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Abstract

We present a development of the theory of higher groups, including
infinity groups and connective spectra, in homotopy type theory. An
infinity group is simply the loops in a pointed, connected type, where
the group structure comes from the structure inherent in the identity
types of Martin-Löf type theory. We investigate ordinary groups from
this viewpoint, as well as higher dimensional groups and groups that
can be delooped more than once. A major result is the stabilization
theorem, which states that if an n-type can be delooped n + 2 times,
then it is an infinite loop type. Most of the results have been formalized
in the Lean proof assistant.

Table 1: Periodic table of k-tuply groupal n-groupoids.

k \ n 0 1 2 · · · ∞

0 pointed set pointed groupoid pointed 2-groupoid · · · pointed ∞-groupoid
1 group 2-group 3-group · · · ∞-group
2 abelian group braided 2-group braided 3-group · · · braided ∞-group
3 — ” — symmetric 2-group sylleptic 3-group · · · sylleptic ∞-group
4 — ” — — ” — symmetric 3-group · · · ?? ∞-group
...

...
...

...
. . .

...
ω — ” — — ” — — ” — · · · connective spectrum
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1 Introduction

The homotopy hypothesis is the statement that homotopy n-types (topological
spaces with trivial homotopy groups above level n) correspond to n-groupoids
for n ∈ N ∪ {∞} via the fundamental ∞-groupoid construction. In Grothen-
dieck’s original version in Pursuing Stacks [13] this was a conjecture about a
particular model of ∞-groupoids. It is also a theorem for many particular
models of ∞-groupoids, for example the Kan simplicial sets, but it is now
mostly taken to be a property defining ∞-groupoids up to equivalence.

In this paper, we investigate the homotopy hypothesis in the context of
homotopy type theory (HoTT). HoTT refers to the homotopical interpretation
of Martin-Löf’s dependent type theory [2, 26]. In this homotopical interpreta-
tion, every type-theoretical construction corresponds to a homotopy-invariant
construction on spaces.

In HoTT, every type has a path space given by the identity type. For
a pointed type we can construct the loop space, which has the structure of
an ∞-group. Moreover, if the type is truncated, then we can retreive the
usual notion of groups, 2-groups and higher groups. This allows us to define
a higher group internally in the language of type theory as a type that is the
loop space of a pointed connected type, its delooping.

We also investigate groups that can be delooped more than once, which
gives n-groups with additional coherences. The full family of groups we
consider is in Table 1, which we will explain in detail in section 3.

Our approach is additionally validated by the corresponding observation
in ∞-topos theory, where it is a theorem that the ∞-category of pointed,
connected objects in X is equivalent to the∞-category of higher group objects
in X , for any ∞-topos X [18, Lemma 7.2.2.11(1)].

We have formalized most of our results in the HoTT library [9] of
the Lean Theorem Prover [19]. The formalized results can be found in
the file https://github.com/cmu-phil/Spectral/blob/master/higher_

groups.hlean. We will indicate the major formalized results in this paper by
referring to the name in the formalization inside square brackets. For more
information about the formalization, see section 8.

We are indebted to Michael Shulman for writing a blog post [22] on
classifying spaces from a univalent perspective.
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2 Preliminaries

In this paper we will work in the type theory of the HoTT book [25], although
all arguments will also hold in a cubical type theory, such as [1, 7]. In this
section we briefly introduce the concepts we need for the rest of the paper.

The type theory contains dependent function types (x : A) → B(x),
which are more traditionally denoted as Πx:AB(x) and dependent pair types
(x : A)× B(x), which are traditionally denoted as Σx:AB(x). We choose to
use this Agda-inspired notation because we often deal with deeply nested
dependent sum types.

Within a type A we have the identity type or path type =A : A→ A→
Type. We have various operations on paths, such as concatenation p · q and
inversion p−1 of paths. The functorial action of a function f : A→ B on a
path p : a1 =A a2 is denoted apf(p) : f(a1) = f(a2). The constant path is
denoted 1a : a = a.

A type A can be n-truncated, denoted istruncnA, which is defined by
recursion on n : N−2 := Z≥−2:

istrunc−2A := iscontrA := (a : A)×
(
(x : A)→ (a = x)

)
istruncn+1A := (x y : A)→ istruncn(x = y)

For any type A we write ‖A‖n for its n-truncation, i.e., ‖A‖n is an n-truncated
type equipped with a map |−|n : A → ‖A‖n such that for any n-truncated
type B the precomposition map

(‖A‖n → B)→ (A→ B)

is an equivalence. Then we define being n-connected as isconnnA := iscontr‖A‖n.
Properties of truncations and connected maps are established in Chapter 7 of
[25].

The type of pointed types is Typept := (A : Type)× (pt : A). The type of

n-truncated types is Type≤n := (A : Type)× istruncnA and for n-connected
types it is Type>n := (A : Type)×isconnnA. We will combine these notations
as needed.

Given A : Typept we define the loop space ΩA := (pt =A pt), which is
pointed with basepoint 1pt. The homotopy groups of A are defined to be
πkA := ‖ΩkA‖0. These are group in the usual sense when k ≥ 1, with neutral
element |1| and group operation induced by path concatenation.
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Given A,B : Typept the type of pointed maps from A to B is (A →pt

B) := (f : A → B) × (f(pt) =B pt). Given f : A →pt B we write f(a) : B
for the first projection and f0 : f(pt) = pt for the second projection. The
fiber of a pointed map is defined by fib(f) := (a : A)× (f(a) =B pt), which
is pointed with basepoint (pt, f0).

