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Abstract. We investigate possible extensions of arbitrary given Pure
Type Systems with additional sorts and rules which preserve the nor-
malization property. In particular we identify the following interesting
extensions: the disjoint union P + Q of two PTSs P and Q, the PTS
VP.Q which intuitively captures the “Q-logic of P-terms” and Ppoly
which intuitively denotes the predicative polymorphism extension of P.
These results suggest a new approach to the study of the meta-theory of
PTSs, by examination of the relationships between different calculi and
predicative extensions which allow more expressiveness with equivalent
logical strength.
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1 Introduction

When describing a logical system or, as is equivalent through the Curry-Howard
lens, a type system, one often wishes to describe a generic situation, in which
one wishes not to describe a single construct, but a family of constructs ranging
over a set of parameters, which themselves are particular to the constructs being
defined. This is often referred to as a schema in logic, as in the description of the
induction rule in the usual presentation of Peano Arithmetic. This can be seen
as a meta-level quantification: the rule is defined for all possible instance of the
quantifier. It is then very natural to ask the following question: “is it possible
to reify this meta-level quantification?”. The immediate practical advantage to
such a reification is that it now has a finite description: the meta-level quantifi-
cation, which can be seen as an infinite conjunction at the object level, is now
encapsulated in a single construct of the theory.

In the case that such a reification is possible, the next natural question is
this: “is the resulting theory a conservative extension to the original theory?”.
This question can be quite tricky, and in general depends on what we mean by
“reification”. Is the reification of the implicit quantification over propositions
in Peano Arithmetic second-order Arithmetic or ACAg, where comprehension
is restricted to first-order formulas? In the first case we have a very powerful
extension to arithmetic, whereas in the second case, the extension is conservative,
comforting us in the feeling that such an extension does not “add anything” to
our logic (in particular, the enriched theory is consistent if and only if the original
theory is).



Our first contribution is to formalize, in part, a process which allows us to
perform such an enrichment. We place ourselves in the framework of Pure Type
Systems (PTSs) as described by Barendregt [3]. This framework has the advan-
tage of allowing a very fine and rich account of quantification and dependency.
In this framework, there is in general no clear notion of consistency; for this rea-
son we concentrate on normalization/cut elimination, which generally implies
consistency in the frameworks in which both concepts exist (by showing that no
well-typed normal proof of falsity exists).

The second observation is that there are modular constructions which al-
low us to combine or extend pure type systems into new systems, and identify
certain transformations which preserve weak (and strong) normalization. This
suggests a novel approach to describing a logical framework: first identify the
components of the framework, e.g. the proof language and the term language,
and the relationships between them with respect to quantification. Then use one
or several of the combination methods to construct the desired framework. We
identify two particularly interesting such constructs: the first takes two PTSs
P and Q, and forms the PTS VP.Q which informally captures the “Q-logic of
P-terms”. The second takes a single PTS P and forms the PTS Ppg, which
adds predicative quantification over every sort of P.

2 Pure Type Systems

Pure type systems are defined as a set of type assignment systems, parametrized
by the types one is allowed to form. This is prescribed by the dependent function
space formation rule, itself entirely described by a triple (S,.4,R) consisting of
aset s,k €S of Sorts, aset ACS xS of Arioms and aset RC S xS xS of
Rules.

We use these rules to assign types to terms. The untyped terms and types
have the same syntax, which is given by the BNF

tuy A, BeAd:=s|z| x:A t|tu]|llz:A B.

Conversion is restricted to S-conversion: the equivalence relation generated by
the contextual closure of the rule

Az : A t) u—gt{x—u}.

We adopt the usual Barendregt convention for renaming variables in terms and
contexts. The typing rules are standard and are given in Figure 1.

Given a PTS P = (S, A, R), we will write s; : sp for axioms (s1, s2) and
51 3 89 to denote rules (s1, 82, 83). We say that t has sort s if there are T', A
suchthat 'F¢: Aand ' A : s in P.

