a context
is legal.

Of course we want to know if the two different presentations of
the rules are equivalent.

Proposition 2.2. [legacy2typ][typ2legacy] The rules in Fig-
ure 2.1 define the same typing judgements as the rules in Figure
2.2.

(s1, s2) ∈ A
` s1 : s2

(ax)

Γ ` A : s x 6∈ dom Γ
Γ, x : A ` x : A

(var′)

Γ ` A : s Γ ` b : B x 6∈ dom Γ
Γ, x : A ` b : B

(weak)

Γ ` A : s1 Γ, x : A ` B : s2
(s1, s2, s3) ∈ R

Γ ` Πx:A.B : s3
(prod)

Γ ` A : s1 Γ, x : A ` b : B : s2
(s1, s2, s3) ∈ R

Γ ` λx:A.b : Πx:A.B
(abs)

Γ ` F : Πx:A.B Γ ` a : A
Γ ` Fa : B[x := a]

(app)

Γ ` a : A Γ ` A′ : s
(A 'β A′)

Γ ` a : A′
(conv)

Figure 2.2. alternative rules for λS more common in literature

The proof is easy by induction on the derivation, we will skip it
here.

For a more detailed overview of PTSs, see [4]. In this article,
the rules in Figure 2.2 are used, and then the meta-theory of these
rules is developed. We will use one nontrivial proposition from this
meta-theory.

Theorem 2.3 (Subject Reduction). [SubjectRed] If Γ ` A : B
and A�β A

′ then Γ ` A′ : B.

Proof. See [4], Lemma 5.2.15 on page 107.

3. λeS: Typed judgemental equality
Given a specification S, we define the Pure Type System with typed
judgemental equality λeS as follows. It has the same pseudoterms
and pseudocontexts as λS, but there is another kind of pseudojudge-
ment. We will annotate the turnstile with a subscript e to distinguish
the judgements in λeS from judgements in λS. We still have the or-
dinary typing judgement Γ `e M : A and legality judgement Γ `e,
but we also have an equality judgement Γ `e M = M ′ : A.
The deduction rules are given in Figure 3.1. The first seven rules
are exactly the same, but in the conversion rule we do not use an
externally defined beta convertibility anymore, instead, we have to
prove the equality within the system. The new rules describe what
the equality judgements are. The rules (ref), (sym) and (trans) are
for the reflexivity, symmetry and transitivity of the equality. Then
(beta) is the analogue of equation (1) in this system, and the rules
(prod-eq), (abs-eq) and (app-eq) are to ensure that the equality is
compatible with the structure of terms. Finally we also have a con-
version rule (conv-eq) for equality judgements

In [2] it is shown that these two different type systems are
equivalent for so-called functional specifications (cf. Definition
7.2). In [14] the result is also proven for semi-full specifications.
In [15] this equivalence is generalised to arbitrary specifications.
The equivalence is formulated as follows.

Theorem 3.1 (Equivalence of λS and λeS).

1. Γ `e iff Γ `;
2. Γ `e M : A iff Γ `M : A;
3. Γ `e M = N : A iff Γ `M : A, Γ ` N : A and M 'β N .

The proof is hard and is given in [15].

`e (nil)

Γ `e A : s
x 6∈ dom Γ

Γ, x : A `e
(cons)

Γ `e (s1, s2) ∈ A
Γ `e s1 : s2

(sort)

Γ `e (x : A) ∈ Γ
Γ `e x : A

(var)

Γ `e A : s1 Γ, x : A `e B : s2
(s1, s2, s3) ∈ R

Γ `e Πx:A.B : s3
(prod)

Γ `e A : s1 Γ, x : A `e b : B : s2
(s1, s2, s3) ∈ R

Γ `e λx:A.b : Πx:A.B
(abs)

Γ `e F : Πx:A.B Γ `e a : A

Γ `e Fa : B[x := a]
(app)

Γ `e a : A Γ `e A = A′ : s

Γ `e a : A′
(conv)

Γ `e A : B

Γ `e A = A : B
(ref)

Γ `e A = A′ : B

Γ `e A′ = A : B
(sym)

Γ `e A = A′ : B Γ `e A′ = A′′ : B

Γ `e A = A′′ : B
(trans)

Γ `e a : A : s1 Γ, x : A `e b : B : s2
(s1, s2, s3) ∈ R

Γ `e (λx:A.b)a = b[x := a] : B[x := a]
(beta)

Γ `e A = A′ : s1 Γ, x : A `e B = B′ : s2
(s1, s2, s3) ∈ R

Γ `e Πx:A.B = Πx:A′.B′ : s3
(prod-eq)

Γ `e A = A′ : s1 Γ, x : A `e b = b′ : B : s2
(s1, s2, s3) ∈ R

Γ `e λx:A.b = λx:A′.b′ : Πx:A.B
(abs-eq)

Γ `e F = F ′ : Πx:A.B Γ `e a = a′ : A

Γ `e Fa = F ′a′ : B[x := a]
(app-eq)

Γ `e a = a′ : A Γ `e A = A′ : s

Γ `e a = a′ : A′
(conv-eq)

Figure 3.1. rules for λeS

If one tries to prove this directly, then the direction from left
to right is easy by induction over the derivation of the judgement,
but for the other direction, the equivalence of equality is very hard,
as is described in [2]. One could try to derive that if Γ ` M : A
and M �β N then Γ `e M = N : A from which the desired
statement follows using Church-Rosser (Theorem 2.1). In normal
PTSs, the way to derive such a statement is to prove the following
statements simultaneously by induction

• If Γ `e M : A and M →β N then Γ `e M = N : A;
• If Γ `e M : A and Γ→β ∆ then ∆ `e M : A.

Here x1 : A1, . . . , xn : An →β x1 : B1, . . . , xn : Bn means
that there is a j ≤ n such that Aj →β Bj and that for all
i 6= j we have Ai ≡ Bi. If one tries to prove this, the hard
case is proving (app) for the first statement, specifically if one
derived Γ `e (λx:A.b)a : B[x := a] with the corresponding
reduction (λx:A.b)a →β b[x := a]. If one tries to prove Γ `e
(λx:A.b)a = b[x := a] : B[x := a] then one needs a form of
product injectivity, i.e. one needs the following statement. If Γ `e
Πx:A.B = Πx:A′.B′ : s3 then there is a relation (s1, s2, s3) ∈ R
such that Γ `e A = A′ : s1 and Γ, x : A `e B = B′ : s2. There
is no obvious way to prove this, because the equality could have
been derived via a chain of (trans)-rules, and we don’t really know
much about the terms in the middle of this chain.