In HoTT we can use higher inductive types to construct Eilenberg-MacLane
spaces K(G, n) [17]. For a group G we define K(G, 1) as the following HIT.

HIT K(G, 1) :=
• ? : K(G, 1);
• p : G→ ? = ?;
• q : (g h : G)→ p(gh) = p(g) · p(h);
• ε : istrunc1K(G, 1).

(Using the univalent universe Type, other direct definitions are also possible,
for instance, K(G, 1) is equivalent to the type of small G-torsors.) Let ΣX
denote the suspension of X, i.e., the homotopy pushout of 1← X → 1. For
an abelian group A can now inductively define K(A, n+1) := ‖ΣK(A, n)‖n+1.
Then we have the following result [17].

Theorem 1. Let G be a group and n ≥ 1, and assume that G is abelian when
n > 1. The space K(G, n) is (n− 1)-connected and n-truncated and there is
a group isomorphism πnK(G, n) ' G.

In some of our informal arguments we use the descent theorem for pus-
houts,1 which states that for a commuting cube of types

A11

A10 B11 A01

B10 A00 B01

B00,

(1)

1Recall from [18, §6.1.3], following ideas from Charles Rezk, that we can define the
∞-toposes among locally cartesian closed ∞-categories as those whose colimits are van
Kampen, viz., satisfying descent.
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if the bottom square is a pushout and the vertical squares are pullbacks,
then the top square is also a pushout. We will use the following slight
generalization.

Theorem 2. Consider a commuting cube of types as in (1), and suppose the
vertical squares are pullback squares. Then the square

A10 tA11 A01 A00

B10 tB11 B01 B00

is a pullback square.

Proof. It suffices to show that the pullback

(B10 tB11 B01)×B00 A00

has the universal property of the pushout. This follows by the descent theorem,
since by the pasting lemma for pullbacks we also have that the vertical squares
in the cube

A11

A10 B11 A01

B10 (B10 tB11 B01)×B00 A00 B01

B10 tB11 B01

are pullback squares.

In the formalization, arguments using descent are more conveniently done
via the equivalent principle captured formally as the flattening lemma [25,
§6.12].
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3 Higher groups

Recall that types in HoTT may be viewed as ∞-groupoids: elements are
objects, paths are morphisms, higher paths are higher morphisms, etc.

It follows that pointed connected types A may be viewed as higher groups,
with carrier ΩA := (pt =A pt). The neutral element is the identity path,
the group operation is given by path composition, and higher paths witness
the unit and associativity laws. Of course, these higher paths are themselves
subject to further laws, etc., but the beauty of the type-theoretic definition is
that we don’t have to worry about that: all the (higher) laws follow from the
rules of the identity types.

Writing G for the carrier, it is common to write BG for the pointed
connected type such that G = ΩBG. We call BG the delooping of G. Let us
write

∞-Group := (G : Type)× (BG : Type>0
pt )× (G ' ΩBG)

' (G : Typept)× (BG : Type>0
pt )× (G 'pt ΩBG)

' Type>0
pt

for the type of higher groups, or ∞-groups. Note that for G :∞-Group we
also have G : Type using the first projection as a coercion. Using the last
definition, this is the loop space map, and not the usual coercion!

We recover the ordinary set-level groups by requiring that G is a 0-type,
or equivalently, that BG is a 1-type. This leads us to introduce

n-Group := (G : Type<n
pt )× (BG : Type>0

pt )× (G 'pt ΩBG)

' Type>0,≤n
pt

for the type of groupal (group-like) (n− 1)-groupoids, also known as n-groups.
For G : 1-Group a set-level group, we have BG = K(G, 1).

For example, the integers Z as an additive group are from this perspective
represented by their delooping BZ = S1, i.e., the circle.

Of course, double loop spaces are even better behaved than mere loop
spaces (e.g., they are commutative up to homotopy by the Eckmann-Hilton
argument [25, Theorem 2.1.6]). Say a type G is k-tuply groupal if we have a
k-fold delooping, BkG : Type≥kpt , such that G = ΩkBkG.
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Mixing the two directions, let us introduce the type

(n, k)GType := (G : Type≤npt )× (BkG : Type≥kpt )× (G 'pt ΩkBkG)

' Type≥k,≤n+k
pt [GType equiv]

for the type of k-tuply groupal n-groupoids.2 (We allow taking n = ∞ in
which case the truncation requirement is simply dropped. [InfGType equiv])

Note that n-Group = (n− 1, 1)GType. This shift in indexing is slightly
annoying, but we keep it to stay consistent with the literature.

Since there are forgetful maps

(n, k + 1)GType→ (n, k)GType

given by Bk+1G 7→ ΩBk+1G we can also allow k to be infinite, k = ω by
setting

(n, ω)GType := limk (n, k)GType

'
(
B−G : (k : N)→ Type≥k,≤n+k

pt

)
×
(
(k : N)→ BkG 'pt ΩBk+1G

)
.

In section 6 we prove the stabilization theorem (Theorem 6), from which it
follows that (n, ω)GType = (n, k)GType for k ≥ n+ 2.

When (n, k) = (∞, ω), this is the type of stably groupal ∞-groups, also
known as connective spectra. If we also relax the connectivity requirement,
we get the type of all spectra, and we can think of a spectrum as a kind of
∞-groupoid with k-morphisms for all k ∈ Z.

The class of higher groups is summarized in Table 1. We shall prove the
correctness of the n = 0 column in section 5.

