

Tutorial on interactive theorem proving in Lean

Floris van Doorn

University of Paris-Saclay (Orsay)

7-8 June 2023

Computers and mathematics

Can a computer help a mathematician with mathematical **reasoning**?

Computers and mathematics

Can a computer help a mathematician with mathematical **reasoning**?

Computers are mostly used in mathematics to compute.

- Run simulations
- Test conjectures
- Compute number sequences, knot invariants ...

Computers and mathematics

Can a computer help a mathematician with mathematical **reasoning**?

Computers are mostly used in mathematics to compute.

- Run simulations
- Test conjectures
- Compute number sequences, knot invariants ...

An **interactive theorem prover** is a program that can reason with mathematical definitions, theorems and proofs, provided a user writes theses in a language that the program can understand.

This is called **formalization**.

Talk Topics

In this tutorial:

- ① A brief introduction to Lean
- ② Demo
- ③ Try out Lean yourself

Lean

Lean is an interactive theorem prover mainly developed by Leonardo de Moura at Microsoft Research.

It is open source, and under active development for 10 years.

mathlib

mathlib is the mathematical library of Lean.

It is a **general-purpose**: it contains algebra, topology, analysis, differential geometry, probability theory, category theory, combinatorics, logic, ...

It is **decentralized**: contributors come with their own plans and goals.

It is **large**: mathlib has over 1 million lines of code, written by over 270 contributors.

It is **active**: There are more than 100 contributions every week and every contribution is reviewed by one of the 23 mathlib maintainers.

I have worked with Lean since 2014 and am a mathlib maintainer since 2019.

Selected Lean formalizations

- Spectral sequences (2017; using HoTT; **van Doorn** et al.)
- Definition of perfectoid spaces (2019; Buzzard, Commelin, Massot)
- Independence of the continuum hypothesis (2019; **van Doorn**, Han)
- Witt vectors (2020; Commelin, Lewis)
- Finiteness of the class group of a global field (2021; Baanen, Dahmen, Narayanan, Nuccio)
- Liquid tensor experiment (2022; Commelin et al.)
- Sphere eversion project (2022; **van Doorn**, Massot, Nash)

Why formalize mathematics?

- ① Collaboratively create a unified mathematical library
- ② Check proofs
- ③ Teach mathematics
- ④ Create mathematics

tinyurl.com/LeanTutorial