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Abstract. We discuss the homotopy type theory library in the Lean
proof assistant. The library is especially geared toward synthetic ho-
motopy theory. Of particular interest is the use of just a few primitive
notions of higher inductive types, namely quotients and truncations, and
the use of cubical methods.
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1 Introduction

Homotopy type theory (HoTT) refers to the homotopical interpretation of Martin-
Lotf’s dependent type theory [3,22], which grew out of the groupoid model of [13].
In the standard interpretation, every type-theoretical construct corresponds to a
homotopy-invariant construction on spaces. An important example is the iden-
tity type, which corresponds to the path space construction.

Just like extensional type theory can be interpreted in a variety of categories,
for instance elementary toposes, it is expected that homotopy type theory has
homotopy-coherent interpretations in higher toposes. Conversely, the interpreta-
tion has inspired new type-theoretic ideas such as higher inductive types (HITs)
and Voevodsky’s univalence axiom. (See the HoTT book [21] for more about
HoTT.)

Most previous formalizations of HoTT used proof assistants that were not
originally designed with the homotopy interpretation in mind. In Coq we have
both Voevodsky et al.’s UniMath project [23] and the HoTT library [4]. In Agda,
there is another substantial HoTT library [5]. The former library eschews the
use of HITs by instead using Voevodsky’s resizing axiom. Common for all of
these libraries is that certain tricks are used to accommodate HoTT: resizing is
implemented bluntly in UniMath using the inconsistent principle type-in-type,
while HITs are implemented in the other libraries using “Licata’s trick” [15].
There is also an impressive experimental proof assistant implementing cubical
type theory [7] which is designed with the homotopy interpretation in mind, but
it lacks many features that make a proof assistant convenient to use, and the
library is so far rudimentary.



Contributions In this paper, we report on a new library* for HoTT in the
proof assistant Lean [18]. Lean is open source and implements dependent type
theory. It is designed to have a small kernel, with many features built outside
the kernel. We describe Lean in greater detail in Sect. 2. The cloc tool® reports
the library as having 30400 lines of specification and proof and 3600 lines of
comments. Thus, our library is roughly the same size as the Coq HoTT library,
which has 29800 lines of specification and proof. Our library includes many
theorems from synthetic homotopy theory and a large algebraic hierarchy. We
describe the library in more detail in Sect. 3. In the library we heavily use cubical
techniques for higher path algebra, see Sect. 4. We also have a novel approach to
implement HITs, which amounts to having two simple built-in HITs and reducing
everything else to those, as described in Sect. 5.

2 The Lean Proof Assistant

Lean [18] is an interactive theorem prover which is mainly developed at Microsoft
Research and Carnegie Mellon University. The project was started in 2013 by
Leonardo de Moura and has since gained the attention of academics as well
as hands-on users. Lean is an open-source program released under the Apache
License 2.0 and welcomes additions to its code and mathematical libraries.

In its short history, Lean has undergone several major changes. The second
version (Lean 2) supports two kernel modes. The standard mode is for proof
irrelevant reasoning, in which Prop, the bottom universe, contains types whose
objects are considered to be judgmentally equal. Since this is incompatible with
homotopy type theory, a second HoTT mode was added, where proof irrelevance
is not present. In 2016, the third major version of Lean (Lean 3) was released
[17]. In this version, many components of Lean have been rewritten. Of note, the
unification procedure has been restricted, since the full higher-order unification
which is available in Lean 2 can lead to timeouts and error messages that are
unrelated to the actual mistakes. Due to certain design decisions, such as proof
erasure in the virtual machine and a function definition package which requires
axiom K [11], the homotopy type theory mode is currently not supported in
Lean 3. This has led to the situation that the homotopy type theory library is
kept in the still maintained but not further developed Lean 2. In the future we
hope that we will find a way to support a version of homotopy type theory in
Lean 3 or a fork thereof.

The HoTT kernel of Lean 2 provides the following primitive notions:

— Type universes Type.{u} : Type.{u + 1} for each universe level u € N.
In Lean, this chain of universes is non-cumulative, and all universes are
predicative.

— Function types A — B : Type.{max u v} for types A : Type.{u} and B
: Type.{v} as well as dependent function types Ila, B a : Type.{max u

4 Available as part of: https://github.com/leanprover/lean2
5 https://github.com/AlDanial/cloc
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v} for each type A : Type.{u} and type family B : A — Type.{v}. These
come with the usual 5 and 7 rules.