4 Elementary theory

Given any type of objects A, any a : A has an automorphism group AutA a :=
Aut a := (a = a) with BAut a = im(a : 1 → A) = (x : A) × ‖a = x‖−1 (the
connected component of A at a). Clearly, if A is (n+ 1)-truncated, then so is
BAut a and so Aut a is n-truncated, and hence an (n+ 1)-group.

2This is called nTypek in [3], but here we give equal billing to n and k, and we add the
“G” to indicate group-structure.
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Moving across the homotopy hypothesis, for every pointed type (X, x)
we have the fundamental ∞-group of X, Π∞(X, x) := Autx. Its (n − 1)-
truncation (an instance of decategorification, see section 6) is the funda-
mental n-group of X, Πn(X, x), with corresponding delooping BΠn(X, x) =
‖BAutx‖n.

If we take A = Set, we get the usual symmetric groups Sn := Aut(Finn),
where Finn is a set with n elements. (Note that BSn = BAut(Finn) is the
type of all n-element sets.) We give further constructions related to ordinary
groups in section 7.

4.1 Homomorphisms and conjugation

A homomorphism between higher groups is any function that can be suitably
delooped. For G,H : (n, k)GType, we define

hom(n,k)(G,H) := (h : G→pt H)× (Bkh : BkG→pt B
kH)

× (Ωk(Bkh) ∼pt h)

' (Bkh : BkG→pt B
kH).

For (connective) spectra we need pointed maps between all the deloopings
and pointed homotopies showing they cohere.

Note that if h, k : G→ H are homomorphisms between set-level groups,
then h and k are conjugate if Bh,Bk : BG →pt BH are freely homotopic
(i.e., equal as maps BG→ BH).

Also observe that πj(B
kG→pt B

kH) ' ‖BkG→pt ΩkBkH‖0 ' ‖ΣjBkG→pt

BkH‖0 = 0 for j + k − 1 ≥ n + k, that is, for j > n, so this suggests that
hom(n,k)(G,H) is n-truncated. (The calculation verifies this for the identity
component.) To prove this, we need to use an induction using the definition
of n-truncated. If f : hom(n,k)(G,H), then its self-identity type is equivalent
to
(
α : (z : BkG)→ (f z = f z)

)
×
(
α pt · gpt = fpt

)
. This type is no longer a

type of pointed maps, but rather a type of pointed sections of a fibration of
pointed types.

Definition 1. If X : Typept and Y : X → Typept, then we introduce the
type of pointed sections,

(x : X)→pt Y x :=
(
s : (x : X)→ Y x

)
×
(
s pt = pt

)
.

This type is itself pointed by the trivial section λx, pt.
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Theorem 3. Let X : Type≥kpt be an (k − 1)-connected, pointed type for some

k ≥ 0, and let Y : X → Type≤n+k
pt be a fibration of (n+ k)-truncated, pointed

types for some n ≥ −1. Then the type of pointed sections, (x : X)→pt Y x,
is n-truncated. [is trunc ppi of is conn]

Proof. The proof is by induction on n.
For the base case n = −1 we have to show that the type of pointed sections

is a mere proposition. Since it is pointed, it must in fact be contractible. The
center of contraction is the trivial section s0. If s is another section, then
we get a pointed homotopy from s to s0 from the elimination principle for
pointed, connected types [25, Lemma 7.5.7], since the types s x = s0 x are
(k − 2)-truncated.

To show the result for n+ 1, taking the n case as the induction hypothesis,
it suffices to show for any pointed section s that its self-identity type is
n-truncated. But this type is equivalent to (x : X) →pt Ω(Y x, s x), which
is again a type of pointed sections, and here we can apply the induction
hypothesis.

Corollary 1. Let k ≥ 0 and n ≥ −1. If X is (k − 1)-connected, and Y is
(n+ k)-truncated, then the type of pointed maps X →pt Y is n-truncated. In
particular, hom(n,k)(G,H) is an n-type for G,H : (n, k)GType.

Corollary 2. The type (n, k)GType is (n+ 1)-truncated. [is trunc GType]

Proof. This follows immediately from the preceding corollary, as the type of
equivalences G ' H is a subtype of the homomorphisms from G to H.

If k ≥ n+ 2 (so we’re in the stable range), then hom(n,k)(G,H) becomes a
stably groupal n-groupoid. This generalizes the fact that the homomorphisms
between abelian groups form an abelian group.

The automorphism group AutG of a higher group G : (n, k)GType
is in (n, 1)GType. This is equivalently the automorphism group of the
pointed type BkG. But we can also forget the basepoint and consider
the automorphism group AutcG of BkG : Type≥k,≤n+k. This now allows
for (higher) conjugations. We define the generalized center of G to be
ZG := ΩkAutcG : (n, k + 1)GType (generalizing the center of a set-level
group, see below in subsection 4.3).
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4.2 Group actions

In this section we consider a fixed group G : GType with delooping BG. An
action of G on some object of type A is simply a function X : BG → A.
The object of the action is X(pt) : A, and it can be convenient to consider
evaluation at pt : BG to be a coercion from actions of type A to A. To equip
a : A with a G-action is to give an action X : BG→ A with X(pt) = a. The
trivial action is the constant function at a. Clearly, an action of G on a : A is
the same as a homomorphism G→ AutA a.

If A is a universe of types, then we have actions on types X : BG→ Type.
These G-types are thus simply types in the context of BG. A map of G-types
from X to Y is just a function α : (z : BG)→ X(z)→ Y (z).

If X is a G-type, then we can form the

invariants XhG := (z : BG) → X(z), also known as the homotopy fixed
points, and the

coinvariants XhG := (z : BG) × X(z), which is also known as homotopy
orbit space or the homotopy quotient X // G.