The way [15] proved the Theorem was to define a new variant
of PTS they called Pure Type System based on Annotated Typed
Reduction or PTSatr . This system is a typed version of parallel beta
reduction [16]. They also needed to add typing information to each
application, which means that each application was of the form
MΠx:A.BN where Πx:A.B is the type of M . In this system they
were able to prove confluence for the typed reduction, and from
that they were able to prove a weak form of product injectivity and
also subject reduction. Then they proved the equivalence between
PTSatr and PTSe (which we call λeS). This equivalence implies
Theorem 3.1.

4. λfS: Typed convertibility proofs
For a specification S we define the Pure Type System with con-
vertibility proofs λfS as follows. There is a separate class H of
(pseudo-)convertibility proofs and the pseudoterms T have one ex-
tra constructor, the conversion aH for a pseudoterm a and convert-
ibility proof H .

T = V | S | T T | ΠV:T .T | λV:T .T | T H.
The convertibility proofs have the following grammar, and are

denoted by H (possibly adorned with primes or subscripts):

H = T | H† | H · H | β(T) | {H, [V : T]H}
| 〈H, [V : T]H〉 | HH | ι(H).

Note that the ι in the grammar has nothing to do with ι-reduction.
We define H[x := a] in the obvious way, by replacing x with a
for every free occurrence of x in H . Note that in {H1, [x : A]H2}
and 〈H1, [x : A]H2〉 the free occurrences of x in H2 are bound by
[x : A] and hence will not be replaced.

The pseudocontexts have the same grammar as before. As in
λeS, there are three different kind of judgements, but the equality
judgement is now different. In λeS, the equality judgement has the
form Γ `e M = N : A, while in λfS, the equality judgement has
the form Γ `f H : M = N . So instead of typing the equality, we
have a convertibility proof witnessing the equality. This also means
that in λfS, the terms in an equality judgement a priori need not
have the same type, hence this equality is a form of heterogenous
or John Major equality [12]. Also, for non-functional specifications
we will see an example of an equality between terms which do not

`f (nil)

Γ `f A : s
x 6∈ dom Γ

Γ, x : A `f
(cons)

Γ `f
(s1, s2) ∈ A

Γ `f s1 : s2

(sort)

Γ `f
(x : A) ∈ Γ

Γ `f x : A
(var)

Γ `f A : s1 Γ, x : A `f B : s2
(s1, s2, s3) ∈ R

Γ `f Πx:A.B : s3

(prod)

Γ `f A : s1 Γ, x : A `f b : B : s2
(s1, s2, s3) ∈ R

Γ `f λx:A.b : Πx:A.B
(abs)

Γ `f F : Πx:A.B Γ `f a : A

Γ `f Fa : B[x := a]
(app)

Γ `f a : A Γ `f A′ : s Γ `f H : A = A′

Γ `f aH : A′
(conv)

Γ `f A : B

Γ `f A : A = A
(ref)

Γ `f H : A = A′

Γ `f H† : A′ = A
(sym)

Γ `f H : A = A′ Γ `f H ′ : A′ = A′′

Γ `f H ·H ′ : A = A′′
(trans)

Γ `f a : A : s1 Γ, x : A `f b : B : s2
(s1, s2, s3) ∈ R

Γ `f β((λx:A.b)a) : (λx:A.b)a = b[x := a]
(beta)

Γ `f A : s1

Γ `f A′ : s′1

Γ `f H : A = A′

Γ, x : A `f B : s2

Γ, x′ : A′ `f B′ : s′2

Γ, x : A `f H ′ : B = B′[x′ := xH]

Γ `f {H, [x : A]H ′} : Πx:A.B = Πx′:A′.B′

(prod-eq)

Γ `f A : s1

Γ `f A′ : s′1

Γ `f H : A = A′

Γ, x : A `f b : B : s2

Γ, x′ : A′ `f b′ : B′ : s′2

Γ, x : A `f H ′ : b = b′[x′ := xH]

Γ `f 〈H, [x : A]H ′〉 : λx:A.b = λx′:A′.b′

(abs-eq)

Γ `f F : Πx:A.B

Γ `f F ′ : Πx′:A′.B′

Γ `f H : F = F ′

Γ `f a : A

Γ `f a′ : A′

Γ `f H ′ : a = a′

Γ `f HH ′ : Fa = F ′a′

(app-eq)

Γ `f a : A Γ `f A′ : s Γ `f H : A = A′

Γ `f ι(aH) : a = aH
(iota)

Figure 4.1. rules for λfS

have the same type in Section 7.1. In summary, the judgements have
the grammar (annotating the turnstile with a subscript f)

J = C `f | C `f T : T | C `f H : T = T .
The deduction rules are given in Figure 4.1. The first seven rules

are exactly the same as before, the conversion rule is different, and
the other rules describe how to derive equality judgements. In the
conversion rule, the most notable difference is that the convertibil-
ity proofH is added to the term, so that you can store exactly which
rules were used to derive the equality. Most of the rules for equality
judgements correspond to a similar λeS-rule. There are again rules
for reflexivity, symmetry and transitivity. Then we have the beta
rule, and rules to equate products, abstractions and applications. In
(prod-eq) and (abs-eq) the conditions (s1, s2, s3), (s′1, s

′
2, s
′
3) ∈ R

should also hold. Note that we need much more hypotheses to these
rules relative to the rules for PTSe, because we need both typing
information and equality information, and in the rules for PTSe
these could be given in a single judgement. At last we have the
(iota)-rule which describes the equality between a term and the
same term annotated with a convertibility proof. In Section 7 we
look at some special cases for the specification, and will notice that
some rules can be simplified in these special cases.

The main motivation for defining the system λfS is the follow-
ing Theorem.

Theorem 4.1. [unique der] The rules used in the derivation of
a judgement are uniquely determined by that judgement.

