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Abstract
We describe the formalization of the existence and uniqueness of the Haar measure in the Lean
theorem prover. The Haar measure is an invariant regular measure on locally compact groups, and it
has not been formalized in a proof assistant before. We will also discuss the measure theory library
in Lean’s mathematical library mathlib, and discuss the construction of product measures and the
proof of Fubini’s theorem for the Bochner integral.
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1 Introduction

Measure theory is an important part of mathematics, providing a rigorous basis for integration
and probability theory. The main object of study in this part is the concept of a measure,
which assigns a size to the measurable subsets of the space in question. The most widely used
measure is the Lebesgue measure λ on R (or Rn) with the property that λ([a, b]) = b − a.
The Lebesgue measure is translation invariant, meaning that translating a measurable set
does not change its measure.

An important generalization of the Lebesgue measure is the Haar measure, which provides
a measure on locally compact groups. This measure is also invariant under translations,
i.e. applying the group operation. For non-abelian groups we have to distinguish between
left and right Haar measures, which are invariant when applying the group operation on the
left and right, respectively. A Haar measure is essentially unique, which means that any
invariant measure is a constant multiple of a chosen Haar measure. The Haar measure is
vital in various areas of mathematics, including harmonic analysis, representation theory,
probability theory and ergodic theory.

In this paper we describe the formal definition of the Haar measure in the Lean theorem
prover [5], and prove its uniqueness. We build on top of the Lean mathematical library
mathlib [4]. We heavily use the library for measure theory in mathlib, improving it in the
process. As part of this formalization we expanded the library with product measures and
Fubini’s theorem, along with many other contributions to existing libraries. The results in
this paper have been fully integrated into mathlib.
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24:2 Formalized Haar Measure

Many proof assistants have a library of measure theory and integration, including Isa-
belle [17, 12], HOL/HOL4 [13, 2, 15], HOL Light [11], Mizar [7], PVS [14] and Coq [19].
Most of these libraries focus on the Lebesgue measure and the Lebesgue integral, and on
applications to probability theory or analysis in Euclidean spaces.

The Isabelle/HOL library has an especially good development of measure theory, including
product measures and the Bochner integral [1]. The Lean library also has these concepts,
and the development of them was heavily inspired by the Isabelle/HOL library (and partially
written by Johannes Hölzl, who also wrote parts of the Isabelle/HOL library). However, to
my knowledge, the Haar measure has not been formalized in any proof assistant other than
Lean.

In this paper we will discuss the measure theory library in Lean (in Section 3), which
was already in place before this formalization started, and was developed by Johannes Hölzl,
Mario Carneiro, Zhouhang Zhou and Yury Kudryashov, among others. The other sections
describe contributions that are new as of this formalization: product measures (in Section 4),
the definition of the Haar measure (in Section 5), and the uniqueness of the Haar measure
(in Section 6).

We will link to specific results in mathlib using the icon �. To ensure that these links
will work while mathlib is updated, we link to the version of mathlib as of writing this
paper. Readers of this paper are also encouraged to use the search function of the mathlib
documentation pages � but we do not link to specific pages of the documentation, as these
links are prone to break as the library evolves.

We used different sources for this formalization. We started out using the notes by
Jonathan Gleason [8] that gave a construction of the Haar measure in detail. However, one
of the main claims in that paper was incorrect, as described in Section 5. We then used the
books by Halmos and Cohn [10, 3] to fill in various details. For product measures we followed
Cohn [3]. For Fubini’s theorem for the Bochner integral we followed the formalization in
Isabelle. We couldn’t find a good source for this proof in the literature, so we will provide
detailed proofs of this result in Section 4. A different proof can be found in [16]. For the
uniqueness of the Haar measure we followed Halmos [10]. While we define the Haar measure
for any locally compact group, we prove the uniqueness only for second-countable locally
compact groups. The reason is that Halmos gives a uniqueness proof using measurable
groups, and only second-countable topological groups form measurable groups. In the proof
of a key theorem of Halmos there was a gap, which we fixed in the formalization by changing
the statement of that theorem (see Section 6).

2 Preliminaries

2.1 Lean and mathlib
Lean [5] is a dependently typed proof assistant with a strong metaprogramming framework [6].
Its logic contains dependent function types denoted Π i : ι, X i, universes Type∗ (the star
denotes an arbitrary universe level) and inductive types. It has a large community-driven
mathematical library, called mathlib. We use results from various areas in this library,
including topology, analysis and algebra. In particular the existing library for topological
groups was very helpful for this formalization. The fact that Lean provides a very expressive
type theory was convenient in the definition of the Bochner integral, as we will discuss in
Section 3.

mathlib uses type-classes [20, 18] to organize the mathematical structures associated to
various types, using the partially bundled approach. For example, when G is a type, the

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/haar_measure.lean#L537
https://leanprover-community.github.io/mathlib_docs/
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statement [group G] states that G has the structure of a group, and [topological_space
G] states that G has the structure of a topological space. The square brackets mean that the
argument will be implicitly inserted in definitions and theorems using type-class inference.
Some type-classes are mixins, and take other type-classes as arguments. For example,
the class topological_group takes as (implicit) argument the structure of a group and a
topological_space. This means that we need to write [group G] [topological_space
G] [topological_group G] to state that G is a topological group. Similarly, predicates
on topological spaces — such as t2_space, locally_compact_space or compact_space —
take the topological space structure as argument. This design decision makes it somewhat
verbose to get the right structure on a type, but has the advantage that these components
can be freely mixed as needed.

Lean distinguishes groups written multiplicatively (group) from groups written additively
(add_group). This is convenient since it automatically establishes multiplicative notation
(1 ∗ x−1) or additive notation (0 + -x or 0 - x) when declaring a group structure. Also,
most theorems exist for both versions; the property x ∗ y = y ∗ x is called mul_comm and
the property x + y = y + x is add_comm. To avoid code duplication, there is an attribute
@[to_additive] that, when applied to a definition or theorem for multiplicative groups,
automatically generates the corresponding declaration for additive groups by replacing all
multiplicative notions with the corresponding additive ones.

Some code snippets in this paper have been edited slightly for the sake of readability.