It is easy to see that these constructions are respectively the right and left
adjoints of the functor that sends a type X to the trivial G-action on X,
Xtriv : BG → Type, which is just the constant family at X. Indeed, the
adjunctions are just the usual argument swap and (un)currying equivalences,
for Y : Type,

hom(Y,XhG) = X → (z : BG)→ Y (z) ' (z : BG)→ X → Y (z)

' hom(Xtriv, Y ),

hom(XhG, Y ) =
(
(z : BG)×X(z)

)
→ Y ' (z : BG)→ X(z)→ Y

' hom(X, Y triv).

If we think of an action X : BG→ Type as a type-valued diagram on BG,
this means that the homotopy fixed points and the homotopy orbit space
form the homotopy limit and homotopy colimit of this diagram, respectively.

Proposition 1. Let f : H → G be a homomorphism of higher groups with
delooping Bf : BH →pt BG, and let α : hom(X, Y ) be a map of G-types. By
composing with f we can also view X and Y as H-types, in which case we
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get a homotopy pullback square:

XhH YhH

XhG YhG.

Proof. The vertical maps are induced by Bf , and the horizontal maps are
induced by α. The homotopy pullback corner type C is calculated as

C ' (z : BG)× (x : X z)× (w : BH)× (y : Y (Bf w))

× (z = Bf w)× (y = α z x)

' (w : BH)× (x : X(Bf w)) = XhH ,

and under this equivalence the top and the left maps are the canonical
ones.

Every group G carries two canonical actions on itself:

the right action G : BG→ Type, G(x) = (pt = x), and the

the adjoint action Gad : BG→ Type, Gad(x) = (x = x) (by conjugation).

We have 1 // G = BG, G // G = 1 and Gad // G = LBG := (S1 → BG),
the free loop space of BG. Recalling that BZ = S1, we see that Gad = (BZ→
BG), i.e., the conjugacy classes of homomorphisms from Z to G. Since the
integers are the free (higher) group on one generator, this is just the conjugacy
classes of elements of G. But that is exactly what we should get for the
homotopy orbits of G under the conjugation action.

The above proposition has an interesting corollary:

Corollary 3. If f : H → G is a homomorphism of higher groups, then G//H
is equivalent to the homotopy fiber of the delooping Bf : BH →pt BG, where
H acts on G via the f -induced right action.

Proof. We apply Proposition 1 with α : G→ 1 being the canonical map from
the right action of G to the action of G on the unit type. Then the square
becomes:

G // H BH

1 BG
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By definition, BG classifies principal G-bundles: pullbacks of the right
action of G. That is, a principal G-bundle over a type A is a family F : X →
Type represented by a map χ : A → BG such that F (x) ' (pt = χ(x)) for
all x : X.

For example, for every higher group G we have the corresponding Hopf
fibration ΣG→ Type represented by the map χH : ΣG→ BG corresponding
under the loop-suspension adjunction to the identity map on G. (This
particular fibration can be defined using only the induced H-space structure
on G.)

This perspective underlies the construction of the first and the third named
author of the real projective spaces in homotopy type theory [5]. The fiber
sequences S0 → Sn → RPn are principal bundles for the 2-elements group
S0 = S2 with delooping BS2 ' RP∞, the type of 2-element types.

4.3 Back to the center

We mentioned the generalized center above and claimed that it generalized
the usual notion of the center of a group. Indeed, if G : 1-Group is a set-level
group, then an element of ZG corresponds to an element of Ω2 BAutcG, or
equivalently, a map from the 2-sphere S2 to Type sending the basepoint to
BG. By the universal property of S2 as a HIT, this again corresponds to a
homotopy from the identity on BG to itself, c : (z : BG) → z = z. This is
precisely a homotopy fixed point of the adjoint action of G on itself, i.e., a
central element.

4.4 Equivariant homotopy theory

Fix a group G : GType. Suppose that G is actually the (homotopy) type of a
topological group. Consider the type BG→ Type of (small) types with a G-
action. Naively, one might think that this represents G-equivariant homotopy
types, i.e., sufficiently nice3 topological spaces with a G-action considered up
to G-equivariant homotopy equivalence. But this is not so.

By Elmendorf’s theorem [12], this homotopy theory is rather that of
presheaves of (ordinary) homotopy types on the orbit category OG of G.

3Sufficiently nice means the G-CW-spaces. The same homotopy category arises by taking
all spaces with a G-action, but then the weak equivalences are the G-maps f : X → Y that
induce weak equivalences on H-fixed point spaces fH : XH → Y H for all closed subgroups
H of G.
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This is the full subcategory of the category of G-spaces spanned by the
homogeneous spaces G/H, where H ranges over the closed subgroups of G.

Inside the orbit category we find a copy of the group G, namely as the
endomorphisms of the object G/1 corresponding to the trivial subgroup 1.
Hence, a G-equivariant homotopy type gives rise to type with a G-action
by restriction along the inclusion BG ↪→ OG. (Here we consider BG as a
(pointed and connected) topological groupoid on one object.)

As remarked by Shulman [23], when G is a compact Lie group, then OG

is an inverse EI ∞-category, and hence we know how to model type theory in
the presheaf∞-topos over OG. And in certain simple cases we can even define
this model internally. For instance, if G = Z/pZ is a cyclic group of prime
order, then a small G-equivariant type consists of a type with a G-action,
X : BG → Type together with another type family XG : XhG → Type,
where XG gives for each homotopy fixed point a type of proofs or “special
reasons” why that point should be considered fixed [23, p. 7.6]. Hence the
total space of XG is the type of actual fixed points, and the projection to
XhG implements the map from actual fixed points to homotopy fixed points.