Remark 4.2. With “the rules used in the derivation of a judgement
J” we mean the derivation tree der(J) (which a priori depends on
more than only J) with nodes labeled by (nil), (cons), (sort), . . .,
(iota), describing which rules are used. For example der(`f) is a
tree with the single node labeled by (nil), and if we last used the
rule (abs)-rule

Γ `f A : s1 Γ, x : A `f b : B : s2
(s1, s2, s3) ∈ R

Γ `f λx:A.b : Πx:A.B

then we have
der(Γ `f λx:A.b : Πx:A.B) =

der(Γ `f A : s1) der(Γ, x : A `f b : B) der(Γ, x : A `f B : s2)

(abs)

PPPPPPPPPPPP

llllllllllllll

Using this notation, the statement of Theorem 4.1 becomes that the
function der is well-defined from judgements to labeled trees, i.e. it
only depends on the judgement. Note that der(J) does not give all

information about the derivation of J . For example, the tree
(nil)

(sort)
could have conclusion `f s : t for all axioms (s, t) ∈ A. ∅

Before we prove Theorem 4.1 we need some more information.
In the (abs)-rule, the term λx:A.b in the conclusion does not fully
describe the type B of b, while B is required to have a type in the
hypotheses. We need to prove that if b has two different types B
and B′, a derivation of the typing of these types must use the same
rules.

Definition 4.3. We call two terms A and B comparable if there is
an n ≥ 0 and n + 2 terms A1, . . . , An, A

′, B′ ∈ T such that the
following statements hold

1. We have A ≡ Πx1:A1.Πx2:A2. · · ·Πxn:An.A
′;

2. We have B ≡ Πx1:A1.Πx2:A2. · · ·Πxn:An.B
′;

3. Either A′ ≡ B′ or both A′ and B′ are sorts.

Note that in particular equal terms are comparable, and that any two
sorts are comparable.

Lemma 4.4. [unique type comparable] If Γ `f M : A and
Γ `f M : B then A and B are comparable.

Proof. By induction on the structure of M .

We will prove a little stronger result which implies Theorem
4.1.

Theorem 4.5. [unique der ext]

1. Any two derivation trees of Γ `f are equal.
2. If M and M ′ are comparable, then any derivation tree of

Γ `f M : A is equal to a derivation tree of Γ `f M ′ : A′.
3. Any derivation tree of Γ `f H : M = N is equal to a

derivation tree of Γ `f H : M ′ = N ′

Proof. By simultaneous induction on the derivation of the first
judgement in each item, distinguishing cases according to the last
applied rule.

We need the following definitions.

Definition 4.6. We define the following concepts for λfS:

1. Γ is called legal (or well-formed) if Γ `f .
2. M is called a Γ-term if there is a judgement with context Γ

where M appears in as pseudoterm (outside Γ). This means
that either Γ `f M : A, Γ `f N : M , Γ `f H : M = N or
Γ `f H : N = M .

3. M is called a term iff it is a Γ-term for some context Γ.
4. If Γ `f M : A then M is said to have a type under Γ and A is

called a Γ-type.
5. A is called a Γ-semitype iff either A is a sort or Γ `f A : s for

some sort s.
6. We define Γ `f M = N to mean there exists an H such

that Γ `f H : M = N and in this case we call M and N
convertible.

7. We define the erasure map | · | on pseudoterms by the following
recursion:

|s| ≡ s |Πx:A.B| ≡ Πx:|A|.|B| |Fa| ≡ |F ||a|
|x| ≡ x |λx:A.b| ≡ λx:|A|.|b| |aH | ≡ |a|

Thus |M | is the pseudoterm M with all convertibility proofs
removed. If M is a term, then |M | need not to be a term, but it
always is a λS-term, which we will prove later. We say that M
is a lift of M ′ if |M | ≡ M ′. We extend the erasure map (and
the notion of lift) to contexts by

|x1 : A1, . . . , xn : An| ≡ x1 : |A1|, . . . , xn : |An|.

5. Meta-theory of λfS
In this section we show the equivalence between the type systems
λfS and λS using the equivalence between λeS and λS. In Section
5.1 we will prove the implication λfS → λS and some properties
about the erasure map. In Section 5.2 we will prove a Lemma about
equality between substitutions. Finally in Section 5.3 we prove the
implication λeS → λfS, and Product Injectivity as Corollary. All
results in this section have been formalised in Coq. The name of
the corresponding result in Coq is written next to each result.

The system λfS satisfies the Weakening, Substitution, Genera-
tion and Type Correctness (a Γ-type is a Γ-semitype) properties as
usual. We also have the following Lemma.

Lemma 5.1.

1. [equality unique] If Γ `f H : A = B and Γ `f H : Ã =
B̃, then A ≡ Ã and B ≡ B̃.

2. (Equality Typing) [equality typing] If Γ `f A = B, then
both A and B have a type under Γ.

Proof. 1. Induction on the derivation of the first judgement. In
(abs-eq) and (prod-eq) one has to note that if B[x := xH] ≡
B̃[x := xH] then B ≡ B̃.

2. Induction on the derivation of the judgement.

5.1 Erasure map
In this section we will prove some properties about the erasure
map as defined in Definition 4.6.7. We start with the implication
λfS⇒ λS.

Theorem 5.2. [PTSF2PTS]

1. If Γ `f then |Γ| `;
2. If Γ `f A : B then |Γ| ` |A| : |B|;
3. If Γ `f H : A = B then |A| 'β |B|.

Proof. We use simultaneous induction on the derivation of the
judgement in each statement, distinguishing cases according to the
last used rule. All cases are easy.

Lemma 5.3. Suppose Γ `f H : A = A′ and Γ `f A : s. Then

1. [subst wf] if Γ, x′ : A′,∆ `f then Γ, x : A,∆[x′ :=
xH] `f .

2. [subst typ] if Γ, x′ : A′,∆ `f M : N then Γ, x :
A,∆[x′ := xH] `f M [x′ := xH] : N [x′ := xH];

3. [subst eq] if Γ, x′ : A′,∆ `f H ′ : M = N then Γ, x :
A,∆[x′ := xH] `f H ′[x′ := xH] : M [x′ := xH] =
N [x′ := xH];

Proof. The statements are proved separately from the Substitution
Lemma and other Lemmas.

Proposition 5.4 (Erasure Injectivity). [erasure injectivity term]
IfA andA′ have types under Γ and |A| ≡ |A′|, then Γ `f A = A′.

Proof. By induction on the structure of A we prove that for all
A′ and Γ, if A and A′ have types under Γ and |A| ≡ |A′|, then
Γ `f A = A′. In every step we use induction on the structure of
A′.

Lemma 5.5.