— inductive types and inductive type families, as proposed by Peter Dybjer [10].
Every inductive definition adds its constructors and dependent recursors to
the environment. Pattern matching is not part of the kernel

— two kinds of higher inductive types: n-truncation and (typal) quotients (cf.
Sect. 5).

Outside the kernel, Lean’s elaborator uses backtracking search to infer im-
plicit information. It does the following simultaneously.

— The elaborator fills in implicit arguments, which can be inferred from the con-
text, such as the type of the term to be constructed and the given explicit
arguments. Users mark implicit arguments with curly braces. For example,
the type of equality is eq : II{A : Type}, A — A — Type, which allows
the user to write eq a; as or a; = ap instead of @eq A a; aj. The sym-
bol @ allows the user to fill in implicit arguments explicitly. The elaborator
supports both first-order unification and higher-order unification.

— We can mark functions as coercions, which are then “silently” applied when
needed. For example, we have equivalences f : A ~ B, which is a structure
consisting of a function A — B with a proof that the function is an equiva-
lence. The map (A ~ B) — (A — B) is marked as a coercion. This means
that we can writef aforf : A ~ Banda : A, and the coercion is inserted
automatically.

— Lean was designed with type classes in mind, which can provide canonical
inhabitants of certain types. This is especially useful for algebraic structures
(see Sect. 3.3) and for type properties like truncatedness and connectedness.
Type class instances can refer to other type classes, so that we can chain
them together. This makes it possible for Lean to automatically infer why
types are n-truncated if our reasoning requires this, for example when we are
eliminating out of a truncated type. For example we show that the type of
functors between categories C and D is equivalent to an iterated sigma type.

(X (Fp : C -+ D) (F; : II {a b}, hom a b — hom (Fg a) (Fy b)),
(IT (a), F; (ID a) = ID (Fy a)) X
(I {abc} (g: hombc) (f: hom a b),

Fi (g o f) =F, goF; £)) ~ functor CD

Note the use of coercions here: Fy : C — D really means a function from
the objects of C to the objects of D. From this equivalence, Lean’s type class
inference can automatically infer that functor C D is a set if the objects
of D form a set. Type class inference will repeatedly apply the rules when
sigma-types and pi-types are sets, and use the facts that hom-sets are sets
and that equalities in sets are sets (in total 20 rules are applied for this
example).

— Instead of giving constructions by explicit terms, we can also make use of
Lean’s tactics, which give us an alternative way to construct terms step by



step. This is especially useful if the proof term is large, or if the elaboration
relies heavily on higher-order unification.

— We can define custom syntax, including syntax with binding. In the following
example we declare two custom notations.

infix - := concat
notation ‘X' binders ‘, ‘' r:(scoped P, sigma P) :=r

The first line allows us to write p - q for path concatenation concat p q.
The second line allows us to write ¥ x, P x instead of sigma P. This no-
tation can also be chained: > (A : Type) (a : A), a = a means sigma
(A(A : Type), sigma (A(a : A), a = a)).

2.1 Counsistency of HoTT Lean

Voevodsky’s model of univalence in simplicial sets [14] covers the type theory
with empty, unit, disjoint sums, pi, sigma, identity, and W-types and one univa-
lent universe & la Tarski closed under the these type formers. The model validates
the 8 and 7 rules for function types.

The cubical type theory of [8] interprets Martin-Lof type theory using An-
drew Swan’s construction of the identity types. (The cubical path types of this
model do not satisfy the computation rule for identity types.) It has been checked
that the corresponding model in cubical sets based on de Morgan algebras mod-
els two HITs, namely suspension and propositional truncation. (The model even
satisfies the computation rules for the path constructors.) The technique used
also covers pushouts, so by the reduction of n-truncation to pushouts [19], the
models covers all n-truncations. We believe this model also covers all the or-
dinary inductive families supported by Lean, but this has not been checked in
detail.

Mark Bickford’s formalization of the cubical model® covers a whole hierarchy
of universes like we have in the Lean kernel. It additionally verifies some novel
type constructors such as a higher dimensional intersection type.