Even without going to the orbit category, we can say something about
topological groups through their classifying types in type theory. For ex-
ample [6], if f : H → G is injective, then the homotopy fiber of Bf is by
Corollary 3 is the homotopy orbit space G // H, which in this case is just the
coset space G/H, and hence in type theory represents the homotopy type of
this coset space. And if

1→ K → G→ H → 1

is a short exact sequence of topological groups, then BK → BG → BH
is a fibration sequence, i.e., we can recover the delooping BK of K as the
homotopy fiber of the map BG→ BH.

4.5 Some elementary constructions

If we are given a homomorphism ϕ : H → Aut(N), represented by a pointed
map Bϕ : BH →pt BAutpt(BN) where BAutpt(BN) is the type of pointed
types merely equivalent to BN , we can build a new group, the semidirect
product, G := H nϕ N with classifying type BG := (z : BH)× (Bϕz). The
type BG is indeed pointed (by the pair of the basepoint pt in BG and the
basepoint in the pointed type Bϕ(pt)), and connected, and hence presents a
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higher group G. An element of g is given by a pair of an element h : H and
an identification g · pt = pt in Bϕ(pt) 'pt BN . But since the action is via
pointed maps, the second component is equivalently an identification pt = pt
in BN , i.e., an element of N . Under this equivalence, the product of (h, n)
and (h′, n′) is indeed (h · h′, n · ϕ(h)(n′)).

As a special case we obtain the direct product when ϕ is the trivial action.
Here, B(H ×N) ' BH ×BN .

As another special case we obtain the wreath products N o Sn of a group
N and a symmetric group Sn. Here, Sn acts on the direct power NFinn by
permuting the factors. Indeed, using the representation of BSn as the type of
n-element types, the map Bϕ is simply A 7→ (A→ BN). Hence the delooping
of the wreath product G := N o Sn is just BG := (A : BSn)× (A→ BN).

5 Set-level groups

In this section we give a proof that the n = 0 column of Table 1 is correct.
Note that for n = 0 the hom-types hom(0,k)(G,H) are sets, which means
that (0, k)GType forms a 1-category. Let Group be the category of ordinary
set-level groups (a set with multiplication, inverse and unit satisfying the
group laws) and AbGroup the category of abelian groups.

Theorem 4. We have the following equivalences of categories (for k ≥ 2):

(0, 1)GType ' Group; [cGType equivalence Grp]

(0, k)GType ' AbGroup. [cGType equivalence AbGrp]

Since this theorem has been formalized we will not give all details of the
proof.

Proof. Let k ≥ 1 and G be a group which is abelian if k > 1 and let
X : Type≥k,≤kpt . If we have a group homomorphism ϕ : G → ΩkX we get a
map ekϕ : K(G, k)→pt X. For k = 1 this follows directly from the induction
principle of K(G, 1). For k > 1 we can define the group homomorphism ϕ̃ as

the composite G
ϕ−→ ΩkX ' Ωk−1(ΩX), and apply the induction hypothesis

to get a map ek−1
ϕ̃ : K(G, k − 1)→pt ΩX. By the adjunction Σ a Ω we get a

pointed map ΣK(G, k − 1) →pt X, and by the elimination principle of the
truncation we get a map K(G, k) = ‖ΣK(G, k − 1)‖k →pt X.

We can now show that Ωkekϕ is the expected map, that is, the following
diagram commutes, but we omit this proof here.
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ΩnK(G, k) G

ΩnX

∼

Ωnekϕ ϕ

Now if ϕ is a group isomorphism, by Whitehead’s Theorem for truncated
types [25, Theorem 8.8.3] we know that ekϕ is an equivalence, since it induces
an equivalence on all homotopy groups (trivially on the levels other than k).
We can also show that ekϕ is natural in ϕ.

Note that if we have a group homomorphism ψ : G→ G′, we also get a
group homomorphism G → ΩkK(G′, k), and by the above construction we
get a pointed map K(ψ, k) : K(G, k)→pt K(G′, k). This is functorial, which
follows from naturality of ekϕ.

Finally, we can construct the equivalence explicitly. We have a functor
πk : (0, k)GType → AbGroup which sends G to πkBG. Conversely, we
have the functor K(−, k) : AbGroup → (0, k)GType. We have natural
isomorphisms πkK(G, k) ' G by Theorem 1 and K(πkX, k) 'pt X by the
application of Whitehead described above. The construction is exactly the
same for k = 1 after replacing AbGroup by Group.

6 Stabilization

In this section we discuss some constructions with higher groups [3]. We will
give the actions on the carriers and the deloopings, but we omit the third
component, the pointed equivalence, for readability. We recommend keeping
Table 1 in mind during these constructions.

decategorification Decat : (n, k)GType→ (n− 1, k)GType
〈G,BkG〉 7→ 〈‖G‖n−1, ‖BkG‖n+k−1〉

discrete categorification Disc : (n, k)GType→ (n+ 1, k)GType
〈G,BkG〉 7→ 〈G,BkG〉

These functors make (n, k)GType a reflective sub-(∞, 1)-category of (n +
1, k)GType. That is, there is an adjunction Decat a Disc [Decat adjoint Disc]4

such that the counit induces an isomorphism Decat ◦Disc = id [Decat Disc].

4In the formalization the naturality of the adjunction is a separate statement,
[Decat adjoint Disc natural]. This is also true for the other adjunctions.
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These properties are straightforward consequences of the universal property
of truncation.

There are also iterated versions of these functors.