2.2 Mathematics in mathlib
The notation for the image of a set A : set X under a function f : X → Y is f ′′ A = {y :
Y | ∃ x ∈ A, f x = y} and the preimage of B : set Y is f −1′ B = {x : X | f x ∈ B}.
The notation λ x, f x is used for the function x 7→ f(x). We write (x : X) for the element
x with its type X given explicitly. This can also be used to coerce x to the type X.

mathlib has a large topology library, where many concepts are defined in terms of filters.
The following code snippet contains some notions in topology used in this paper.

class t2_space (X : Type∗) [topological_space X] : Prop :=
(t2 : ∀ x y, x ̸= y → ∃ U V : set X, is_open U ∧ is_open V ∧

x ∈ U ∧ y ∈ V ∧ U ∩ V = ∅)

def is_compact {X : Type∗} [topological_space X] (K : set X) :=
∀ {f : filter X} [ne_bot f], f ≤ P K → ∃ x ∈ K, cluster_pt x f

class locally_compact_space (X : Type∗) [topological_space X] : Prop :=
(local_compact_nhds : ∀ (x : X) (U ∈ N x), ∃ K ∈ N x, K ⊆ U ∧

is_compact K)

class second_countable_topology (X : Type∗) [t : topological_space X] :
Prop :=

(is_open_generated_countable : ∃ C : set (set X), countable C ∧
t = generate_from C)

class complete_space (X : Type∗) [uniform_space X] : Prop :=
(complete : ∀ {f : filter X}, cauchy f → ∃ x, f ≤ N x)

class topological_group (G : Type∗) [topological_space G] [group G] :=
(continuous_mul : continuous (λ p : G × G, p.1 ∗ p.2))
(continuous_inv : continuous (inv : G → G))

ITP 2021
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Some of these definitions might look unfamiliar, formulated in terms of filters, using in
particular the principal filter P and the neighborhood filter N . For example, the second
definition states that a set K is compact � if any filter f ̸= ⊥ (i.e. f doesn’t contain every
subset of X) containing K has a cluster point x in K, which means that N x ⊓ f ̸= ⊥. It
is equivalent to the usual notion of compactness that every open cover of K has a finite
subcover. � A complete space is a space where every Cauchy sequence converges, � which is
formulated in the general setting of uniform spaces, which simultaneously generalize metric
spaces and topological groups. We define a locally compact group to be a topological group
in which the topology is both locally compact and Hausdorff (T2)

Lean’s notion of infinite sums is defined for absolutely convergent series as the limit of all
finite partial sums: �

def has_sum {I M : Type∗} [add_comm_monoid M] [topological_space M]
(f : I → M) (x : M) : Prop :=

tendsto (λ s : finset I,
∑

i in s, f i) at_top (N x)

If M is Hausdorff, then the sum is unique if it exists, and we denote it by
∑′ i, f i. If the

series does not have a sum, it is defined to be 0.
The type ennreal � is the type of nonnegative real numbers extended by a new element

∞, which we will also denote [0, ∞] in this paper.
A normed space � X is a vector space over a normed field F equipped with a norm

∥·∥ : X → R satisfying
(X, d) is a metric space, with the distance function given by d(x, y) := ∥x − y∥.
for r ∈ F and x ∈ X we have ∥r · x∥ = ∥r∥ · ∥x∥.

In this paper, we will only consider normed spaces over R, which is a normed field with its
norm given by the absolute value. A Banach space is a complete normed space. In Lean we
do not explicitly define Banach spaces, but instead talk about complete normed spaces.

3 Measure Theory in mathlib

In this section we describe the background measure theory library used in this formalization.
A basic notion in measure theory is a σ-algebra on X, which is a nonempty collection

of subsets of X that is closed under complements and countable unions. In mathlib this is
formulated as a type-class, with name measurable_space: �

class measurable_space (X : Type∗) :=
(is_measurable : set X → Prop)
(is_measurable_empty : is_measurable ∅)
(is_measurable_compl : ∀ A, is_measurable A → is_measurable Ac)
(is_measurable_Union : ∀ A : N → set X, (∀ i, is_measurable (A i)) →

is_measurable (
⋃

i, A i))

We say that a function is measurable if the preimage of every measurable set is measurable: �

def measurable [measurable_space X] [measurable_space Y] (f : X → Y) :=
∀ {B : set Y}, is_measurable B → is_measurable (f −1′ B)

Note that we use is_measurable for sets and measurable for functions.
In mathlib, measures are defined as special case of outer measures. An outer measure

on X is a monotone function m : P(X) → [0, ∞] such that m(∅) = 0 and m is countably
subadditive: �

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/subset_properties.lean#L64
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/subset_properties.lean#L300
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/uniform_space/cauchy.lean#L209
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/algebra/infinite_sum.lean#L57
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/data/real/ennreal.lean#L80
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/analysis/normed_space/basic.lean#L911
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measurable_space.lean#L78
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measurable_space.lean#L478
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/outer_measure.lean#L60
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structure outer_measure (X : Type∗) :=
(measure_of : set X → ennreal)
(empty : measure_of ∅ = 0)
(mono : ∀ {A1 A2}, A1 ⊆ A2 → measure_of A1 ≤ measure_of A2)
(Union_nat : ∀ (A : N → set X),

measure_of (
⋃

i, A i) ≤ (
∑′ i, measure_of (A i)))

A measure on a measurable space is an outer measure with two extra properties: it is
countably additive on measurable sets, and given the value on measurable sets, the outer
measure is the maximal one that is compatible with these values (which is called trim in the
snippet below). �

structure measure (X : Type∗) [measurable_space X]
extends outer_measure X :=

(m_Union : ∀ {A : N → set X},
(∀ i, is_measurable (A i)) → pairwise (disjoint on A) →
measure_of (

⋃
i, A i) =

∑′ i, measure_of (A i))
(trimmed : to_outer_measure.trim = to_outer_measure)

This definition has two very convenient properties:
1. We can apply measures to any set, without having to provide a proof that the set is

measurable.
2. Two measures are equal when they are equal on measurable sets. �

Given a measure µ on X and a measurable map f : X → Y , we can define the pushforward
f∗µ, � which is a measure on Y , defined on measurable sets A by (f∗µ)(A) = µ(f−1(A)). �

We proceed to define lower Lebesgue integration
∫ − for functions f : X → [0, ∞], where

X is a measurable space. We annotate this integral with a minus sign to distinguish it from
the Bochner integral. This is done first for simple functions, i.e. functions with finite range
with the property that the preimage of all singletons are measurable. The integral of a simple
function g is simply �

∫ −
g dµ =

∫ −
g(x) dµ(x) =

∑
y∈g(X)

µ(g−1{y}) · y ∈ [0, ∞].