1. [erasure injectivity term sort] IfA has a type under Γ
and |A| ≡ s then Γ `f A = s.

2. [erasure term] If |A| ≡ |B| and Γ `f a : A and B is a
Γ-semitype, then there is a lift b of |a| (that is, |a| ≡ |b|) such
that Γ `f b : B.

3. [erasure term type] If Γ `f a1 : A1 and Γ `f A2 : B
with |A1| ≡ |A2| and |B| ≡ s, then there is a lift a3 of |a1| and
a lift A3 of |A1| such that Γ `f a3 : A3 : s.

4. [erasure equality] If Γ `f a1 = a2, Γ `f a1 : A,
Γ `f a2 : A, |A| ≡ |B| and B is a Γ-semitype, then there
are lifts b1, b2 of |a1|, |a2| respectively such that Γ `f b1 = b2,
Γ `f b1 : B and Γ `f b2 : B.

Proof. The first is by induction on the structure of A. The others
follow from previous Lemmas.

5.2 Equality of substitutions
In the proof of the equivalence between λfS and λeS we need one
more lemma for the (app-eq)-case. If we have a convertibility proof
between two applications, concluded by (app-eq), we need to prove
that the types are also convertible under the same context. This
means that we need to prove Corollary 5.9, but this cannot be done
by a simple induction on the first judgement. For this we need a
more general statement (Proposition 5.8), where x : T can occur
anywhere in the context.

To see why this is the case, let us try to prove Corollary 5.9. So
we want to conclude Γ `f M [x := a1] = M [x := a2] from the
statements

Γ, x : T `f M : N ; Γ `f a1 = a2; Γ `f a1 : T ; Γ `f a2 : T.

The obvious way to do this is by induction on eitherM or induction
on the derivation of the judgement Γ, x : T `f M : N , and
these inductions come down to the same thing. So if we do either
induction, we have a problem in the product case. Then Γ, x : T `f
Πy:A.B : s3 is concluded from Γ, x : T `f A : s1 and Γ, x :
T, y : A `f B : s2. There’s no problem with applying the IH to
the first judgement, to obtain Γ `f A[x := a1] = A[x := a2], but
for the second judgement we have a problem. We cannot apply the
IH to it, because the declaration x : T does not occur at the end of
the context. So we get stuck.

We might now try to prove a similar statement if we replace the
first judgement in the assumption with Γ, x : T, y : A `f M : N .
Of course this will also fail in the product case, because one of
the hypotheses to the rule will have an extra declaration to the end
of the context. Still, it is illustrative to try this, because it justifies
the definition we’re about to introduce. Our first question becomes
what the exact formulation of the conclusion becomes if we replace
the first judgement by Γ, x : T, y : A `f M : N . One might guess
that the answer is Γ, y : A `f M [x := a1] = M [x := a2],
but with a little thought one will see this cannot hold in general.
The occurrences of y in M [x := a1] are expected to have type
A[x := a1] instead of A, and similarly, the occurrences of y in
M [x := a2] are expected to have type A[x := a1]. But this gives
a problem, because there seems no good context to the judgement
? `f M [x := a1] = M [x := a2]. By Substitution we know
that M [x := a1] has a type under Γ, y : A[x := a1] and that
M [x := a2] has a type under Γ, y : A[x := a2], but there seems to
be no context where both terms have a type, which we need for our
equality.

To solve this problem, let’s look at what we exactly need in our
attempt to prove the product case above. Then we want to apply
(prod-eq) to conclude

Γ `f Πy:A[x := a1].B[x := a1] = Πy:A[x := a2].B[x := a2].

The hypothesis of this rule which is giving trouble is the hypothesis
which equates B[x := a1] and B[x := a2]. The full judgement is

Γ, y : A[x := a1] `f B[x := a1] = B[x := a2][y := yH].

HereH is the convertibility proof determined by Γ `f H : A[x :=
a1] = A[x := a2], which we already had by the IH on the first
judgement. This gives us exactly the statement we need to prove if
the relevant declaration x : T is the second last declaration in the
context. Then we need to prove that

Γ, y : A[x := a1] `f M [x := a1] = M [x := a2][y := yH]

can be concluded from

Γ, x : T, y : A `f M : N ; Γ `f H : A[x := a1] = A[x := a2];

Γ `f a1 = a2; Γ `f a1 : T ; Γ `f a2 : T.

If we try to prove this with induction, we again fail in the product
case, and we need a new Lemma which states what the formulation

becomes if we move the relevant declaration x : T to the third last
position in the context. In this case we need to prove that

Γ, y1 : A1[x := a1], y2 : A2[x := a1] `f
M [x := a1] = M [x := a2][y1 := yH1

1][y2 := yH2
2]

can be concluded from the following six judgements

Γ, x : T, y1 : A1, y2 : A2 `f M : N ; Γ `f a1 : T ; Γ `f a2 : T ;

Γ `f a1 = a2; Γ `f H1 : A1[x := a1] = A1[x := a2];

Γ, y1 : A1[x := a1] `f H2 : A2[x := a1] = A2[x := a2][y1 := yH1].

This illustrates what the general case must be. If the first assump-
tion becomes Γ, x : T,∆ `f M : N with ∆ a context with n dec-
larations, then we need to prove the equality between M [x := a1]
and M [x := a2][· · ·] where the second term also has n substi-
tutions for all n variables in the domain of ∆. For this we need
n equality judgements in our assumptions, proving equalities be-
tween the types occurring in ∆ with similar substitutions.

Note that a similar problem occurs if one tries to prove the
Substitution Lemma where the substituted variable only appears
in the last declaration of a judgement. If one tries to prove that
Γ, x : A `f B : C and Γ `f a : A implies Γ `f B[x := a] :
C[x := a], then one also runs into trouble when doing the product
or abstraction case, because a declaration comes after the relevant
declaration x : A.

Definition 5.6. For a vector ~x = (x1, . . . , xn) write ~xi :=
(x1, . . . , xi) and ~xi := (xi, . . . , xn). We use the same notation
for pseudocontexts.

Let ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) be two vectors of
variables, and ~H = (H1, . . . , Hn) be a vector of pseudoconvert-
ibility proofs. Define for a pseudoterm M the n-fold substitution
M [~x := ~y

~H] := M [x1 := yH1
1][x2 := yH2

2] · · · [xn := yHn
n]. For

a context ∆ we define ∆[~x := ~y
~H] similarly.