This deceptively simple framework is in fact quite expressive: it is possible
to find instances of PTSs that allow the encoding of very expressive logics like
higher-order arithmetic or Zermelo set-theory [16]. In general soundness of these
logics can be proven by proving normalization of the corresponding PTS.
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Fig. 1. Typing Rules for PTS

Definition 1. Let P be a Pure Type System. A term is well typed in P if there
18 a context I' and a type A such that

I'tt¢: A

The PTS P is weakly normalizing (resp. strongly normalizing) if every well-
typed term t in P has a normal form (resp. there is no infinite chain of reductions
starting with t).

In the remainder of the article, we use normalizing interchangeably with weakly
normalizing.

We can consider a PTS to be fully described simply by the triple (S,.4,R).
Using this fact, the class of PTSs can be seen as a category where the morphisms
between P and Q is the set of functions ¢: Sp — Sg such that ¢(s1) : ¢(s2)

whenever s; : s2 and ¢(s1) £ #(s2) when s; <% s5. Any such function induces

a morphism on terms and contexts which we denote ¢ as well. We then have by
simple induction, for every morphism of PTSs ¢ : P — Q that

Tkpt: T = o) kg d(t): H(T).
‘We can now make our first non-trivial remark:

Remark 1. (Morphisms preserve non-normalization). Let P, Q be PTSs. If Q is
WN (resp. SN) and if there is a morphism ¢ : P — Q, then P is WN (resp. SN).

This can be seen simply by observing that ¢ preserves S-reduction steps:

t—pt < o(t) —p (t).



The converse does not hold, since the terminal object in this category is not
normalizing.

Now it is interesting, if not terribly useful, to observe that this category
inherits rich structure from that of sets: it admits all limits and co-limits! In
particular, it admits products and co-products.

It is immediate that if sorts, axioms and rules are simply restricted, then
there is an inclusion morphism from the restricted system to the full system.

The terminal object of the category of PTSs is the “Martin-Lof inconsistent
type theory” (see Martin-Lof [14]), which we note * : *, which has the unique
sort , the axiom * : * and the rule * ~> %, and was shown to be non-normalizing
by Girard [10] (see also Hurkens [11]).

Finally the fact that the co-product of PTSs preserves normalization is non-
trivial, and is the object of Theorem 1. It is intuitively clear, however, that every
term typed in P+ Q must be well-typed in either P or Q. We will make this kind
of reasoning precise, and extend it to prove the main results of this work. More
generally, we show that we may track the rules which give rise to each redex and
show that the subterm which contains the redex is either typable in one of the
original systems, or obeys certain combinatorial commutation properties which
allow such a redex to be safely eliminated.

The results we prove allow extending pure type systems with certain forms of
quantifications while preserving normalization. This is the first step of a struc-
turalist program to study pure type systems: rather than trying to find properties
that are true of each PTS independently of the others, we study some partic-
ular pure type systems, like system F', F,, or the ECC of Luo [13], which have
“atomic” complexity and show that the systems we are interested in can be built
using known transformations such as those described above. This approach is
quite natural in other fields of algebra, as for example how representations of
groups can be classified in terms of irreducible representations.

While we believe that this is the first time such a program has explicitly been
stated, there are several instances of such an approach being used in the study
of the meta-theory of pure type systems: most notably the work of Bernardy
and Lasson [4] has served as inspiration for this approach.

However there have been other instances, as for example the work of Peyton-
Jones and Meijer [12] who propose a particular PTS (the Calculus of Construc-
tions) as a possible intermediate language for the Haskell programming lan-
guage. Uncomfortable with the power of the impredicative quantification, they
then define a predicative variant by duplicating certain sorts and restricting
product formation. We argue that our second main theorem (Theorem 3) ad-
dresses exactly this step: the addition of predicative quantification over any given
sort of the system preserves normalization.

3 Disjoint Union

To introduce the basic lemmas and techniques that will be used in the next
section, we first prove that disjoint unions of PTSs (co-products in the PTS cat-



egory) preserve normalization. To the knowledge of the authors, this observation
has never explicitly been stated in the literature.

Theorem 1. Suppose P and Q are two PTSs such that their respective sets of
sorts are disjoint. Then the PTS P + Q formed by

Spro=8pWSg  Apig=ApWAo  Rpio=RpYRg
is WN if and only if P and Q are WN.