These models provide us with high confidence that the logic implemented by
the Lean HoTT kernel is consistent. Furthermore, the kernel is very small com-
pared to other kernels implementing dependent type theory. The kernel does not
contain pattern matching, a termination checker, fixpoint operations or module
management. This increases the confidence that the kernel implements the logic
correctly. Furthermore, the only thing we do outside the kernel to extend the
logic is to posit the univalence axiom; we do not use type-in-type or Licata’s
trick or anything else which might introduce inconsistencies.

3 The Structure of the Library

In this section we describe the overall structure of the homotopy type theory
library and we highlight some examples.

5 http://www.nuprl.org/wip/Mathematics/cubical!type!theory/
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The library contains a markdown file in each folder to describe the contents
of the files in that folder. For readers familiar with [21], the library includes a
file” book.md that describes where in the library the various parts of the book
are formalized.

Figures 1-4 contain graphs of the files in various parts of the library; the
edges denote the dependencies of the files. Each folder contains a file default
which only contains imports of various files in the folder and which is imported
if the user imports the folder. There are also three additional folders: types (see
Subsect. 3.2), cubical, related to the cubical methods discussed in Sect. 4; and
hit, related to higher inductive types as discussed in Sect. 5. There are also
some files in the root folder which we do not describe here.

There is a separate Spectral repository,? the goal of which is to formalize the
Serre Spectral Sequence, and which will be merged into the Lean-HoTT library
in the future. Some examples below are located in this repository.

3.1 The initial part of the library

Figure 1 illustrates the files of the initial part of the library. These files are
imported by default when opening a Lean file. The very first file, datatypes,
defines the basic datatypes, such as unit, empty, eq, prod, sum, sigma, bool,
nat. Higher up, the path file develops the basic properties of the identity type
(also called equality or identification type) in HoTT. This includes the basic
properties of homotopies, transport and the low-dimensional co-groupoid struc-
ture of types.

In the rest of the files we define equivalences, posit the univalence axiom
and derive function extensionality from univalence (in equiv, ua and funext,
respectively). However, in order to be able to track which definitions only depend
on function extensionality and not univalence, via the print axioms command,
we also add function extensionality directly as an axiom.

Lastly, we develop n-truncated types, initialize the primitive HITs, prove that
types with decidable equality are sets [12] and define the basic notions of pointed
types (in trunc, hit, hedberg and pointed, respectively).

3.2 Facts about Types

The files in subdirectory types develop in more detail the properties and con-
structions related to individual types and type formers. For types like sum, sigma
and pi we characterize the equality in that type, define the functorial action
and show that the functorial action preserves equivalences. In univ we prove
properties of type universes, such as the object classifier property. Of particular
importance is the file pointed, which contains properties of pointed types, maps,
equivalences and homotopies, which contains over 2000 lines (also counting the
corresponding file in the Spectral repository).

" https://github.com/leanprover/lean2/blob/master/hott/book.md
& It has 7700 lines of code and 1400 lines of comments. It is available at https:
//github.com/cmu-phil/Spectral
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3.3 The Algebraic Hierarchy

The algebraic hierarchy, all in the algebra subdirectory, is structured as seen in
figure 2. That figure does not contain files that depend on the category theory
sublibrary. The algebraic hierarchy defines common algebraic structures, starting
with small structures, like semigroups and partial orders, and extending them
to groups, rings, all the way up to discrete linear ordered fields. (Discrete means
that the order is decidable.)

We combine the “partially bundled” approach with the “fully bundled” ap-
proach in the algebraic hierarchy, similar to how algebraic structres in the Coq
library are defined [20]. The partially bundled approach means that given a type
A we define what it means that A has a group-structure or ring-structure. This is
used for concrete structures, and we use type classes to infer these inhabitants.
For example, we prove that N forms a decidable linear ordered semiring, and
mark this as an instance. If we want to show that forn m k : N we have (n *
m) *k =n* (m * k), wecan use mul.assoc, the theorem that multiplication
in any semigroup is associative. Then type class inference will try to show that
N is a semigroup, and it will use the instance that every decidable linear ordered
semiring is a semigroup. We use Lean’s extend syntax to easily define new alge-
braic structures. For example, the following code defines a structure ab_group of
abelian groups, which consists of the fields of both group and comm_monoid. Also,
the instances ab_group A — group A and ab_group A — comm_monoid A are
automatically generated.