First we need some information about typing of these n-fold
substitutions. The idea is that we use Lemma 5.3 repeatedly.

Lemma 5.7. Let Γ and ∆ = y1 : D1, . . . , yn : Dn and ∆′ =
y′1 : D′1, . . . , y

′
n : D′n be (pseudo)contexts such that Γ,∆ is legal.

Suppose for all i ∈ {1, . . . n} we have Γ,∆i−1 `f Hi : Di =

D′i[~y′i−1 := ~y
~Hi−1

i−1]. Then

1. [subst mult typ] If Γ,∆′ `f M : N then for all k ≤ n we
have Γ,∆k,∆

′k+1[~yk := ~y
~Hk
k] `f M [~yk := ~y

~Hk
k] : N [~yk :=

~y
~Hk
k];

2. [subst mult eq] If Γ,∆′ `f H : M = N then for all
k ≤ n we have Γ,∆k,∆

′k+1[~yk := ~y
~Hk
k] `f H[~yk := ~y

~Hk
k] :

M [~yk := ~y
~Hk
k] = N [~yk := ~y

~Hk
k];

In particular (for k = n) we have Γ,∆ `f M [~y′ := ~y
~H] :

N [~y′ := ~y
~H] (and the variant of this for equality judgements).

Proof. The statements are proved separately by induction on k.

Now we can prove the general statement.

Proposition 5.8. [equality subst ext] Let Γ and ∆ = y1 :
D1, . . . , yn : Dn be pseudocontexts. Suppose that Γ `f a1 = a2

and Γ `f a1 : T and Γ `f a2 : T and Γ, x : T,∆ `f M : N
and for all i ∈ {1, . . . , n} we have Γ,∆i−1[x := a1] `f Hi :

Di[x := a1] = Di[x := a2][~yi−1 := ~y
~Hi−1

i−1]. Then Γ,∆[x :=

a1] `f M [x := a1] = M [x := a2][~y := ~y
~H].

Proof. Use induction on the derivation of Γ, x : T,∆ `f M :
N.

Corollary 5.9. [equality subst] If Γ, x : T `f M : N and
Γ `f a1 = a2 and Γ `f a1 : T and Γ `f a2 : T then
Γ `f M [x := a1] = M [x := a2].

Proof. This is the case n = 0 of Proposition 5.8.

5.3 Equivalence
Theorem 5.10. [PTSeq2PTSF] For all λeS contexts Γ, and all
λeS pseudoterms M,N, T the following statements hold.

1. If Γ `e then there is a legal lift Γ′ of Γ.
2. If Γ `e M : T , then there is a legal lift Γ′ of Γ, and for every

legal lift Γ′ of Γ there are liftsM ′, T ′ ofM,T respectively such
that Γ′ `f M ′ : T ′;

3. If Γ `e M = N : T , then there is a legal lift Γ′ of Γ, and
for every legal lift Γ′ of Γ there are liftsM ′, N ′, T ′ ofM,N, T
respectively such that Γ′ `f M ′ = N ′, Γ′ `f M ′ : T ′ and
Γ′ `f N ′ : T ′.

Proof. We prove all statements by simultaneous induction on the
derivation of the λeS-judgement. We distinguish cases according
to the last applied rule.

Theorem 5.11. [PTSl2PTSF] For all λS-contexts Γ and all λS-
terms A and B the following statements hold.

1. If Γ is legal then there exists a legal lift of Γ;
2. If Γ ` A : B and Γ′ is a legal lift of Γ, then there are lifts A′

and B′ of A and B respectively such that Γ′ `f A′ : B′;
3. IfA 'β B,A andB both have a type under Γ and Γ′ is a legal

lift of Γ, then there is a convertibility proofH and there are lifts
A′ and B′ of A and B such that Γ′ `f H : A′ = B′.

Proof. Only the third implication requires some work, because in
λeS equalities are only allowed between terms with equal types. By
the Church-Rosser Theorem there is a term C such that A �β C
and B �β C. We know that Γ ` A : T1 and Γ ` B : T2, so
by Subject Reduction we know that Γ ` C : T1 and Γ ` C : T2.
By Theorem 3.1 we now conclude that Γ `e A = C : T1 and
Γ `e C = B : T2. Now by Theorem 5.10 we conclude that
there are lifts A′, C′, C′′, B′ of A,C,C,B respectively, such that
Γ′ `f A′ = C′ and Γ′ `f C′′ = B′ and all four terms have a type
under Γ′. By Erasure Injectivity we conclude that Γ′ `f C′ = C′′.
We conclude that Γ′ `f A′ = B′ using (trans) twice.

Combining everything, we have proven the equivalence be-
tween λS and λfS.

Theorem 5.12 (Equivalence between λS and λfS). [PTSlequivPTSF]
For all λS-contexts Γ and all λS-terms A and B the following
statements hold.

1. Γ is legal iff there exists a legal lift of Γ;
2. Γ ` A : B iff there are lifts Γ′, A′, B′ of Γ, A,B respectively

such that Γ′ `f A′ : B′;
3. A 'β B and A and B both have a type under Γ iff there is a

convertibility proof H and there are lifts Γ′, A′, B′ of Γ, A,B
such that Γ′ `f H : A′ = B′.

Corollary 5.13 (Product Injectivity). [Prod Injective] If Γ `f
Πx:A.B = Πx:A′.B′, then there are convertibility proofs H and
H ′ such that Γ `f H : A = A′ and Γ, x : A `f H ′ : B =
B′[x := xH].

Proof. By Theorem 5.12 we conclude that Πx:|A|.|B| 'β Πx:|A′|.|B′|.
Using Church-Rosser we easily obtain |A| 'β |A′| and |B| 'β
|B′|. Also, by Equality Typing (Lemma 5.1.2) both Πx:A.B and
Πx:A′.B′ have a type under Γ, hence the following judgements
hold.

Γ `f A : s1, Γ `f A′ : s′1,

Γ, x : A `f B : s2, Γ, x : A′ `f B′ : s′2

We start with the convertibility between A and A′. By Theorem
5.12 we conclude that |Γ| ` |A| : s1 and |Γ| ` |A′| : s′1,
hence by Theorem 5.11 there are lifts A1 and A′1 of |A| and |A′|
respectively, such that Γ `f A1 = A′1. By Equality Typing and
Erasure Injectivity (Proposition 5.4), we find that Γ `f A = A1

and Γ `f A′1 = A′. By (trans) twice, we find a convertibility proof
H such that Γ ` H : A = A′.
The convertibility betweenB andB′[x := xH] is proven similarly.
This completes the proof.