The main difficulty for proving this theorem is to prove that by applying the
conversion rule, one cannot move from one PTS to the other. It is possible to
prove this directly using subject reduction. However, we prove it using techniques
which can more easily generalize to the results in the following sections. We work
in a modified presentation of PTSs in which we label well-typed terms with
information about which rules and sorts were involved in their construction.

The labeling is similar to a number of labellings used for meta-theoretical
studies of pure type systems, see e.g. Mellies and Werner [15], in which they note
that it is a crucial device for building models for the Calculus of Constructions.

We want to label each variable x : A with its sort. However, it is not possible
in general to attribute a unique sort s to A. To circumvent this failure, we
refine the classical result on uniqueness of types on functional PTSs in order to
characterize the ways in which it may fail in the non-functional case. We define
a relation ~, on S that will have the property that if ' A:sand ' A : s,
then s ~,, s.

Definition 2. Given a PTS (S, A, R), we define ~,C S x S inductively:

S~y S
. Lo / /
k:s AN K s AN ke~ k = S~ S

S

klf\/ﬂkll AN kgf\/,{ké AN kl’\sﬁk‘g A kll’\»ké = SNKSI.

Note that this relation is reflexive and symmetric, but not transitive in gen-
eral. However, we may easily turn ~, into an equivalence relation by taking the
transitive closure ~7. This allows us to take the equivalence classes of sorts mod-
ulo ~%; the class of a sort s will be denoted . Similarly, for rules r = s; 2 59
we write T = 57 ~3 53. In the rest of this document, we write ~ instead of ~%.

We notice that taking equivalence classes of sorts gives rise to a functional
PTS Pryn defined by

3:{§|568} Z:{E:§|(k,s)eA} ﬁ:{ﬂreR}.

It is straightforward to verify that this is indeed a functional PTS, and that
there is a morphism ¢ : P — Pr,, that sends s to s.

Lemma 1. In every PTS P, if '+ A:s,s, then s ~ s'.
Simalarly, if t has both sorts s and s’ then s ~ s'.



Proof of Lemma 1. We only prove the first statement, the second is proven sim-
ilarly. Given the morphism ¢ defined above, from the statement

'FA:s s

we have
O(T) = ¢(A) : d(s), ¢(s)

in Pryy. But in functional PTSs, we have unicity of types modulo S-conversion
(Barendregt [3], Lemma 5.2.21), which gives:

P(s) =5 g 8" = ¢(s)
confluence of B-conversion gives 3 = s/, which is what we needed. a

This observation allows us to give an alternative version of PTSs with rule-
labeled abstraction, application and products and sort-labeled variables. This
system will allow extraction of sort information by straightforward induction on
terms.

Definition 3. Let P be a PTS. Define the P-labeled calculus P with the labeled

terms

tau, A,B € A, i=s | 2° | N2® t At | (tw)” |[TT72° : A. B

where s € S andr € R.

We define the unlabeling |t| to be the term t in which all sort and rule labels
are removed.

We define the typing judgment 1.1, as consisting of (the obvious labeling of)
the rules given in Figure 1 with the following modifications:
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I Flab t: A,




We remove labels in the conversion to simplify the meta-theory: if we had
introduced the rule (\"z : A. t) u)™ —4 t{z > u} then confluence would fail on
ill-typed terms, making the meta-theory more complex, and our completeness
result below significantly more difficult to prove.

A labeling of an unlabeled term ¢ is a labeled term ¢ such that |£| =t. We
extend labeling and unlabeling to contexts in the obvious manner.

In the following section, we fix a given PTS P. The next lemma is immediate
by induction on the derivation.

Lemma 2. Suppose that I' by, ¢ 0 A in P. Then |T| F [t : |A].

There is a clear characterization of the sort of a well-typed term, that is on
the type of its type, or simply its type if that is a top-sort.

Lemma 3. Suppose that T by, ¢t : A. Then there is s € Sp such that either
I'Fapb A:s or A=s.

Lemma 4. The judgment I =t : A is derivable in P if and only if there is a
(unique) labeling T',t and A such that T Fpp t: A in P.