If f : X → [0, ∞] is any function, we can define the (lower) Lebesgue integral of f to be the
supremum of

∫ −
g dµ(x) for all simple functions g that satisfy g ≤ f (pointwise). � In mathlib

we denote the Lebesgue integral of f by
∫ − x, f x ∂µ. We prove the standard properties of

the Lebesgue integral for nonnegative functions, such as the monotone convergence theorem: �

theorem lintegral_supr {f : N → X → ennreal}
(hf : ∀ n, measurable (f n)) (h_mono : monotone f) :
(
∫ − x,

⊔
n, f n x ∂µ) = (

⊔
n,

∫ − x, f n x ∂µ)

After defining the Lebesgue integral for nonnegative functions, most books and formal
libraries continue to define the Lebesgue integral for (signed) functions f : X → R. This is
defined as the difference of the integrals of the positive and negative parts of f . However, this
is not very general: separate definitions are needed for integrals for functions with codomain
C or Rn. Instead, we opt for the more general definition of the Bochner integral, which is
defined for functions that map into any second-countable real Banach space.

If X is a topological space, we equip it with the Borel σ-algebra, which is the smallest
σ-algebra that contains all open sets (or equivalently, all closed sets). � The fact that X is

ITP 2021
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https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measure_space.lean#L710
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https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L541
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L850
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L997
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/borel_space.lean#L151
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equipped with the Borel σ-algebra is a mixin, and is specified by providing the arguments
[topological_space X] [measurable_space X] [borel_space X].

Let X be a measurable space and E be a second-countable real Banach space. We define
two quotients on functions from X to E.

Let X →µ E be the measurable maps X → E modulo µ-a.e. (almost everywhere)
equivalence, i.e. modulo the relation

f =µ g ⇐⇒ µ({x | f(x) ̸= g(x)}) = 0. �

Note that we are using the fact that Lean is based on dependent type theory here, since
X →µ E is a type that depends on µ. Here our formalization differs from the one in Isabelle,
since in Isabelle this type cannot be formed. Instead, a similar argument is given purely on
functions, without passing to the quotient.

If f : X → E we say that f is integrable if �

f is µ-a.e. measurable, i.e. there is a measurable function g : X → E with f =µ g;1 and∫ − ∥f(x)∥ dµ(x) < ∞.

Being integrable is preserved by µ-a.e. equivalence, and we define the L1-space L1(X, µ; E)
as those equivalence classes of functions in X →µ E that are integrable. � L1(X, µ; E) is a
normed space, � with the norm given by

∥f∥ :=
∫ −

∥f(x)∥ dµ(x).

We define the Bochner integral first for simple functions, similar to the definition for the
Lebesgue integral. If g : X → E is a simple function then its Bochner integral is �∫

g dµ =
∫

g(x) dµ(x) =
∑

y∈g(X) s.t.
µ(g−1{y})<∞

µ(g−1{y}) · y ∈ E.

The symbol · denotes the scalar multiplication in the Banach space E. Since this defini-
tion respects µ-a.e. equivalence, we can also define the Bochner integral on the simple L1

functions. � On the simple L1 functions this definition is continuous � and the simple L1

functions are dense in all L1 functions, � and E is complete, so we can extend the Bochner
integral to all L1 functions. �

Finally, for an arbitrary function f : X → E we define its Bochner integral to be 0 if f is
not integrable and the integral of [f ] ∈ L1(X, µ; E) otherwise, where [f ] is the equivalence
class of f . � The two notions of integrals agree on integrable functions f : X → R≥0: �

∫ −
f dµ =

∫
f dµ.

However, when f is has infinite Lebesgue integral, then the equality does not hold: the LHS
is ∞, while the RHS is 0. We then prove useful properties about the Bochner integral, such
as the dominated convergence theorem: �

1 Until recently, the definition of “integrable” in mathlib required f to be measurable. The definition
was modified to increase generality. The motivating reason was that we would regularly take integrals
of a function f with a measure µ|A defined by µ|A(B) = µ(A ∩ B). A function that is (for example)
continuous on A is also µ|A-a.e. measurable, and we usually do not need any information about the
behavior of f outside A. In the previous definition of “integrable” we required f to be measurable
everywhere, which would be an unnecessary additional assumption.

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/ae_eq_fun.lean#L93
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/l1_space.lean#L383
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/l1_space.lean#L633
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/l1_space.lean#L713
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L211
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L756
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L791
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L710
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L885
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L960
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L1250
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L1120
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theorem tendsto_integral_of_dominated_convergence
{F : N → X → E} {f : X → E} (bound : X → R)
(F_measurable : ∀ n, ae_measurable (F n) µ)
(f_measurable : ae_measurable f µ)
(bound_integrable : integrable bound µ)
(h_bound : ∀ n, ∀m x ∂µ, ∥F n x∥ ≤ bound x)
(h_lim : ∀m x ∂µ, tendsto (λ n, F n x) at_top (N (f x))) :
tendsto (λ n,

∫
x, F n x ∂µ) at_top (N (

∫
x, f x ∂µ))

In this statement, ∀m x ∂µ, P x means that P x holds for µ-almost all x, in other words that
µ { x | ¬ P x } = 0, and tendsto (λ n, g n) at_top (N x) means that g n tends
to x as n tends to ∞.

Other results about integration include part 1 � and 2 � of the fundamental theorem of
calculus, but we will not use these results in this paper.