∞-decategorification ∞-Decat : (∞, k)GType→ (n, k)GType
〈G,BkG〉 7→ 〈‖G‖n, ‖BkG‖n+k〉

discrete ∞-categorification ∞-Disc : (n, k)GType→ (∞, k)GType
〈G,BkG〉 7→ 〈G,BkG〉

These functors satisfy the same properties: ∞-Decat a ∞-Disc [InfDecat adjoint InfDisc]
such that the counit induces an isomorphism∞-Decat◦∞-Disc = id [InfDecat InfDisc].

For the next constructions, we need the following properties.

Definition 2. For A : Typept we define the n-connected cover of A to be
A〈n〉 := fib(A→ ‖A‖n). We have the projection p1 : A〈n〉 →pt A.

Lemma 1. The universal property of the n-connected cover states the follo-
wing. For any n-connected pointed type B, the pointed map

(B →pt A〈n〉)→pt (B →pt A),

given by postcomposition with p1, is an equivalence. [connect intro pequiv]

Proof. Given a map f : B →pt A, we can form a map f̃ : B → A〈n〉. First
note that for b : B the type |fb|n =‖A‖n |pt|n is (n−1)-truncated and inhabited
for b = pt. Since B is n-connected, the universal property for connected
types shows that we can construct a qb : |fb|n = |pt|n for all b such that

q0 : qb0 · ap|−|n(f0) = 1. Then we can define the map f̃(b) := (fb, qb). Now f̃
is pointed, because (f0, q0) : (fb0, qb0) = (a0, 1).

Now we show that this is indeed an inverse to the given map. On the one
hand, we need to show that if f : B →pt A, then p1 ◦ f̃ = f . The underlying
functions are equal because they both send b to f(b). They respect points in

the same way, because app1(f̃0) = f0. The proof that the other composite is
the identity follows from a computation using fibers and connectivity, which
we omit here, but can be found in the formalization.

The next reflective sub-(∞, 1)-category is formed by looping and delooping.

looping Ω : (n, k)GType→ (n− 1, k + 1)GType
〈G,BkG〉 7→ 〈ΩG,BkG〈k〉〉
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delooping B : (n, k)GType→ (n+ 1, k − 1)GType
〈G,BkG〉 7→ 〈Ωk−1BkG,BkG〉

We have B a Ω [Deloop adjoint Loop], which follows from Lemma 1 and
Ω ◦ B = id [Loop Deloop], which follows from the fact that A〈n〉 = A if A is
n-connected.

The last adjoint pair of functors is given by stabilization and forgetting.
This does not form a reflective sub-(∞, 1)-category.

forgetting F : (n, k)GType→ (n, k − 1)GType
〈G,BkG〉 7→ 〈G,ΩBkG〉

stabilization S : (n, k)GType→ (n, k + 1)GType
〈G,BkG〉 7→ 〈SG, ‖ΣBkG‖n+k+1〉,
where SG = ‖Ωk+1ΣBkG‖n

We have the adjunction S a F [Stabilize adjoint Forget] which follows
from the suspension-loop adjunction Σ a Ω on pointed types.

The next main goal in this section is the stabilization theorem, stating
that the ditto marks in Table 1 are justified.

The following corollary is almost [25, Lemma 8.6.2], but proving this in
Book HoTT is a bit tricky. See the formalization for details.

Lemma 2 (Wedge connectivity). If A : Typept is n-connected and B :
Typept is m-connected, then the map A ∨B → A×B is (n+m)-connected.
[is conn fun prod of wedge]

Let us mention that there is an alternative way to prove the wedge
connectivity lemma: Recall that if A is n-connected and B is m-connected,
then A ∗ B is (n + m + 2)-connected [20, Theorem 6.8]. Hence the wedge
connectivity lemma is also a direct consequence of the following lemma.

Lemma 3. Let A and B be pointed types. The fiber of the wedge inclusion
A ∨B → A×B is equivalent to ΩA ∗ ΩB.

Proof. Note that the fiber of A→ A×B is ΩB, the fiber of B → A×B is
ΩA, and of course the fiber of 1→ A×B is ΩA× ΩB. We get a commuting
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cube
ΩA× ΩB

ΩB 1 ΩA

A 1 B

A×B
in which the vertical squares are pullback squares.

By the descent theorem for pushouts it now follows that ΩA ∗ ΩB is the
fiber of the wedge inclusion.

The second main tool we need for the stabilization theorem is:

Theorem 5 (Freudenthal). If A : Type>n
pt with n ≥ 0, then the map A →

ΩΣA is 2n-connected.

This is [25, Theorem 8.6.4].
The final building block we need is:

Lemma 4. There is a pullback square

ΣΩA A ∨ A

A A× A

εA

∆

for any A : Typept.

Proof. Note that the pullback of ∆ : A → A × A along either inclusion
A→ A× A is contractible. So we have a cube

ΩA

1 1 1

A A A

A× A
∆
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in which the vertical squares are all pullback squares. Therefore, if we pull
back along the wedge inclusion, we obtain by the descent theorem for pushouts
that the square in the statement is indeed a pullback square.

Theorem 6 (Stabilization). If k ≥ n + 2, then S : (n, k)GType → (n, k +
1)GType is an equivalence, and any G : (n, k)GType is an infinite loop space.
[stabilization]

Proof. We show that F ◦ S = id = S ◦ F : (n, k)GType → (n, k)GType
whenever k ≥ n+ 2.

For the first, the unit map of the adjunction factors as

BkG→ ΩΣBkG→ Ω‖ΣBkG‖n+k+1

where the first map is 2k − 2-connected by Freudenthal, and the second map
is n+ k-connected. Since the domain is n+ k-truncated, the composite is an
equivalence whenever 2k − 2 ≥ n+ k.