structure ab_group [class] (A : Type)
extends group A, comm_monoid A

We use the fully bundled approach when doing group theory and other algebra. A
bundled structure is a type together with a structure on that type. For example,
this is the definition of a bundled group:

structure Group := (carrier : Type) (struct : group carrier)

We define Group.carrier to be a coercion. We make Group.struct an instance,
which means that if we have to synthesize a term of type group (Group.carrier
G), Lean will automatically find this instance. We use the bundled structures for
group theory. For example, if G H : Group then we define the product group
G xg H. We use xg for the product of two groups to disambiguate it from other
products, like the product of two types, two pointed types or two truncated
types (type class inference does not work well to disambiguate here, since all
these structures coerce to types).

If we go back to the example (n *m) * k =n * (m * k) on N, we also
interpret the multiplication symbol on N using type class inference. In this case,
Lean will try to find an instance of has_mul N, where has_mul is a type class
stating that the type has a multiplication. Lean can find this instance since we
have a general instance semigroup A — has_mul A. However, since we want to
also have additive semigroups, we have a different notion of additive semigroups,
add_semigroup, with corresponding instance add_semigroup A — has_add A.



To minimize overhead, we can define additive structures as the multiplicative
counterpart, and then prove theorems about additive structures by using the
corresponding theorem for multiplicative structures. We do have to manually
define the instances for additive structures. Here is an example for semigroups:

definition add_semigroup [class] : Type — Type := semigroup
definition has_add_of_add_semigroup [instance] (A : Type)
[s : add_semigroup A] : has_add A :=
has_add.mk (@semigroup.mul A s)
definition add.assoc {A : Type} [s : add_semigroup Al (a b c :
A)
(a+b)+c=a+(b+c):=
@mul.assoc A s a b c

This approach has advantages and disadvantages. An advantage is that theorem
names are different for additive structures and multiplicative structures, so we
can write add.assoc for associativity of addition and mul.assoc for associativ-
ity of multiplication. Furthermore, we can easily define a ring by extending an
additive abelian group and a multiplicative monoid (plus distributivity).

A disadvantage is that operations that are traditionally not written using
+ or *, such as concatenating two lists, do not fall in either category. Also, in
our formalization we make a distinction between additive and multiplicative
groups. Since we define additive groups as multiplicative groups, we can still
apply theorems about multiplicative groups to additive groups, but some care
is needed when doing this: if one applies a theorem about multiplicative groups
with assumption n * k = 1 to an additive group, the new subgoal becomes n
* k = 1, even though in an additive group this really means n + k = 0.

All the algebraic structures we mentioned so far (not including has_mul and
has_add) are assumed to be sets, i.e., O-truncated. We also have variants of
some of these structures which are not assumed to be sets. For example, we
have inf_group and inf_ab_group, which are (abelian) groups without the
assumption that they are sets, but without higher coherences. This is useful for,
e.g., loop spaces or pointed maps into loop spaces, since those types are not
groups, but will become groups (the homotopy and cohomology groups) after
applying set-truncation.

3.4 Homotopy Theory

The homotopy theory part of the library is organized as shown in figure 3.
Almost all results in Chapter 8 of the HoTT book have been formalized in Lean.
In particular it contains various results about connectedness, a version of the
Freudenthal suspension theorem, the complex and quaternionic Hopf fibration [6]
and the long exact sequence of homotopy groups. Together these results show:

definition #nSn (n : N) : 7wgln+1] (S* (n+1)) ~g gZ
definition 7382 : wgl[3] (S8* 2) ~g gZ



This is to say that the n-th homotopy group of the n-sphere (forn > 1) and the
3'4 homotopy group of the 2-sphere are group isomorphic to the integers. Of note
here is the notation mg[n] A which denotes the n-th homotopy group of A, as a
group. In contrast, we also have the operation 7w [n] A which is the n-th homotopy
group of A as a pointed type, which is also defined for n = 0. Originally, we de-
fined ghomotopy_group : N — Type — Group where ghomotopy_group n A
is the (n+1)-st homotopy group of A and we had notation mg[n+1] A for this.
However, this requires the user to write the third homotopy group as mg[2+1].
To remedy this, we changed the definition of ghomotopy_group to have type
II(n : N) [H : is_succ n], Type — Group, where H is a proof that n is a
successor of a natural number, and which is synthesized using type class infer-
ence.