Given this theorem, we will often write ¢ for both |t| and # indistinguishably
for a given well-typed term ¢, and F instead of Fj,,. This more explicit type-
system allows us to give a straightforward proof of Theorem 1 by induction over
the labeled type derivation.

Proof of Theorem 1. Suppose P + Q is WN. The inclusions ¢;: P — P + Q and
ig: @ — P + Q are morphisms, which implies that P and Q are WN.

Now suppose that P and Q are WN and let I' Fpyo ¢t : A. Then we have
I'FA:sor A=s. W.lo.g. we may suppose that s € Sp. Let A be the subset
of T with only the type declarations of the form

z*: B
for k € Sp. We show by induction on the typing derivation of ¢ in P + Q that
A "73 t: A

is derivable.
Now we can conclude that t is weakly normalizable, as it is typable in P. 0O

4 The PTS VP.Q

The main result of this section is an extension of the previous one. We wish for
not only P and Q to coexist, but for Q types to be built by quantification over
P types.



Theorem 2. Let P and Q be as in Theorem 1. Let VP.Q be the PTS P + Q

with the additional rules:
I:{S'\k»k|5€$p, kESQ}.

Then YP.Q is WN iff P and Q are WN.

Now suppose we call P-types term(-sets) and Q-types propositions. Then the
rules we introduced allow us to build Q-propositions which depend on P-terms.

The proof of Theorem 2 is more involved than that of Theorem 1 as there
are non-trivial interactions between the two systems generated by the rules in
Z. Our proof is directly adapted from Bernardy and Lasson [4].

The idea is to split each term into subterms typable in P and erased terms
typable in Q. The “interaction redexes” built by the rules in Z will be handled
separately, as they strictly decrease in number after each such g-reduction, and
can not duplicate Q-redexes.

This proof bears many similarities with the Geuvers and Nederhof’s [9] proof
that normalization of system F,, implies that of the Calculus of Constructions
(Barendregt [3] Theorem 5.3.14), which tends to indicate that these proofs are
instances of a general approach based on erasure and labeling.

Definition 4 (Erasure). Let P = (S, A, R) be a PTS and D C R (a set of
dependencies). Suppose in addition that D is closed under ~; that is if r € D
and 7 =1’ then v’ € D. The D-erasure |t|P of a term t is defined by induction
on the labeled term:

[5]7 =5
o LxSJD =
[2® b ul? = [ul? ifr €D
[II"z® : ¢ ulP = 1ra® . [t]P. |u)P otherwise
[A"2® 1t ulP = inj? ifreD
[N"z® ¢ QJD = \"2%: [t]P. |u)P otherwise
TP = 1P ifreD
[t w)"|P = ([t|P [u|P)T otherwise.

We sometimes omit the superscript if it is clear in the context.

Note that in general, the D-erasure of a well-typed term is not well typed, or
indeed, even stable by reduction (or variable binding). However in the current
case, we have enough structure to guarantee typability of erased terms. In the
following section we fix D = Rp UZ.

We want to distinguish “P-terms” from “Q-terms.”

Definition 5. Suppose that T Fyp.o t: A. We say that t has a sort in P (resp.
Q) when there is a sort s € Sp (resp. Sg) such that either T Fyp o A : s or
A=s.

By Lemma 3 we know that every well-typed term in VP.Q has a sort in either P
or Q. Using Lemma 1 and Lemma 5 (below) we know that a term cannot have
both.



Lemma 5. Suppose s ~ s inVP.Q. Then s,s' € Sp or s,s' € Sg.

We have three kind of redexes in terms, the redexes from rules in P, from
rules in @ and the redexes in Z.

Definition 6. Given a term t well typed in YP.Q, we say that the redexr at
position p is a P-redex, resp. Q-redex, T-redex if the redex is of shape

(N"2° : At) u)”
with r € Rp, resp. Rg, resp. L.

We will sometimes write ¢ —p ¢’ if ¢’ is obtained from ¢ by contraction of a
P-redex (similarly for Q- and Z-redexes).
Furthermore, conversion is preserved by erasure on well-typed terms.