For the second, the counit map of the adjunction factors as

‖ΣΩBkG‖n+k → ‖BkG‖n+k → BkG,

where the second map is an equivalence. By the two lemmas above, the first
map is 2k − 2-connected.

For example, for G : (0, 2)GType an abelian group, we have BnG =
K(G, n), an Eilenberg-MacLane space.

The adjunction S a F implies that the free group on a pointed set X is
Ω‖ΣX‖1 = π1(ΣX). If X has decidable equality, ΣX is already 1-truncated.
It is an open problem whether this is true in general.

Also, the abelianization of a set-level group G : 1-Group is π2(ΣBG). If
G : (n, k)GType is in the stable range (k ≥ n+ 2), then SFG = G.

7 Perspectives on ordinary group theory

In this section we shall indicate how the theory of higher groups can yield a
new perspective even on ordinary group theory.

From the symmetric groups Sn, we can get other finite groups using the
constructions of subsection 4.5. Other groups can be constructed more directly.
For example, BAn, the classifying type of the alternating group, can be taken
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to be the type of n-element sets X equipped with a sign ordering : this is an
equivalence class of an ordering Finn ' X modulo even permutations. Indeed,
there are only two possible sign orderings, so this definition corresponds to
first considering the short exact sequence

1→ An → Sn
sgn−−→ S2 → 1

where the last map is the sign map, then realizing the sign map as given by
the map Bsgn : BSn → BS2 that takes an n-element set to its set of sign
orderings, and finally letting BAn be the homotopy fiber of Bsgn.

Similarly, BCn, the classifying type of the cyclic group on n elements, can
be taken to be the type of n-elements sets X equipped with a cyclic ordering :
an equivalence class of an ordering Finn ' X modulo cyclic permutations.
But unlike the above, where we had the coincidence that Aut(S2) ' S2, this
doesn’t corresponds to a short exact sequence. Rather, it corresponds to a
sequence

1→ Cn → Sn → Aut(Fin(n− 1)) ' S(n−1)!

where the delooping of the last map is the map from BSn to BS(n−1)! that
maps an n-element set to the set of cyclic orderings, of which there are (n−1)!
many – since once we fix the position in the ordering of a particular element,
we are free to permute the rest.

As another example, consider the map p : BS4 →pt BS3 that maps a
4-element set X to its set of 2-by-2 partitions, of which there 3. Using this
construction, we can realize some famous semidirect and wreath product
identities, such as A4 ' S2

2 oA3, S4 ' S2
2 oS3, and, for the octahedral group,

Oh ' S3
2 o S3 ' S2 o S3.

Let us turn to a different way of getting new groups from old, namely via
covering space theory.

7.1 1-groups and covering spaces

The connections between covering spaces of a pointed connected type X
and sets with an action of the fundamental group of X has already been
established in homotopy type theory [15]. Let us recall this connection and
expand a bit upon it.

For us, a pointed connected type X is equivalently an ∞-group G :
∞-Group with delooping BG := X. A covering space over BG is simply a
type family C : BG→ Set that lands in the universe of sets. Hence by our
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discussion of actions in subsection 4.2 it is precisely a set with a G-action.
Since Set is a 1-type, C extends uniquely to a type family C ′ : ‖BG‖1 → Set,
but ‖BG‖1 is the delooping of the fundamental group of X, and hence C ′ is
the uniquely determined choice of a set with an action of the fundamental
group.

The universal covering space is the simply connected cover of BG,

B̃G : BG→ Set, z 7→ ‖pt = z‖0.

Note that the total space of B̃G is indeed the 1-connected cover BG〈1〉, since
‖pt =BG pt‖0 ' (|pt| =‖BG‖1 |pt|). Also note that if G is already a 1-group,
then this is just the right action of G on itself, and in general, it is the right
action of G on the fundamental group (i.e., the decategorification of G) via
the truncation homomorphism from G to π1(BG), where we can also view
π1(BG) as the 1-Group decategorification of G.

In general, there is a Galois correspondence between connected covers of
BG and conjugacy class of subgroups of the fundamental group. Indeed, if
C : BG→ Set has a connected total space, then the space (g : ‖BG‖1)×C ′(g)
is itself a connected, 1-truncated type, and the projection to ‖BG‖1 induced
an inclusion of fundamental groups once a point pt : C ′(pt) has been chosen.

Theorem 7 (Fundamental theorem of Galois theory for covering spaces).

1. The automorphism group of the universal covering space B̃G is isomor-
phic to the 1-group decategorification of G,

Aut(B̃G) ' Decat1(G) ' π1(BG).

2. Furthermore, there is an contravariant correspondence between conju-
gacy classes of subgroups of Decat1(G) and connected covers of BG.

3. This lifts to a Galois correspondence between subgroups of Decat1(G)
and pointed, connected covers of BG. The normal subgroups correspond
to Galois covers.

Note that the universal covering space and the trivial covering space
(constant at the unit type) are canonically pointed, reflecting the fact that
the two trivial subgroups are normal.

The first part of the fundamental theorem has a clear generalization to
higher groups:
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Theorem 8 (Fundamental theorem of Galois theory for n-covers, part one).
The automorphism group of the universal n-type cover Un(BG),

Un(BG) : BG→ Type≤n, z 7→ ‖pt = z‖n

of BG is isomorphic to the (n+ 1)-group decategorification of G,

Aut(Un(BG)) ' Decatn+1(G) ' Πn+1(BG).