We also prove Whitehead’s principle for truncated types and the Seifert-
van Kampen theorem, and we define the Eilenberg-Maclane spaces and show
that they are unique. Furthermore, we define operations on types of homotopy
theoretic significance, such as cofibers, joins, and wedge and smash products,
and prove various properties about them, such as the associativity of the join
and smash products and the fact that the suspension and smash product have
right adjoints, respectively loop spaces and pointed maps.

3.5 Category Theory

It seems a constant across many libraries of formalized mathematics that the
development of category theory takes up a substantial fraction of the files, and
our library is the same way, as can be seen in figure 4. Highlights include the
Yoneda lemma and the Rezk completion. [1]

As an example from this part of the library, consider this excerpt which
formalizes the fact that the Yoneda embedding preserves existing limits:

definition yoneda_embedding (C : Precategory) : C = cset “c
cep

variables {C D : Precategory}
definition preserves_existing_limits [class] (G : C = D) :=
II(I : Precategory) (F : I = C)

[H : has_terminal_object (cone F)],

is_terminal (cone_obj_compose G (terminal_object (cone F)))

theorem preserves_existing_limits_yoneda_embedding
(C : Precategory)
: preserves_existing limits (yoneda_embedding C)

4 Path Algebra and Cubical Methods

The core innovation in homotopy type theory is its new interpretation of equality.
In contrast to proof irrelevant Martin-Lof type theory, we need to be careful
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about choosing well-behaved equality proofs in the library since we might need to
prove lemmas about these proof objects themselves. We want to maintain brevity
using tactics and equational rewriting while making sure that the generated
proofs do not become unwieldy.

After defining equality on a type A in the library’s prelude as an inductive
type family over two objects of A which is generated by the reflexivity witness
refl : II(x : A), x = x, we can provide operations and proofs for the basic
higher groupoid structure of these “equality paths™ Concatenation p - q and
inversion p~! of paths as well as proofs about associativity and cancellation.
These are constructed using the dependent recursor of equality which we call
path induction and which, for each a : A, provides a function II(b : A) (p
:a=Db), Pb p given the reflexivity case P a (refl a). Likewise, we can
prove the functoriality of functions with respect to equality: For a function £
: A > Bandp : a=a wedefineap f p : f a=f a' by induction on p.
Using an equality p : a = a’ in a type A to compare elements of two fibers in
a type family C over A, we define the transport of an element x : C a along p
asp» x : Ca.

For higher paths and dependent paths, we follow what Dan Licata calls the
“cubical approach” [16]. The basic notion is that of pathover, or a “path over
a path”, which compares elements x : C a and y : C a’ in different fibers
of a type family over some path p : a = a’ in the base type. We define the
type of pathovers above a base point a : A and x : C a to be the type fam-
ily pathover C x : II{a’ : A}, a = a/ — C a’ — Type which is inductively
generated by

idpo : x =[refl a] x

where x =[p] %’ is notation for pathover _ x p x’. This definition allows us
to define a version apd £ p : £ a =[p] f a’ of ap for dependent functions £

: ITI(a : A), C a. It is also used by Lean to express the dependent eliminators
for higher inductive types (c.f. Sect. 5). To work with pathovers we provide a
variety of operations and lemmas, analogous to the higher groupoid structure of
paths. Pathovers correspond to equalities in a sigma type.

For higher paths in a type, we use squares and squareovers. Just like paths
were defined as an inductive type family indexed by their endpoints we define
the squares in a certain type A as the type family indexed by four corners and
four paths between those corners, which is generated by some identity square
with refl on all its sides. Squares arise naturally when you need to prove a
pathover in an equality type, which is often required when proving equalities
involving higher inductive types.

Squareovers are dependent squares over a square. It takes as arguments a
square in the base type and four pathovers over the sides of this square. These
correspond to squares in a sigma type. We also have a library of cubes three-
dimensional equalities. We could generalize these to cubeovers, though we didn’t
need those yet.