6. Formalisation of the proof
The proofs in the previous section are rather technical, and require
way more space to write out in full than was available. To give
more confidence in the proofs and make sure we did not make any
mistakes we have completely formalised all proofs. During the for-
malisation we also discovered some errors in earlier versions of
the proofs of our theorems. We used the proof assistant Coq [11]
(version 8.4) for this purpose. As starting point we used the formal-
isation of Siles [15], who has formalised his proof of Theorem 3.1
in Coq. The most notable difference between the formalisation and
this paper is that we used de Bruijn indices [5]. We chose to use
these because one of the advantages of de Bruijn indices is that one
does not have to consider alpha conversion. There is also a unique
way to represent closed terms, and there is a simple lift operator
[10] (or shift operator [1]) which does not require to check fresh-
ness of variables. Siles’ formalisation also used de Bruijn indices.
We used proper names as variables for this paper because they’re
easier to read and write.

The Coq files of the formalisation can be found on the web
at the address http://www.cs.ru.nl/~freek/ptsf/. The files
starting with f are a formalisation of the proofs presented in this
paper and the rest is Siles’ formalisation. The following table is a
summary of the files (the number of lines are approximations).

file description lines
f term definition of terms 450
f env definition of contexts 250
f typ definition of the type system 400

and some meta-theory
f typ2 meta-theory of section 5.1 and 5.2 830

and uniqueness of derivations
f equivalence the equivalence in section 5.3 300

7. Special cases of PTSs
In this section we will consider the specification P, defined below.

Definition 7.1. The specification P = (SP,AP,RP) where

SP = {∗,�}; AP = {(∗,�)}; RP = {(∗, ∗, ∗), (∗,�,�)}.

This specification is of particular interest, because λP is closely
related to LF Type System [9]. It is also a member of the lambda
cube [3].

An important property about λP is that it is functional. We first
prove some properties of all functional PTSs.

http://www.cs.ru.nl/~freek/ptsf/

7.1 Functional PTSs
Definition 7.2. A specification (S,A,R) is functional (or singly
sorted) if

• For any two axioms (s1, s2), (s1, s
′
2) ∈ A we have s2 = s′2.

• For any two relations (s1, s2, s3), (s1, s2, s
′
3) ∈ R we have

s3 = s′3.

An important property of functional specifications is that every
term has a unique type. In λS this means ‘unique up to beta con-
version’, but in λfS this really means unique types (up to alpha
conversion).

Lemma 7.3 (Uniqueness of Types). If S is functional, Γ `f M :
N and Γ `f M : N ′, then N ≡ N ′.

Proof. We prove this by induction on the structure of M . Note that
in each case the last step in the derivation of the two judgements
Γ `f M : N and Γ `f M : N ′ is unique in each induction
step.

Proposition 7.4 (Equality between Types). If S is functional, Γ `f
M = M ′, Γ `f M : A, Γ `f M ′ : A′ then either Γ `f A = A′

or A ≡ A′ and they’re both sorts.

Proof. We prove this by induction on the derivation of Γ `f H :
M = M ′, distinguishing cases according to the last used rule.

Remark 7.5. Proposition 7.4 has some interesting consequences
for functional type systems. Whenever one uses the rules (prod-
eq) or (abs-eq) if S is functional, then the two relations used are
equal. This means that if we replace (prod-eq) and (abs-eq) with
the following two rules, the resulting PTS would be equivalent to
λfS. In both rules the condition (s1, s2, s3) ∈ R is implied.

Γ ` A : s1

Γ ` A′ : s1

Γ `H : A = A′

Γ, x : A ` B : s2

Γ, x′ : A′ ` B′ : s2

Γ, x : A `H ′ : B = B′[x′ := xH]

Γ ` {H, [x : A]H ′} : Πx:A.B = Πx′:A′.B′

(prod-eq′)

Γ `f A : s1

Γ `f A′ : s1

Γ `f H : A = A′

Γ, x : A `f b : B : s2

Γ, x′ : A′ `f b′ : B′ : s2

Γ, x : A `f H ′ : b = b′[x′ := xH]

Γ `f 〈H, [x : A]H ′〉 : λx:A.b = λx′:A′.b′

(abs-eq′)

We will see in Example 7.6 that these rules are more restrictive
when the specification is not functional. We will also see in this
Example that Proposition 7.4 cannot be generalised to arbitrary
type systems, not even when weakened to the statement that both a
and b have a type which are equal, i.e. “If Γ `f a = b then there
are terms A and B such that Γ `f a : A, Γ `f b : B and either
Γ `f A = B or A ≡ B.” ∅

Example 7.6. Given the specification S = (S,A,R) where

S = {∗,�,�′,4,4′};
A = {(∗,�), (∗,�′), (�,4), (�′,4′)};
R = {(�,�,�), (�′,�′,�′)}.

Now consider a ≡ Πx: ∗ .∗� and b ≡ Πx: ∗ .∗�′ . Note that
`f ∗� : A iff A ≡ � and that `f ∗�

′
: B iff B ≡ �′. Looking

which relations could be used to type a and b we can now deduce

that `f a : A iff A ≡ � and `f b : B iff B ≡ �′. One can derive
`f ι

(
∗�

)† · ι(∗�′) : ∗� = ∗�′ , and hence by (prod-eq) that

`f
{
∗, [x : ∗]ι

(
∗�

)† · ι(∗�′)} : a = b.

Also note that `f � = �′ would imply that � 'β �′ which is
false by the Church-Rosser Theorem. This tells us two things.

1. Even though `f a = b, there is no type A of a convertible with
a type B of b.

2. The rule (prod-eq) can be used where the relations (s1, s2, s3)
and (s′1, s

′
2, s
′
3) are different relations (and a similar example

can be used to show the same for (abs-eq)).

The second remark doesn’t necessarily mean we can prove less
equalities if we would only allow (prod-eq) with si = s′i. Because
if we use (prod-eq′) twice one can prove

`f
{
∗, [x : ∗]ι

(
∗�

)†}
: a = Πx: ∗ .∗

`f
{
∗, [x : ∗]ι

(
∗�′

)}
: Πx: ∗ .∗ = b.