4 Products of Measures

To prove that the Haar measure is essentially unique, we need to work with product measures
and iterated integrals. In this section we will define the product measure and prove Tonelli’s
and Fubini’s theorem. (Sometimes both theorems are called Fubini’s theorem, but in this
paper we will distinguish them.) Tonelli’s theorem characterizes the Lebesgue integral for
nonnegative functions in the product space, and Fubini’s theorem does the same (under
stronger conditions) for the Bochner integral. By symmetry, both theorems also give sufficient
conditions for swapping the order of integration when working with iterated integrals.

The contents of this section have been formalized before in Isabelle. Product measures,
Tonelli’s theorem and Fubini’s theorem for the Lebesgue integral are discussed in the paper [12].
Fubini’s theorem for the Bochner integral is significantly harder to prove, but has also been
formalized in Isabelle after the appearance of that paper. � We read through the proof in
the Isabelle formalization for key ideas in various intermediate lemmas.

In this section we will restrict our attention to σ-finite measures, since product measures
are much nicer for σ-finite measures, and most of the results do not hold without this
condition. We say that a measure µ on a space X is σ-finite if X can be written as a union
of countably many subsets (Ai)i with µ(Ai) < ∞ for all i. �

First we need to know that limits of measurable functions are measurable.

I Lemma 1. Let X be a measurable space.
1. Given a sequence of measurable functions fn : X → [0, ∞] for n ∈ N, the pointwise

suprema and infima f(x) := sup{fn(x)}n and g(x) := inf{fn(x)}n are measurable. �

2. If a sequence of measurable functions fn : X → [0, ∞] for n ∈ N converges pointwise to a
function f , then f is measurable. �

3. Let Y be a metric space equipped with the Borel σ-algebra. If a sequence of measur-
able functions fn : X → Y for n ∈ N converges pointwise to a function f , then f is
measurable. �

Proof. For part 1, note that the collection of intervals [0, x) generate the σ-algebra on
[0, ∞], as do the intervals (x, ∞]. The conclusion follows from the fact that measurable
sets are closed under countable unions and observing that f−1([0, x)) =

⋃
n f−1

n ([0, x)) and
g−1((x, ∞]) =

⋃
n f−1

n ((x, ∞]).
Part 2 follows by observing that f(x) = lim infn fn(x) = supn infm≥n fm(x), and applying

both claims in part 1.
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For part 3, let C be a closed set in Y . The function d(−, C) : Y → [0, ∞] that
assigns to each point the (minimal) distance to C is continuous. Therefore, we know that
h(x) := d(f(x), C) is the limit of the measurable functions d(fn(x), C) as n → ∞. By part 2
we know that h is measurable. Therefore f−1(C) = h−1({0}) is measurable (the equality
holds because C is closed). J

If X and Y are measurable spaces, the σ-algebra on X × Y is the smallest σ-algebra that
makes the projection X × Y → X and X × Y → Y measurable. � Alternatively, it can be
characterized as the σ-algebra generated by sets of the form A × B for measurable A ⊆ X

and B ⊆ Y . �

For the rest of this section, µ is a σ-finite measure on X and ν is a σ-finite measure on
Y . For a set A ⊆ X × Y we write Ax = {y ∈ Y | (x, y) ∈ A} for a slice of Y . In Lean, this is
written as prod.mk x −1′ A. We want to define the product measure evaluated at A as an
integral over the volume of the slices of A. To make sure that this makes sense, we need to
prove that this is a measurable function. �

lemma measurable_measure_prod_mk_left [sigma_finite ν] {A : set (X × Y)}
(hA : is_measurable A) : measurable (λ x, ν (prod.mk x −1′ A))

This lemma crucially depends on the fact that ν is σ-finite, but we omit the proof here. We
can now define the product measure µ × ν on X × Y as �

(µ × ν)(A) =
∫ −

ν(Ax) dµ(x). (1)

It is not hard to see that (µ×ν)(A×B) = µ(A)ν(B) for measurable A ⊆ X and B ⊆ Y �

and that µ × ν is itself σ-finite. � When we pushforward the measure µ × ν across the map
X × Y → Y × X that swaps the coordinates, we get the measure ν × µ � (this equality is
easily checked because both measures are equal on rectangles). This immediately gives the
symmetric version of (1), using the notation Ay = {x ∈ X | (x, y) ∈ A}: �

(µ × ν)(A) =
∫ −

µ(Ay) dν(y).

For a function f : X × Y → Z define fx : Y → Z by fx(y) := f(x, y). If Z = [0, ∞] let
I−

f : X → [0, ∞] be defined by I−
f (x) :=

∫ −
Y

fx dν =
∫ −

Y
f(x, y) dν(y).

We can now formulate Tonelli’s theorem.

I Theorem 2 (Tonelli’s theorem). Let f : X×Y → [0, ∞] be a measurable function. Then � �∫ −

X×Y

f d(µ × ν) =
∫ −

X

∫ −

Y

f(x, y) dν(y)dµ(x) =
∫ −

Y

∫ −

X

f(x, y) dµ(x)dν(y),

and all the functions in the integrals above are measurable. � �

Proof. We check the first equality and the measurability of I−
f . The other claims follow

by symmetry. For both these statements we use induction on measurable functions into
[0, ∞], � which states that to prove a statement P (f) for all measurable functions f into
[0, ∞], it is sufficient to show
1. if χA is the characteristic function of a measurable set and c ∈ [0, ∞], we have P (cχA);
2. if f1 and f2 are measurable functions with P (f1) and P (f2), then P (f1 + f2);
3. if (fi)i is a monotone sequence of measurable functions such that P (fi) for all i, we have

P (supi fi).

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measurable_space.lean#L661
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L135
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L167
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L317
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L330
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L421
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L452
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L459
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L573
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L610
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L200
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L226
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L1711
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We first prove that I−
f is measurable by induction on f .

In the induction base, if f = cχA, then
∫ −

Y
f(x, y) dν(y) = cν(Ax), so the measurability

follows from measurable_measure_prod_mk_left. The two induction steps follow from the
additivity of the integral and the monotone convergence theorem.