Lemma 6. Suppose t,t' are well typed in VP.Q with sort in Q. Then

t—ot = |t] = t].
Proof of Lemma 6. We only treat head reduction: in that case we have t =
(\"2% 1 A. t1) t2)"". Well typedness gives 7 = r’. Again we treat the three cases:

1. r € Rp. This is not possible as ¢ has a sort in Q.
2. r € Rg. In this case we have

[t] = (2™ [A]. [t]) [t2])" = [t ]{z" = [t2]} = [t2{2" — 22}

where the last equality is proven by simple induction over the structure of ¢;.
3. r € Z. In this case we have 2° ¢ FV([t;|) This gives

t] = [ta] = [t {z" = [t2]} = [ta{a” = t2}] = |1'].

In particular, due to confluence of S-reduction, we have
tgt = |t] ~p ]

for terms with sort in Q.
Now this allows us to show that well-typed terms in VP.Q are either well
typed in P or their erasure is well typed in Q.

Proposition 1. Suppose I Fyp. g t: A. We have the following:

1. If t has a sort in P, then there is a subcontext A of I such that Atpt: A.
2. Ift has a sort in Q, then we have |T'] ko |t] : |A].

Proof of Proposition 1. First suppose t has a sort in P. Choose A to be the
declarations z* : B in T with k € Sp. Then we proceed by induction on the type
derivation of the labeled term ¢. The proof is similar to that of Theorem 1.
Now if ¢ has a sort in @ we proceed similarly. The only difficult case is
conversion, which is handled by appeal to Lemma 6. a



Lemma 7. Ift is well-typed term in YP.Q then —1 reductions of t are finite.

Proof of Lemma 7. We will show that the number of Z-abstractions will strictly
decrease when contracting a Z-redex. Let ((A"z® : T.t) u)” be the redex in
question. We have by Inversion and Proposition 1 that

— w is of sort s € Sp
— u is well typed in P

In particular, u can contain no subterm of the form X"’ 2*" : A.v with 7/ € Z. This
means that no Z-abstraction can be duplicated. So the number of Z-abstractions
in ¢ must strictly decrease at each Z-reduction step, which implies termination
of Z-reductions. a

The converse of Lemma 6 is not true in general, as Z-redexes can “hide”
possible Q-redexes, illustrated in the following example.

Ezxample 1. Consider the following term:
t= 2" : A\ : Bu®)R)ulug.

The sort labels mean that the variable/term belongs to a sort in that set, and
the rule annotations means the rule belongs to that set (for clarity we didn’t
annotate the applications). It is possible to make explicit choices such that ¢ is
well-typed. Note that

LtJ = ()\yg : B.ul)RQU3 —B Ul{y = US}'

However, t is in —¢ normal form. The Q-redex is hidden by the Z-redex in t¢.
In contrast, it is not possible for P-redexes to create Q- or Z-redexes.

To show that terms typable in VP.Q have (Q U Z)-normal forms, we need
to lift reductions in the erased domain up to the richer pure type system. The
crucial observation is the following:

Lemma 8. Suppose t is well typed in YP.Q with a sort in Q and suppose that
|t] =g v. Then there exists a term ¥ such that || = v and

t =70 .
These lemmas allow us to prove Theorem 2.

Proof of Theorem 2. Suppose that ¢ is well typed in VP.Q. If ¢ has a sort in P,
then ¢ is well typed in the PTS P by Proposition 1 and we are done. Otherwise, ¢
has a sort in Q, and we proceed as follows. We will first find a — g7 normal form.
Since |t] is typable in Q (again by Proposition 1) and Q is weakly normalizing,
there exists a Q-normal form t; of [t]. By Lemma 8 we can lift every step of
this reduction chain to VP.Q by adding Z-reductions. This way we obtain a lift
t; of t; such that ¢ —or t;. Lemma 7 tells us that we can find a Z normal form



t' of ;. Since contracting Z-redexes doesn’t change the erasure, we know that
|| = |t1] = t1. By Lemma 6 we conclude that ¢ is also in Q normal form.
Hence t' is a — g7z normal form of .