Then we can still prove `f a = b using (trans). It is unknown if
this trick can be generalised, such that the rules (prod-eq′) and (abs-
eq′) would suffice to prove all convertibilities which are provable
in λfS. ∅

7.2 The system λfP
In the specification P one can do another simplification of the rules.
In the rules (conv) and (iota) and can leave out the assumption
Γ `f A′ : s because in this case this is automatically true.

Proposition 7.7. In λfP the following statements hold.

1. If Γ `f H : s = X or Γ `f H : X = s then X ≡ s.
2. If Γ `f H : A = B and Γ `f A : s then Γ `f B : s.

Proof. 1. First note that s = ∗, because s has a type under Γ.
Now we prove the statement by induction onH , which uniquely
determines the last used rule of the derivation of the judgement
in the hypothesis.

2. This follows from Proposition 7.4 and Part 1 of this Proposition.

Remark 7.8. This means that one can remove the assumption
Γ `f A′ : s from (conv) and (iota), because if Γ ` a : A then
A is a Γ-semitype by Type Correctness, and since A has a type
under Γ by Equality Typing we know that Γ ` A : s for some sort
s.

In other specifications the above Lemma is false, and by remov-
ing the assumption Γ `f A′ : s from (conv) and/or (iota) either
Type Correctness or Equality Typing will fail to be true, as Exam-
ple 7.10 demonstrates. ∅

Remark 7.9. The system λfP has an LF encoding in which the
type of the encoded term is a dependent parameter of the LF type
encoding the terms. I.e., if

Γ `f M : A

then in the encoding we have

pMq : term pAq

For a normal PTS this won’t work, as there the type is only de-
termined up to conversion. The LF context for λfP is shown in
Figure 7.1. Here the simplications in the rules from the previous
remark have been applied.

In this encoding there is the subtlety that ∗ both occurs as a term
of type �, as well as a type (i.e., as the argument of the term type).

To handle this, we have an embedding i from terms to types, and a
predicate is sort that encodes which types are sorts.

We have not proved the adequacy of this encoding. Also we
have not yet investigated how an encoding like this can be given
for PTSf s beyond the lambda cube. ∅

Example 7.10. Given the specification S = (S,A,R) where

S = {∗,�,4};
A = {(∗,�), (�,4)};
R = {(4,4,4)}.

Let Γ ≡ A : ∗, a : A. Note that Γ is legal, and that by (beta)
we can conclude that Γ `f (λx:�.∗)∗ : � and that for H ≡
β((λx:�.∗)∗)† we have Γ `f H : ∗ = (λx:�.∗) ∗ . Now
Γ `f AH : (λx:�.∗)∗. We also have Γ `f ι(AH) : A = AH .

Now suppose that we removed the condition Γ `f A′ : s from
(conv). Then the pseudojudgement Γ `f aι(A

H) : AH would be a
valid judgement, and we would have that

Γ `f aι(A
H) : AH : (λx:�.∗) ∗ .

Also note that AH does not have a second type (this follows
from either Lemma 5.1.1 or Lemma 7.3). This means that Type
Correctness would be false. Similarly, if we removed the condition
Γ `f A′ : s from (iota) but not from (conv), then Equality
Typing (Lemma 5.1.2) would be false. Because we really want the
properties of Type Correctness and Equality Typing, we have the
judgement Γ `f A′ : s as hypothesis for the rules (conv) and
(iota). ∅

8. Conclusions and Future Research
The fact that a PTS and its companion PTSf are equivalent
amounts to the fact that all conversion information between types,
which is implicit in the PTS-term, can be reconstructed to pro-
duce a fully annotated PTSf -term. This PTSf -term encodes a full
typing derivation of the original PTS-term (with all conversion
explicitly spelled out), so we can see the proof of Theorem 5.12 as
a type-checking algorithm for the PTS. It would be interesting to
give this algorithm more explicitly.

The present paper is an extension of [7], where a system λF
has been introduced, which is the PTSf variant of the well-known
PTS λP , the type system corresponding to the Edinburgh Logical
Framework. The paper [7] left the equivalence of λP and λF as
an open problem, but instead proved the equivalence of λP with
a system called λH . The system λH also has terms that encode
conversions, which are added to the proof terms in the same way
as in λF . In λH however, the terms in the equalities do not need
to be well-typed in the sense of the system. So in λH , we have
H : A = A′ if H codes a conversion between the pseudo-terms A
and A′ and the conversion rule is

Γ `h a : A Γ `h A′ : s H : A = A′

Γ `h aH : A′
. (conv)

This is closer to the original conversion rule in PTSs, because
there also the conversion doesn’t have to go through the well-typed
terms. An “H-version”, λhS, can be defined for every PTS, and
this system is then in between λS and λfS: if Γ `f M : A, then
Γ `h M : A, and if Γ `h M : A, then |Γ| ` |M | : |A|, so the
results that we have proved in the present paper about the relation
between λfS and λS immediately extend to λhS.

As future research, it would be interesting to extend the idea
of defining an LF context for arbitrary PTSs. This amounts to
parametrizing the definition in Figure 7.1 over a PTS-specification
and proving the adequacy of this definition.

type : ∗
is sort : type→ ∗
term : type→ ∗

i : Πs:type. is sort s→ term s→ type
eq : ΠA,B:type. termA→ termB → ∗
ref : ΠA:type.Πa:termA. eqAAaa

sym : ΠA,B:type.Πa:termA.Πb:termB.
eqABab→ eqBAba

trans : ΠA,B,C:type.Πa:termA.Πb:termB.Πc:termC.
eqABab→ eqBCbc→ eqACac

conv : Πs:type.ΠS:is sort s.ΠA,A′:term s.
Πa:term(isSA). eq ssAA′ → term(isSA′)

iota : Πs:type.ΠS:is sort s.ΠA,A′:term s.
Πa:term(isSA).ΠH:eq ssAA′.
eq(isSA)(isSA′)a(conv sSAA′aH)

box : type
box sort : is sort box

star′ : term box
star : type := i box box sort star

star sort : is sort star′

i∗ : term star→ type := λA:term star. i star star sortA
conv∗ : ΠA,A′:term star.

term(i∗A)→ eq star starAA′ → term(i∗A′)
:= λA,A′:term star. λa:term(i∗A).
λH:eq star starAA′. conv star star sortAA′aH

prod : Πs:type.ΠS:is sort s.ΠA:term star.
ΠB:(term(i∗A)→term s). term s

abs : Πs:type.ΠS:is sort s.ΠA:term star.
ΠB:(term(i∗A)→term s).
(Πx:term(i∗A). term(isS(Bx)))→
term(isS(prod sSAB))

app : Πs:type.ΠS:is sort s.ΠA:term star.
ΠB:(term(i∗A)→term s).
term(isS(prod sSAB))→ Πa:(term(i∗A)).
term(isS(Ba))

beta : Πs:type.ΠS:is sort s.ΠA:term star.
ΠB:(term(i∗A)→term s).
Πb:(Πx:term(i∗A). term(isS(Bx))).
Πa:term(i∗A).
eq(isS(Ba))(isS(Ba))

(app sSAB(abs sSABb)a)(ba)
prod eq : Πs:type.ΠS:is sort s.ΠA,A′:term star.