We now prove the first equality in Theorem 2, also by induction on f . In the induction
base, if f = cχA, then it is not hard to see that both sides reduce to c(µ × ν)(A). The first
induction step follows by applying additivity thrice, and the second induction step follows by
applying the monotone convergence theorem thrice. J

Fubini’s theorem (sometimes called Fubini–Tonelli’s theorem) states something similar
for the Bochner integral. However, it is a bit harder to state and much harder to prove. For
a function f : X × Y → E define If : X → E by If (x) :=

∫
Y

fx dν =
∫

Y
f(x, y) dν(y).

I Theorem 3 (Fubini’s theorem for the Bochner integral). Let E be a second-countable Banach
space and f : X × Y → E be a function.
1. If f is µ × ν-a.e. measurable then f is integrable iff the following two conditions hold: �

for almost all x ∈ X the function fx is ν-integrable;
the function I∥f∥ is µ-integrable.

2. If f is integrable, then � �∫
X×Y

f d(µ × ν) =
∫

X

∫
Y

f(x, y) dν(y)dµ(x) =
∫

Y

∫
X

f(x, y) dµ(x)dν(y).

Moreover, all the functions in the integrals above are a.e. measurable. � �

Note that Part 1 also has a symmetric counterpart, � which we omit here. Note that the
middle term in Part 2 is just

∫
X

If dµ(x).

Proof. Measurability. First suppose that f is measurable. In this case, we show that the
function If is measurable. We can approximate any measurable function f into E by a
sequence (sn)n of simple functions � such that for all z we have ∥sn(z)∥ ≤ 2∥f(z)∥ � and
sn(z) → f(z) as n → ∞. � Now define gn : X → E by

gn(x) =
{

Isn
(x) if fx is ν-integrable

0 otherwise.

Note that gn is similar to Isn , except that we set it to 0 whenever fx is not integrable. This is
required to ensure that gn converges to If (see below). We first check that gn is measurable.
Note that the set

{x | fx is ν-integrable} = {x |
∫

Y
∥f(x, y)∥ dν(y) < ∞}

is measurable, using Theorem 2. Therefore, to show that gn is measurable, it suffices to
show that Isn is measurable, which is true since it is a finite sum of functions of the form
x 7→ cν(Ax) (using that sn is simple).

Secondly, we check that gn converges to If pointwise. Let x ∈ X. If fx is not integrable,
it is trivially true, so assume that fx is integrable. Then (sn)x is integrable for all n, and by
the dominated convergence theorem Isn(x) converges to If (x).

We conclude that If is measurable by Lemma 1.
Finally, if f is µ×ν-a.e. measurable, then it is not hard to show that If is µ-a.e. measurable.
Integrability. We now prove Part 1, so suppose that f is µ × ν-a.e. measurable. By

Tonelli’s theorem, we know that f is µ × ν-integrable iff I−
∥f∥ is µ-integrable. Note that I−

∥f∥
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is similar to I∥f∥. The difference is that when fx is not integrable, I∥f∥(x) = 0 but I−
∥f∥ = ∞.

This means that if I−
∥f∥ is µ-integrable, then fx must almost always be ν-integrable (otherwise

the integrand is infinite on a set of positive measure) and I∥f∥ must be µ-integrable. For
the other direction in Part 1, if fx is almost always integrable, then I∥f∥ = I−

∥f∥ almost
everywhere, so if the former is µ-integrable, then so is the latter.

Equality. To prove the first equality in Part 2, we use the following induction principle
for integrable functions. � It states that to prove a statement P (f) for all τ -integrable
functions f : Z → E, it is sufficient to show

if A is measurable with τ(A) < ∞ and c ∈ E, then P (cχA);
if f1 and f2 are τ -integrable functions with P (f1) and P (f2), then P (f1 + f2);
If f1 is integrable with P (f1) and f1 = f2 τ -a.e. then P (f2).
The set {f ∈ L1(Z, τ ; E) | P (f)} is closed.

We now prove by induction on f that∫
X×Y

f d(µ × ν) =
∫

X

∫
Y

f(x, y) dν(y)dµ(x). (2)

If f = cχA then it is easy to see that both sides of (2) reduce to c · (µ × ν)(A).
It is clear that if (2) holds for f1 and f2, then it also holds for f1 + f2.
Suppose that (2) holds for f1 and that f1 = f2 almost everywhere. Since integrals are
defined up to a.e. equality, we know that∫

X×Y

f1 d(µ × ν) =
∫

X×Y

f2 d(µ × ν).

It therefore suffices to show that∫
X

∫
Y

f1(x, y) dν(y)dµ(x) =
∫

X

∫
Y

f2(x, y) dν(y)dµ(x).

For this it is sufficient to show that If1(x) = If2(x) for almost all x. Since f1(z) = f2(z)
for almost all z, it is not hard to see � that for almost all x we have that for almost all y

the equality f1(x, y) = f2(x, y) holds. From this we easily get that If1(x) = If2(x) for
almost all x.
We need to show that the set of f ∈ L1(Z, τ ; E) for which (2) holds is closed. We know
that taking the integral of an L1 function is a continuous operation, � which means that
both sides of (2) are continuous in f , which means that the set where these functions are
equal is closed. J

5 Existence of the Haar Measure

In this section, we define the left Haar measure, and discuss some design decisions when
formalizing these definitions. We also discuss how to obtain a right Haar measure.

Throughout this section, we assume that G is a locally compact group, equipped with
the Borel σ-algebra. We will write the group operation multiplicatively. We will define the
Haar measure and show that it is a left invariant regular measure on G. In the formalization,
all intermediate definitions and results are given with weaker conditions on G, following the
design in mathlib that all results should be in the most general form (within reason).

In Lean, the precise conditions on G are written as follows.

{G : Type∗} [topological_space G] [t2_space G] [locally_compact_space G]
[group G] [measurable_space G] [borel_space G] [topological_group G]

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/set_integral.lean#L338
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L401
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L1062
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The concept of a left invariant measure is defined as follows in mathlib. �

def is_left_invariant (µ : set G → ennreal) : Prop :=
∀ (g : G) {A : set G} (h : is_measurable A), µ ((λ h, g ∗ h) −1′ A) = µ A

Note that the preimage (λ h, g ∗ h) −1′ A is equal to the image (λ h, g−1 ∗ h) ′′ A.
We use preimages for translations, since preimages are nicer to work with. For example, the
fact that (λ h, g ∗ h) −1′ A is measurable follows directly from the fact that multiplication
(on the left) is a measurable function.