Now we prove by induction on terms in — g7 normal form that they have a
— 5 normal form. The only interesting case is when the term is an application
which is part of a redex. Since the term is in — g7 normal form, this must be a
‘P-redex. By Proposition 1 this means that the term is well-typed in P, so it has
a —p normal form. Since contracting P-redexes cannot create Z- or Q-redexes,
this means the normal form is actually an —g normal form. This completes the
induction, which shows that ¢/, and hence ¢ has a —3 normal form. a

Additionally, Proposition 1 gives us the following logical conservativity result.

Corollary 1. Suppose A is well typed in VP.Q of type s € Sg. Suppose further-
more that A only contains subterms which have a sorts in Q. Then we have

A is inhabited in VP.Q iff A is inhabited in Q.

5 The PTS Ppoy

In this section, we show that we may extend a PTS P with quantification of every
sort over every other sort, provided the result lives in a “fresh” sort. This allows
internalizing quantification over free variables: in general if a term ¢ contains
a free variable x of sort s, one may instantiate x with any term u of the same
type. However it is not in general possible to quantify over x. The following result
shows that it is possible to safely form the term Ax:T. ¢ (if z : T') within the
theory, by pushing the resulting term into a new sort. This is sometimes referred
to as predicative polymorphism, ML-style polymorphism or prenex polymorphism.
We feel that it is natural to try to capture such a concept in its most general
form.

Additionally, such a practice seems quite useful in general for extensions
of type theory with such things as size-types (See Blanqui [5] or Abel [1]) or
universes [17] in order to obtain an object theory that naturally allows terms
polymorphic in sizes or universes. Note that these particular extensions are im-
possible in the theory of pure type systems, but there is good hope that our
approach still applies.

In the following we fix a PTS P = (S, A, R).

Definition 7. Let s5°' ¢ S, be a new sort for each pair of sorts s1,82 € S. We
deﬁne the PTS PPoly = (SPolya -APolya RPoly) by

Spoly =SuU {8251 | S1,82 € S}

APoly =A

5551 5551
Rpoly :RU{Sl 2, S92 | 81,82 ES} U{Sl 2, 8231 |S1,82 ES}



This construction also preserves normalization, by a similar argument to
above.

Theorem 3. If P is WN, then so is Ppoly-

Proof of Theorem 3. (Sketch)

We identify, in the same manner as in the proof of Theorem 2, two types of
redexes: those coming from a rule in R, and those coming from the new rules,
which we call P-redexes and Z-redexes respectively.

In the same manner as before, we can show

1. Every P-redex belongs to a subterm typable in P.
2. Reducing a Z-redex can not create any redexes.

Due to this observation, and subject reduction, we may proceed as previously
and reduce every Z-redex, then normalize each subterm that contains a P-redex.
Both operations normalize by the above observation, and the final term is in
normal form.

6 Examples

We may verify that the PTS P? given in Bernardi and Lasson [4] is a sub-PTS
of VP. P’ (where P’ is a renaming of P to make it disjoint from the latter), and
as such, is normalizing if P is. The only-if direction does not follow immediately,
as a sub-PTS of a non-normalizing PTS may be normalizing. In the case of that
paper however, it is trivial to verify that it in fact does.

It is also easy to use the predicative polymorphism transformation to turn the
simply-typed A-calculus (STLC) into a calculus with ML-style polymorphism:
define STLC to be the PTS defined by

S ={x0} A= {x:0} R:{*«*»*}
In the PTS STLCpol, we can for example form the polymorphic term

d=AX:x. de: X. 2z : IIX:x. X - X.

a]
By use of the rule 0~ x.

It is amusing to note that there is the rule x 2 O in STLCpgly, which seems
to allow for the construction of dependent types. However this ability is quite
restricted, in opposition to “true” dependent types as those in the All-calculus
or Martin-Lof Type Theory.

Unfortunately, we do not quite have the predicative system described by
Peyton-Jones and Meijer [12], as they have the additional rules

We do not know whether such rules can be added in a general way to every PTS.