12



5 Higher Inductive Types

One novel idea in homotopy type theory is the introduction of higher inductive
types or HITs [21, Chapter 6]. Higher inductive types are a generalization of
inductive types. With inductive types you can specify which terms or points are
freely added to that type. In contrast, when defining a HIT, you can specify not
only the points in that type, but also paths and higher paths. For example, the
circle 8! is a HIT with one point constructor and one path constructor:®

HIT circle : Type :=
| base : St
| loop : base = base

This means that the circle is generated by one point and one path loop :
base = base. There will be more loops in the circle, such as refl base and
loop - loop and loop~!, which are all different. Higher inductive types have
elimination principles analogous to those of ordinary inductive types.

The most commonly used proof assistants which have HoTT support (such as
Coq and Agda) do not support HITs natively. Just adding HITs as constants is
not satisfactory, because then the computation rules are not judgmental equali-
ties. Instead, users of Coq use “Dan Licata’s trick” [15]. The idea is that to define
a higher inductive type, one first defines a private inductive type inside a module
with only the point constructors, and then adds the path constructors as axioms.
One then defines the desired induction principle using the induction principle
of the private inductive type and adds the computation rules of this induction
principle on paths as additional axioms. Then the user closes the module, and
the result is that only the data of the higher inductive type are accessible, while
the induction principle of the private inductive type is hidden. This ensures that
the computation rules are judgmentally true for point constructors (but not for
path constructors), but a disadvantage is that inside the module inconsistent
axioms were assumed, and one needs to trust that the code in these modules
does not introduce an inconsistency in the system. In Agda the rewriting feature
is used so that users can extend the kernel with judgmental rewrite rules, though
there are no checks for any rewrite rule declared in this way.

In Lean we follow an approach similar to Agda rewriting feature, by building
in judgmental rewrite ryles. However, we only extend the kernel with the rewrite
rules for two “trusted” higher inductive types, namely the n-truncation and the
typal quotient (quotient for short). The quotient is parameterized by a type A and
a family of typesR : A — A — Type. So“typal” (the adjective of “type”’) means
that we quotient by a family of types and not a family of mere propositions. The
quotient is the following HIT:

HIT quotient (A : Type) (R : A — A — Type) : Type :=
| i : A — quotient A R
|l e : I{xy : A}, Rxy—>ix=1iy

9 Although we use syntax inspired by the Lean syntax for inductive types, this is not
valid syntax in Lean.
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For the n-truncation and the quotient, we add the type formation rule, point and
path constructors, and induction principle as constants/axioms.!® Then we add
the judgmental computation rules for the point constructors to the Lean kernel;
the Lean kernel is extensible in such a way that certain new computation rules
can be added to it. After that, we add the computation rules on paths as axioms.
As remarked in Subsect. 2.1, we know that the resulting type theory is consistent,
because n-truncations and typal quotients can be reduced to pushouts, and type
theory with univalent universes closed under pushouts is modeled by [§].

Given these two HITs, we define all other HITs in the Lean HoTT library
using just these two. Some reductions are simple, for example the homotopy
pushout of f : A - Bandg : A — Cis the quotient on type B + C with the
edges R defined as an inductive family with constructor IT(a : A), R (inl (£
a)) (inr (g a)). Proving the usual induction principle for the pushout is then
trivial. Given the pushout, we have defined the other usual HITs: the suspension,
circle, join, smash, wedge, cofiber, mapping cylinder and spheres. In particular,
we define circle as sphere 1, which is susp (susp empty). We can then prove
the usual induction principle for this type, and it satisfies the computation rules
on the point constructors judgmentally

We can also define HITs with 2-path constructors using quotients. This uses
a method similar to the hubs-and-spokes method described in [21, Sect. 6.7].
From the elimination principle of the circle it follows that for any path p : x
= x in type A we can define a map £ : S' — A with ap £ loop = p by circle
induction. Then we can prove the equivalence

(p = refl x) ~ ¥(xg : A), 1I(z : sy, £ z = xq

This equivalence informally states that filling in a loop is the same as adding
a new point xg, the hub, and spokes £ z = xg for every z : S!, similar to the
spokes in a wheel. This means that in a higher inductive type, we can replace a
2-path constructor p = refl x by a new point constructor xo : A and a family
of 1-path constructors II(z : S'), £ z = xq.

However, this does not quite define 2-HITs in terms of the quotient, since this
family of path constructors refers to other path constructors (via the definition
of £), which is not allowed in quotients. For this reason, we construct 2-HITs
using two nested quotients. We first define a quotient with only the 1-paths and
the hubs, and then use another quotient to add the spokes.