Next we give the definition of a regular measure �

structure regular (µ : measure X) : Prop :=
(lt_top_of_is_compact : ∀ {K : set X}, is_compact K → µ K < ⊤)
(outer_regular : ∀ {A : set X}, is_measurable A →

( ⊔(U : set X) (h : is_open U) (h2 : A ⊆ U), µ U) ≤ µ A)
(inner_regular : ∀ {U : set X}, is_open U →

µ U ≤
⊔

(K : set X) (h : is_compact K) (h2 : K ⊆ U), µ K)

If µ is a regular measure, then the inequalities in the last two fields are always equalities. This
means that a measure µ is regular if it is finite on compact sets, its value on a measurable
set A is equal to the infimum ( ⊔) of its value on all open sets containing A, and finally its
value on an open set U is the supremum (

⊔
) of its values on all compacts subsets of U.

We are now ready to start the definition of the Haar measure. Given a compact set
K in G, we start by giving a rough approximation of the “size” of K by comparing it to a
reference set V, which is an open neighborhood of (1 : G). We can consider all left translates
(λ h, g ∗ h) −1′ V of V, which is an open covering of K. Since K is compact, we only need
finitely many left translates of V to cover K. � Let index K V be the smallest number of
left-translates of V needed to cover K. This is often denoted (K : V ). We did not use this
in Lean code, since it conflicts with the typing-notation in Lean. In Lean, this notion is
defined for arbitrary sets K and V, and it is defined to be 0 if there is no finite number of left
translates covering K: �

def index (K V : set G) : N :=
Inf (finset.card ′′ {t : finset G | K ⊆

⋃
g ∈ t, (λ h, g ∗ h) −1′ V })

For the rest of this section, we fix K0 as an arbitrary compact set with nonempty interior (in
mathlib this is denoted K0 : positive_compacts G). We then define a weighted version of
the index: �

def prehaar (K0 U : set G) (K : compacts G) : R :=
(index K U : R) / index K0 U

This definition satisfies the following properties.

I Lemma 4. Denote prehaar K0 U K by hU (K) (recall that K0 is fixed). Then we have
(K : U) ≤ (K : K0) · (K0 : U); �

0 ≤ hU (K) ≤ (K : K0); �

hU (K0) = 1; �

hU (xK) = hU (K); �

if K ⊆ K ′ then hU (K) ≤ hU (K ′); �

hU (K ∪ K ′) ≤ hU (K) + hU (K ′) � and equality holds if KU−1 ∩ K ′U−1 = ∅. �

To define the left Haar measure, we next want to define the “limit” of this quotient as U
becomes a smaller and smaller open neighborhood of 1. This is not an actual limit, but we
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will emulate it by constructing a product space that contains all these functions, and then
use a compactness argument to find a “limit” in a large product space.

Consider the product of closed intervals∏
K⊆G compact

[0, (K : K0)].

In Lean this is defined as a subspace of the topological space compacts G → R: �

def haar_product (K0 : set G) : set (compacts G → R) :=
pi univ (λ K : compacts G, Icc 0 (index K K0))

Here pi univ is the product of sets and Icc is an interval that is closed on both sides.
Note that by Tychonoff’s theorem � haar_product K0 is compact, and that every function

prehaar K0 U : compacts G → R determines a point in haar_product K0. �

Given an open neighborhood V of 1, we can define the collection of points determined by
prehaar K0 U for all U ⊆ V and take its closure:

def cl_prehaar (K0 : set G) (V : open_nhds_of (1 : G)) :
set (compacts G → R) :=

closure (prehaar K0
′′ { U : set G | U ⊆ V ∧ is_open U ∧ (1 : G) ∈ U })

Now we claim that the intersection of cl_prehaar K0 V is nonempty for all open neighbor-
hoods V of 1.

lemma nonempty_Inter_cl_prehaar (K0 : positive_compacts G) : nonempty
(haar_product K0 ∩

⋂
(V : open_nhds_of (1 : G)), cl_prehaar K0 V)

Proof. Since haar_product K0 is compact, it is sufficient to show that if we have a finite
collection of open neighborhoods t : finset (open_nhds_of 1) the set haar_product
K0 ∩

⋂
(V ∈ t), cl_prehaar K0 V is non-empty. � In this case we can explicitly give an

element, namely prehaar K0 V0, where V0 =
⋂

(V ∈ t), V. J

Finally, we can choose an arbitrary element in the set of the previous lemma, which we
call chaar K0, since it measures the size of the compact sets of G: �

def chaar (K0 : positive_compacts G) (K : compacts G) : R :=
classical.some (nonempty_Inter_cl_prehaar K0) K

I Lemma 5. Denote chaar K0 K by h(K). Then we have
0 ≤ h(K) � and h(∅) = 0 � and h(K0) = 1; �

h(xK) = h(K); �

if K ⊆ K ′ then h(K) ≤ h(K ′) (monotonicity); �

h(K∪K ′) ≤ h(K)+h(K ′) (subadditivity) � and equality holds if K∩K ′ = ∅ (additivity). �

The idea in the proof is that the projections f 7→ f(K) are continuous functions. Since these
statements in this lemma hold for all hU by Lemma 4, they also hold for each point in each
set cl_prehaar K0 V, and therefore for h.

This function chaar K0 measures the size of the compact sets of G. It has the properties
of a content on the compact sets, which is an additive, subadditive and monotone function
into the nonnegative reals [10, §53]. From this we can define the Haar measure in three steps.