Proof. Note that BAut(Un(BG)) is the image of the map 1 → (BG →
Type≤n) that sends the canonical element to Un(BG). Since BG is connected,
this image is exactly ‖BG‖n+1 by [20, Theorem 7.1]. Then we are done, since
B Πn+1(BG) ' ‖BG‖n+1, by definition.

It is possible to use the other parts of Theorem 7 in order to define
the notions of subgroup and normal subgroup for n-groups, which then
become structure on rather than a property of a homomorphism f : K → G.
Explicitly, the structure of a normal subgroup on such an f is a delooping
B(G // K) of the type G // K together with a map Bq : BG→pt B(G // K)
giving rise to a fiber sequence

G // K → BK
Bf−→ BG

Bq−→ B(G // K). (2)

7.2 Central extensions and group cohomology

The cohomology of a higher group G is simply the cohomology of its delooping
BG. Indeed, for any spectrum A, we define

Hk
Grp(G,A) := ‖BG→pt B

kA‖0.

Of course, to define the k’th cohomology group, we only need the k-fold
delooping BkA.

If A : (∞, 2)GType is a braided ∞-group, then we have the second
cohomology group H2

Grp(G,A), and an element c : BG→pt B
2A gives rise to

a central extension
BA→ BH → BG

c−→ B2A,

where BH is the homotopy fiber of c. This lifts to the world of higher groups
the usual result that isomorphism classes of central extensions of a 1-group
G by an abelian 1-group A are given by cohomology classes in H2

Grp(G,A).
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In the Spectral repository there is full formalization of the Serre spectral
sequence for cohomology [8]. If we have any normal subgroup fiber sequence
for ∞-groups as in (2), then we get a corresponding spectral sequence with
E2-page

Hp
Grp(G // K,Hq

Grp(K,A))

and converging to Hn
Grp(G,A), where A is any truncated, connective spectrum,

which could even be a left G-module, in which case we reproduce the
Hochschild-Serre spectral sequence.

8 Formalization

We have formalized many results of this paper. We use the proof assistant
Lean 25. This is an older version of the proof assistant Lean6 (version 3.3 as
of January 2018). We use the old version, since the newer version doesn’t
officially support HoTT, although there is an experimental library for HoTT7,
but that doesn’t have as much theory as the library in Lean 2.

The Lean 2 HoTT library is divided in two parts, the core library8 and
the formalization of spectral sequences9. We worked in the latter, so that we
could use the results from that repository, such as theorems about Eilenberg-
MacLane spaces and pointed maps. All results in this paper are stated in one
file10, although for many results the main parts of the proof is elsewhere (in
Emacs, click on a name and press M-. to find a definition).

To build the file, install Lean 2 via the instructions from that repository,
and then download the Spectral repository and compile it (you can use the
command path/to/lean2/bin/linja on the command-line to compile the
library you’re in). The Spectral repository contains some unproven results,
marked by sorry. You can write print axioms theoremname in a file to
ensure that sorry isn’t used in the proof.

5https://github.com/leanprover/lean2
6https://leanprover.github.io/
7https://github.com/gebner/hott3
8https://github.com/leanprover/lean2/blob/master/hott/hott.md
9https://github.com/cmu-phil/Spectral

10https://github.com/cmu-phil/Spectral/blob/master/higher_groups.hlean
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9 Conclusion

We have presented a theory and formalization of higher groups in HoTT, and
we have proved that for set-level structures we recover the well-known objects:
groups and abelian groups. A possible next step would be to do the same for
the 1-type objects. The corresponding algebraic objects have a long history.
Strict 2-groups predate category theory as they originate in Whitehead’s
study of crossed modules [27]. The theory of weak 2-groups was begun by
Grothendieck’s student Hoàng Xuân Śınh [24] and further developed in [4].
It should be possible to prove within HoTT that weak 2-groups and crossed
modules are equivalent to 2-groups in our sense, when we use the respective,
correct notions of equivalence.

Symmetric 2-groups are by the stabilization theorem the same as 1-
truncated symmetric spectra. These are described more simply than arbitrary
crossed modules as Picard groupoids. This is part of the stable homotopy
hypothesis [14, 16]. It should also be possible to develop the theory of Picard
groupoids in HoTT, and thus prove the corresponding stable homotopy
hypothesis.

Higher groups have been intensively studied in homotopy theory, in par-
ticular after p-completion for p a prime. A p-compact group is an Fp-local
∞-group whose carrier is Fp-finite, see [10]. They are good homotopical
analogues of Lie groups, and they interact nicely with compact Lie groups,
for instance:

Theorem 9 ([11]). Let P be a p-toral group, and let G be a compact Lie
group. Then ‖BP →pt BG‖0 is isomorphic to the conjugacy classes of
homomorphisms from P to G.

Higher groups also play a particularly prominent role in the development
of quantum field theory in cohesive homotopy type theory [21]. In cohesive
type theory we can actually capture the topological or smooth structure of
groups and their classifying types, and hence develop Lie theory properly,
including the higher group generalization thereof. All of our results only use
the core part of HoTT, and hence they remain valid also in cohesive HoTT.

Note that we have crucially used a trick to study higher groups in HoTT,
namely that these can be represented by pointed, connected types. The
alternative would have been to define them as group-like algebras for the little
k-cubes operad Ek. But this requires exactly the kind of infinitary tower of
coherence conditions that we don’t yet know how to define in HoTT. (Or
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whether it is even possible.) Thus, while we have the type of higher groups,
we do not have the type of higher monoids (general Ek-algebras). Thus their
theory, and the corresponding stabilization theorem, is currently beyond the
reach of HoTT.
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