Now let us give a slightly more elaborate example in which we construct a
system of interest out of more elementary systems. We wish to build a predicate
logic over terms. We therefore consider an elementary PTS with a single sort **
which represents the universe of basic sets of terms, and a sort [0* with *° : [J°
which allows declaring type variables such as

Nat : *°, Bool : %°.

We call TERM this PTS with two sorts, one axiom and no rules. It is easy to
see that there are no possible A-abstractions in this PTS, and so every term is
trivially normalizing.

As this is a quite poor framework in which to define even first order terms,
we add function spaces to be able to declare variables of a function type, e.g.
S : Nat — Nat. To do this, we add a third sort, %, to represent function spaces,

along with the rules
f

*
%~ %

, *° iﬁ sl

This allows us to declare variables of functional type such as S : Nat — Nat
in a well-formed context. But this new PTS, which we call TERMgyy, is just a
sub-PTS of TERMp,ly, where «/ = %5*"| Without any additional work, we can
therefore conclude, using Theorem 3 that this PTS admits normalization.

Now we wish to reason about such terms using a propositional framework. If
we choose that framework to be STLC, then we can simply form the sub-PTS
of VTERMgy. STLC obtained by adding the rules

*° 2 O -5«
to obtain a dependently-typed system which captures the V, = fragment of (mini-
mal, intuitionistic) first-order logic. This system admits cut elimination by The-
orem 2 and normalization of STLC. Such a system was in fact described by
Berardi (see Barendregt [3]) by a direct construction, and in the above reference
cut elimination is derived by translation into a system with dependent types,
rather than our modular approach.

We can also apply Theorem 3 a second time to obtain a system with the

O

additional rule 0 A . In this system, we are now able to express axiom schemas:
in the context
I' = Nat : #*°, 0: Nat, S : Nat — Nat

we have
TP :Nat — % P0— (Iln: Nat. Pn— P (Sn)) — IIm:Nat. Pm : -

which allows us to build a well-formed context with a variable ind of that type.
This is possible without fear of losing normalization under the S-rule. Note that
this fact does not help much when trying to prove meta-theoretical properties
about arithmetic like consistency, which requires more elaborate cut-elimination
rules.



One can iterate this construction to get an arbitrary number of “universes”.

=
However, since there is no rule = > %5 the resulting system is weaker than
the usual Martin-Lof type theory with universes.

7 Conclusions

We have presented various operations allowing one to combine or extend arbi-
trary PTSs, and shown certain of these combinations to preserve normalization.

On the technical side, it is clear that sort-labeling and erasure are powerful
techniques for proving properties about reduction in pure type systems, and more
investigation is warranted to understand the extent of these techniques. Ideally
we would like a general syntactic theorem (which depends only on combinatorial
properties of S, A and R) which captures the extensions to a system (or a set
of systems) that can be proven sound with this method.

Natural applications of this approach include the analysis of dependently-
typed programming languages. Such languages aim to model programs and
proofs using a single framework. However, the construction of a proof language
and of a programming language are often at odds, as there are many features of
an environment for proofs (impredicativity, normalization, irrelevance) which are
not desirable for a programming environment. One approach is to compartmen-
talize the system into two (or more) universes, along with sometimes complex
rules to guide their interaction. In particular the Trellys project (see e.g. Sjoberg
et al. [18]) aims at exploring the consequences of such distinctions. We believe
that our approach may allow a systematic study of these interactions, lightening
the burden of meta-theoretical study.

There has been some effort concerning the use of dependently-typed lan-
guages to serve as a framework in which to recast, or replay proofs done in
different, more complex systems. The language Dedukti [8], for instance, has
been used to embed proofs coming from Coq [6], and HOL [2] using a suitable
encoding. It is a natural question to ask whether the combination of these encod-
ings is still coherent, or more generally under which conditions one can combine
such encodings. While in general this question is quite difficult, our Theorem 1,
and to a lesser extent Theorem 3 can be seen as a first step in that direction.

All the theorems in this paper can be generalized to hold with strong nor-
malization as well, by adapting the proof to use well-known modularity results
in the theory of rewrite systems. We concentrate on weak normalization, as it is
sufficient to imply consistency of logical systems based on PTS.
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