First, given a content, we can obtain its associated inner content on the open sets, �

def inner_content (h : compacts G → ennreal) (U : opens G) : ennreal :=⊔
(K : compacts G) (hK : K ⊆ U), h K

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/haar_measure.lean#L100
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This inner content is monotone � and countably subadditive. � Also note that for every set
K that is both compact and open, we have inner_content h K = h K. �

Second, given an arbitrary inner content ν, we can obtain its associated outer measure
µ � which is given by µ A = ⊔(U : set G) (hU : is_open U) (h : A ⊆ U), ν U. �

For open sets U we have that µ U = ν U. � Suppose that the inner content ν comes
from the content h. We have observed that µ agrees with ν on their common domain (the
open sets), and that ν agrees with h on their common domain (the compact open sets). One
might be tempted to conclude that µ agrees with h on their common domain (the compact
sets). This is implicitly claimed in Gleason [8], since the same name is used for these three
functions. However, this is not necessarily the case [10, p. 233]. The best we can say in
general is that for compact K we have µ (interior K) ≤ h K ≤ µ K � �

If we apply these two steps to the function h = chaar K0 we obtain the Haar outer
measure haar_outer_measure K0 on G. � Next, we show that all Borel measurable sets on
G are Carathéodory measurable w.r.t. haar_outer_measure K0. � This gives the left Haar
measure. � We also scale the Haar measure so that it assigns measure 1 to K0.

I Theorem 6. Let µ be the left Haar measure on G, defined above. Then µ is a left
invariant � and regular � measure satisfying µ(K0) = 1. �

We will show in Section 6 that the Haar measure is unique, up to multiplication determined
by a constant. The following theorem states some properties of left invariant regular measures.

I Theorem 7. Let µ be a nonzero left invariant regular measure on G.
If U is a nonempty open set, then µ(U) > 0 �

If f : G → R is a nonnegative continuous function, not identically equal to 0, then∫ −
f dµ > 0. �

In this section we have only discussed the left Haar measure, which is left invariant. One
can similarly define the notion of right invariance for a measure. We can easily translate
between these two notions. For a measure µ define the measure µ̌ by µ̌(A) = µ(A−1). � The
following Theorem shows that if µ is the left Haar measure on G, then µ̌ is a right Haar
measure on G (i.e. a nonzero regular right invariant measure).

I Theorem 8.
The operation µ 7→ µ̌ is involutive. �

µ is left invariant iff µ̌ is right invariant. �

µ is regular iff µ̌ is regular. �

6 Uniqueness of the Haar measure

In this section we will show that the Haar measure is unique, up to multiplication by a
constant. For this proof, we followed the proof in Halmos [10, §59-60] up to some differences
given at the end of the section.

Let G be a second-countable locally compact group. The main ingredient in the proof
is that if we have two left invariant measures µ and ν on G, we can transform expressions
involving µ into expressions involving ν by applying a transformation to G×G that preserves
the measure µ × ν. We need Tonelli’s theorem to compute the integrals in this product.
Because G is second countable, the product σ-algebra on G × G coincides with the Borel
σ-algebra. �

Suppose µ and ν are left invariant and regular measures on G. Since G is second-
countable, this also means that µ and ν are σ-finite. � We first show that (x, y) 7→ (x, xy)
and (x, y) 7→ (yx, x−1) are measure-preserving transformations.
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I Lemma 9. Let µ and ν be left invariant regular measures on G, then the transformations
S, T : G × G → G × G given by S(x, y) := (x, xy) and T (x, y) := (yx, x−1) preserve the
measure µ × ν, i.e. S∗(µ × ν) = µ × ν = T∗(µ × ν). � �

Proof. It suffices to show that the measures are equal on measurable rectangles, since these
generate the σ-algebra on G × G. Let A × B ⊆ G × G be a measurable rectangle. For S we
compute:

S∗(µ × ν)(A × B) = (µ × ν)(S−1(A × B))

=
∫ −

ν(S(x, −)−1(A × B)) dµ(x) =
∫ −

χA(x)ν(x−1B) dµ(x)

=
∫ −

χA(x)ν(B) dµ(x) = µ(A)ν(B) = (µ × ν)(A × B).

Note that S is an equivalence with inverse S−1(x, y) = (x, x−1y). If we define R(x, y) := (y, x),
we saw in Section 4 that R∗(µ × ν) = ν × µ. The claim that T preserves measure now follows
from the observation that T = S−1RSR, which is easy to check. J

For measurable sets A its left translates have the same measure: µ(xA) = µ(A). This
might not be true for right translates µ(Ax), but we can say the following [10, §59, Th. D].

I Lemma 10. Let µ be a left invariant regular measure on G and suppose that µ(A) > 0 for
a measurable set A ⊆ G. Then µ(A−1) > 0 � and µ(Ax) > 0 � for x ∈ G. Furthermore, the
map f(x) := µ(Ax) is measurable. �

Proof. Let S and T be as in Lemma 9. For the first claim, we will show that µ(A−1) = 0
implies that µ(A) = 0. It suffices to show that (µ × µ)(A × A) = 0, which we can compute
using Lemma 9:

(µ × µ)(A × A) = (µ × µ)(T −1(A × A)) =
∫ −

µ((T −1(A × A))y) dµ(y)

=
∫ −

µ(y−1A ∩ A−1) dµ(y) ≤
∫ −

µ(A−1) dµ(y) = 0.

The second claim now easily follows, since µ(A) > 0 implies that µ(Ax) = µ((x−1A−1)−1) >

0.
For the final claim, we can see that µ(Ax) = µ((S−1(G × A))x), which is measurable by

the symmetric version of measurable_measure_prod_mk_left from Section 4. J

The following is a technical lemma that allows us to rewrite ν-integrals into µ-integrals.
This is the key lemma to show the uniqueness of the Haar measure. [10, §60, Th. A].

I Lemma 11. Let µ and ν be left invariant regular measures on G, let K ⊆ G be compact
with ν(K) > 0, and suppose that f : G → [0, ∞] is measurable. Then �

µ(K) ·
∫ − f(y−1)

ν(Ky) dν(y) =
∫ −

f dµ.

Proof. First note that 0 < ν(Ky) < ∞ for any y. The first inequality follows from
Lemma 10 and the second inequality from the fact that ν is regular and Ky is compact. Let
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g(y) := f(y−1)
ν(Ky) , then by Lemma 10, g is measurable. Now we compute

µ(K) ·
∫ −

g(y) dν(y) =
∫ −

χK(x) dµ(x) ·
∫ −

g(y) dν(y)

=
∫ −∫ −

χK(x)g(y) dν(y) dµ(x) =
∫ −∫ −

χK(yx)g(x−1) dν(y) dµ(x) (by Lemma 9)

=
∫ −

ν(Kx−1)g(x−1) dµ(x) =
∫ −

f(x) dµ(x).