ΠB:(term(i∗A)→term s).
ΠB′:(term(i∗A′)→term s).
ΠH:eq star starAA′.
(Πx:term(i∗A). eq ss(Bx)(B′(conv∗AA′xH)))→
eq ss(prod sSAB)(prod sSA′B′)

abs eq : Πs:type.ΠS:is sort s.ΠA,A′:term star.
ΠB:(term(i∗A)→term s).
ΠB′:(term(i∗A′)→term s).
Πb:(Πx:term(i∗A). term(isS(Bx))).
Πb′:(Πx:term(i∗A′). term(isS(B′x))).
ΠH:eq star starAA′.
(Πx:term(i∗A).
eq (isS(Bx))(isS(B′(conv∗AA′xH)))

(bx)(b′(conv∗AA′xH)))→
eq (isS(prod sSAB))(isS(prod sSA′B′))

(abs sSABb)(abs sSA′B′b′)
app eq : Πs:type.ΠS:is sort s.ΠA,A′:term star.

ΠB:(term(i∗A)→term s).
ΠB′:(term(i∗A′)→term s).
ΠF :(term(isS(prod sSAB))).
ΠF ′:(term(isS(prod sSA′B′))).
Πa:(term(i∗A)).Πa′:(term(i∗A′)).
eq(isS(prod sSAB))(isS(prod sSA′B′))FF ′ →
eq(i∗A)(i∗A′)aa′ →
eq(isS(Ba))(isS(B′a′))

(app sSABFa)(app sSA′B′F ′a′)

Figure 7.1. LF context for λfP

Another interesting issue is to extend this work with δ-reductions
(for unfolding definitions) and ι-reductions (for well-founded re-
cursion over inductive types). A practical implementation of type
theory has definitions, and many of them also have inductive types.

Finally, for PTSf s we have come across the interesting problem
whether the system with the rules (prod-eq) and (abs-eq) replaced
by (prod-eq′) and (abs-eq′), as given on page 9, is equivalent to the
original one. In Section 7.1 we have proven that this is the case for
all functional PTSs, but for non-functional PTSs it is open.

Acknowledgments
Thanks to James McKinna and Randy Pollack for valuable discus-
sions on the work described in this paper. Thanks to Vincent Siles
for allowing us to use his formalisation as the base for our formali-
sation.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lvy. Explicit substitu-

tions, 1996.
[2] R. Adams. Pure type systems with judgemental equality. Journal of

Functional Programming, 16(2):219–246, Mar. 2006.
[3] H. Barendregt. Introduction to generalized type systems. Journal of

Functional Programming, 1(2):125–154, 1991.
[4] H. Barendregt. Lambda calculi with types. In Handbook of Logic in

Computer Science, pages 117–309. Oxford University Press, 1992.
[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the
church-rosser theorem. INDAG. MATH, 34:381–392, 1972.

[6] N. G. de Bruijn. A plea for weaker frameworks. In G. Huet and
G. Plotkin, editors, Logical frameworks, pages 40–67. Cambridge
University Press, New York, NY, USA, 1991. ISBN 0-521-41300-1.
URL http://dl.acm.org/citation.cfm?id=120477.120479.

[7] H. Geuvers and F. Wiedijk. A logical framework with explicit conver-
sions. Electronic Notes in Theoretical Computer Science, 199(0):33 –
47, 2008.

[8] H. Geuvers, F. Wiedijk, and J. Zwanenburg. Equational reasoning via
partial reflection. In M. Aagaard and J. Harrison, editors, TPHOLs,
volume 1869 of Lecture Notes in Computer Science, pages 162–178.
Springer, 2000. ISBN 3-540-67863-8.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
J. ACM, 40(1):143–184, Jan. 1993.

[10] G. Huet. Constructive computation theory. Course notes on lambda
calculus, University of Bordeaux I, 2011. URL http://pauillac.
inria.fr/~huet/CCT/.

[11] The Coq development team. The Coq proof assistant reference man-
ual. LogiCal Project, 2012. URL http://coq.inria.fr. Version
8.4.

[12] C. McBride. Elimination with a motive. In Types for Proofs and
Programs (Proceedings of the International Workshop, TYPES00),
volume 2277 of LNCS, pages 197–216. Springer-Verlag, 2002.

[13] M. Oostdijk and H. Geuvers. Proof by computation in the coq system.
Theor. Comput. Sci., 272(1-2):293–314, 2002.

[14] V. Siles and H. Herbelin. Equality is typable in semi-full pure type
systems. In Proceedings of the 2010 25th Annual IEEE Symposium on
Logic in Computer Science, LICS ′10, pages 21–30. IEEE Computer
Society, 2010.

[15] V. Siles and H. Herbelin. Pure type system conversion is always
typable. Journal of Functional Programming, 22(2):153 – 180, May
2012.

[16] M. Takahashi. Parallel reductions in λ-calculus. Information and
Computation, 118(1):120 – 127, 1995.

http://dl.acm.org/citation.cfm?id=120477.120479
http://pauillac.inria.fr/~huet/CCT/
http://pauillac.inria.fr/~huet/CCT/
http://coq.inria.fr

	Introduction
	: Pure Type Systems
	: Typed judgemental equality
	: Typed convertibility proofs
	Meta-theory of
	Erasure map
	Equality of substitutions
	Equivalence

	Formalisation of the proof
	Special cases of PTSs
	Functional PTSs
	The system [P]

	Conclusions and Future Research