For a formal treatment of this, we need the following inductive family, which
are the paths in a graph:

inductive path {A} (R : A - A — Type) : A - A — Type :=

| of_rel : II{a a’ : A}, Raa — path R a a’

| of_path : IlI{a &’ : A}, a = a’ — path R a a’

| symm : II{a a’ : A}, path R a a’ — path R a’ a

| trans : II{a a’ a’’}, path R a a’ — path R a’ a/ — path R a a’

10 For the n-truncation we treat the fact that the new type is n-truncated as a “path-
constructor.” In |21, Sect. 7.3] it is explained that the fact that a type is n-truncated
can be reduced to (recursive) path constructors.
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A specification for a (nonrecursive) 2-HIT consists of a type A and two fami-
liesR : A - A — Typeand Q : II{a a’ : A}, path R a a’ — path R a
a’ — Type. Using this, we define the 2-HIT two_quotient A R Q with con-
structors

HIT two_quotient A R Q : Type :=

| ip : A — two_quotient A R Q

| iy : II{a &’ : A}, Raa — ig a =1ig @’

| i : II{a @’ : A} {r ' : pathRaa'}, Qrr —
extend i; r = extend i; r’

where extend i; r is the action of i; on paths in R, e.g. extend i; (trans
r1 ry) := extend i; r; - extend i; ry. We first define a special case where
the 2-path constructor has only reflexivities on the right hand side. We call this
simple_two_quotient A R Q’, where Q' has type II(a : A), path R a a —
Type and where

i : II{a} {r : path R a @'}, Q r — extend i; r = refl (ig a)

As mentioned before, we define simple_two_quotient A R Q in two steps. We
first define a type X with only the 1-path constructors and the hubs:

X := quotient AR+ X(a : A) (r : pathRaa), Q' r
We then define simple_two_quotient A R Q' := quotient X R’ where

inductive R’ : X — X — Type :=
| mk : TI{a : A} (r : path Raa) (q: Q r) (x : shy,
R (f q x) (inr (a,q))

with f q : S! — X defined by induction so that ap (f q) (loop) = extend
(inl o e) rforq : Q r.

We now prove the expected (dependent) induction principle, (nondependent)
recursion principle, and computation rules for this two-quotient. The only com-
putation rule which we did not manage to prove is the computation rule of the
induction principle on 2-paths. However, this rule is not necessary to determine
the type up to equivalence.

We then define the general version, two_quotient A R Q, to be equal to
simple_two_quotient A R Q' where:

inductive Q' : Il{a : A}, path R a a — Type :=
| qo : II{a &’ : A} {r ' : path R a a'},
Qrr — Q (trans r (symm r'))

We then show that two_quotient A R Q and trunc n (two_quotient A R Q)
have the right elimination principles and computation rules. It (perhaps surpris-
ingly) requires quite some work to show that the correct computation rules of
the truncated version follow from the untruncated version.

This allows us to define all nonrecursive HITs with point, 1-path and 2-path
constructors. For example, we define the torus T2 := two_quotient unit R
Q. Here R * * = bool, which gives two path constructors p and q from the
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basepoint to itself. Q is generated by the constructor qo : Q (trans [ff]
[tt]) (trans [ff] [tt]) where [b] is notation for of _rel b. This gives a
pathp - q = q - p. We also define the groupoid quotient: For a groupoid G we
define its quotient as trunc 1 (two_quotient G (@hom G) Q) where:

inductive Q :=
| g0 : II(a b c) (g : hom b c) (f : hom a b),
Q (g o £f) (trams f g)

If G is just a group (considered as a groupoid with a single object), then the
groupoid quotient of G is exactly the Eilenberg-MacLane space K G 1.

We have also defined the propositional truncation just using quotients in
Lean [9]. An extension of this construction to n-truncations has been given on
paper [19]. If we formalize this generalization in Lean, it is possible to remove
n-truncations as a primitive HIT in Lean.

6 Conclusion

We have described the HoTT library for the Lean proof assistant, which formal-
izes many results in HoTT, including higher inductive types, synthetic homotopy
theory and category theory. It has a large library of pointed types, and uses cu-
bical methods for reasoning about higher paths. In the future, we hope to make
a HoTT mode for Lean 3, possibly using a version of cubical type theory [8,2].
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