Note that in the third step we also use Tonelli’s theorem, since Lemma 9 shows that the
corresponding integrals over the product are equal. J

As a consequence, we get the uniqueness of the Haar measure: every left invariant measure
is a multiple of the Haar measure.

I Theorem 12. Let ν be a left invariant regular measure and K0 be a compact set with
non-empty interior. If µ is the Haar measure on G with µ(K0) = 1, then ν = ν(K0) · µ. �

Proof. Let A be any measurable set. The result follows from the following computation,
where we apply Lemma 11 twice, once with measures (ν, µ) and once with measures (µ, µ):

ν(A) =
∫ −

χA dν = ν(K0) ·
∫ − χA(y−1)

µ(K0y) dµ(y)

= ν(K0) · µ(K0) ·
∫ − χA(y−1)

µ(K0y) dµ(y) = ν(K0) ·
∫ −

χA dµ = ν(K0) · µ(A). J

For this proof we followed Halmos [10, §59-60], but there are some differences. Halmos
gives a more general version of Lemma 11, for an arbitrary measurable group, while we did
it for a second-countable locally compact group equipped with the Borel σ-algebra (which
forms a measurable group). There are other proofs, like in Cohn [3, Theorem 9.2.6], that do
not require G to be second countable. Another difference between our and Halmos’ proof
is that we assume that K is compact, while Halmos assumes that K is measurable with
ν(K) < ∞. However, in the proof he implicitly uses that also ν(Ky) < ∞, a fact that is not
justified in the text, and that I was unable to prove from the assumption that ν(K) < ∞.
At this point I do not know whether this claim is true or not. I asked this question on
Stack Exchange, which has not been answered as of writing this paper. � Lemma 10 claims
something similar, namely that if ν(K) > 0 then ν(Ky) > 0, but the proof of this claim does
not work to show finiteness of ν(Ky). We patched this gap by assuming that K is compact
and ν is regular, which implies that ν(Ky) < ∞ because Ky is also compact.

7 Concluding Thoughts

The formalization of product measures (and their basic properties) is about 900 lines of code,
and the formalization of Haar measure (and its basic properties) is about 1300 lines of code
(including blank lines and comments). The development integrates smoothly into mathlib,
and preliminaries of this work are placed in their appropriate files. The formalization was
integrated into mathlib via more than a dozen pull requests � � � � � � � � � � � � � � �

that added new material or modified and expanded existing developments. Each pull request
was carefully reviewed by one of mathlib’s maintainers.

The proofs in this formalization use a wide variety of techniques, from the reasoning in
Banach spaces for Fubini’s theorem, to topological compactness arguments in the existence
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proof of the Haar measure, to the calculational proofs in the uniqueness of the Haar measure.
This formalization shows that these different proof techniques can be used and combined
effectively in mathlib to formalize graduate level mathematics.

This work can be extended in various ways. One interesting project would be to prove the
uniqueness for groups that need not be second countable. This should not be too difficult, but
requires a version of Fubini’s theorem for compactly supported functions on locally compact
Hausdorff spaces. Another project would be to explore the modular function, which describes
how the left and the right Haar measures differ on a locally compact group. Furthermore,
the Haar measure is used as a tool in many areas of mathematics, some of which would now
be feasible to formalize with the Haar measure as a new tool in our toolkit.

One such area is abstract harmonic analysis. Abstract harmonic analysis is the area
of analysis on topological groups, usually locally compact groups. One of the core ideas
is to generalize the Fourier transform to an arbitrary locally compact abelian group. The
special case of the continuous Fourier transform has been formalized in HOL4 [9], but the
abstract Fourier transform has never been formalized. One specific goal could be to formalize
Pontryagin duality. For a locally compact abelian group G we can define the Pontryagin
dual Ĝ := Hom(G, T ) consisting of the continuous group homomorphisms from G to the
circle group T . Then Pontryagin duality states that the canonical map G → ̂̂

G (given by
the evaluation function) is an isomorphism. Other targets include Peter–Weyl theorem and
more ambitiously the representation theory of compact groups and Weyl’s integral formula
for compact Lie groups.

In mathlib we have not just defined binary product measures, but also finitary product
measures, � which can be used to define integrals over Rn. In mathlib this is done by defining
a measure on the product space Π i : ι, X i.
def measure.pi {ι : Type∗} [fintype ι] {X : ι → Type∗}

[∀ i, measurable_space (X i)] (µ : ∀ i, measure (X i)) :
measure (Π i, X i)

The definition is conceptually very simple, since you just iterate the construction of binary
product measures, but in practice it is quite tricky to do it in a way that is convenient to
use. For example, in a complicated proof, you do not want to worry about the fact that
the spaces X × (Y × Z) and (X × Y ) × Z are not exactly the same, just equivalent. One
open question is whether we can formulate Fubini’s theorem for finitary product measures
in a way that is convenient to use. It would be inconvenient to rewrite a finitary product
of measures into a binary product in the desired way, and then apply Fubini’s theorem for
binary product measures. We have an idea that we expect to be more promising, which is to
define a “marginal integral” that only integrates some variables in the input of a function,
corresponding to the marginal distribution of a random variable in probability theory. It
takes a function f : (Π i, X i) → E and integrates away the variables in a subset I. The
result is another function (Π i, X i) → E that is constant on all variables in I:
def marginal (µ : ∀ i, measure (X i)) (I : finset ι)

(f : (Π i, X i) → E) : (Π i, X i) → E

This has not been incorporated in mathlib, but it is a promising experiment on a separate
branch. � If we denote marginal µ I f as

∫
· · ·

∫
_I, f ∂µ, then the following is a convenient

way to state Fubini’s theorem for finitary product measures.
lemma marginal_union (f : (Π i, X i) → E) (I J : finset ι) :

disjoint I J →
∫

· · ·
∫

_I ∪ J, f ∂µ =
∫

· · ·
∫

_ I,
∫

· · ·
∫

_J, f ∂µ ∂µ
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