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Synthetic Homotopy Theory

In homotopy type theory, the types are interpreted as spaces.

This leads to a new program, synthetic homotopy theory:

To study types in type theory as spaces in homotopy theory.

This method for homotopy theory is

more general than the classical method;

constructive;

easier to formally verify in a proof assistant

We use the Univalence axiom [Voevodsky] and higher inductive types
[Shulman, Lumsdaine].
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Types as spaces

A type A can have

points a, b : A

paths p, q : a = b

paths between paths r : p = q

... a

b

p

q

r

•

•
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Identity Type

The identity type is central in homotopy type theory.

It corresponds to equality in logic and to the path space in homotopy
theory.

Different ways to think about the identity type:

Type theory: The identity type a =A (−) is generated by reflexivity:
refla : a =A a.

Logic: Equality is the least (free) reflexive relation.

Homotopy theory: The path space with one point fixed is
contractible.

(This does not mean every proof of equality is reflexivity)
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Path Induction

This is made precise by path induction:

If C : Π(x : A), a = x→ Type,

to prove/construct an element of Π(x : A).Π(p : a = x), C(x, p)

it is sufficient to prove/construct an element of C(a, refla)

What this means is that if we have a path p : a = x where the right
endpoint is a variable, we may assume that p is reflexivity and that x is a.
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Path Induction

Example If A is a type with points x, y and z. If p : x = y and
q : y = z, we have a concatenation p · q : x = z.

Proof Since the right endpoint of q is a variable, we may assume q
is reflexivity and that y is z. Then we need to construct
p · refly : x = y, which we define as p · refly := p.
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Path Induction

Example If A is a type with points x, y and z. If p : x = y and
q : y = z, we have a concatenation p · q : x = z.

Proof Since the right endpoint of q is a variable, we may assume q
is reflexivity and that y is z. Then we need to construct
p · refly : x = y, which we define as p · refly := p.

variables {A : Type} {w x y z : A}

definition concat (p : x = y) (q : y = z) : x = z :=

by induction q; exact p
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Path Induction

Example If A is a type with points x, y and z. If p : x = y and
q : y = z, we have a concatenation p · q : x = z.

Proof Since the right endpoint of q is a variable, we may assume q
is reflexivity and that y is z. Then we need to construct
p · refly : x = y, which we define as p · refly := p.

variables {A : Type} {w x y z : A}

definition concat (p : x = y) (q : y = z) : x = z :=

by induction q; exact p

definition con.assoc (p : w = x) (q : x = y) (r : y = z) :

(p · q) · r = p · (q · r) :=

by induction r; reflexivity
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Path Induction

Example If A is a type with points x, y and z. If p : x = y and
q : y = z, we have a concatenation p · q : x = z.

Proof Since the right endpoint of q is a variable, we may assume q
is reflexivity and that y is z. Then we need to construct
p · refly : x = y, which we define as p · refly := p.

variables {A : Type} {w x y z : A}

definition concat (p : x = y) (q : y = z) : x = z :=

by induction q; exact p

definition con.assoc (p : w = x) (q : x = y) (r : y = z) :

(p · q) · r = p · (q · r) :=

by induction r; reflexivity

After induction on r, the goal is (p · q) · refl y = p · (q · refl y)
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Truncated Types (Voevodsky)

−2

−1

0

1

...

∞

Contractible: has exactly one point
Proposition: as at most one point

Set: satisfies UIP / axiom K

1-Type: all paths are sets

(n+ 1)-Type: all paths n-types
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Truncation

Given A, we can form the n-truncation ‖A‖n.

‖A‖n is the “best approximation” of A which is n-truncated.

A

‖A‖n X

|−|n
∀

∃!
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Fundamental group

Given a pointed type (A, a0). The type ΩA := (a0 = a0, refla0) has

multiplication given by concatenation

inverses given by path inverses

identity given by reflexivity

These operations satisfy the group laws.

It is not quite a group since it has higher structure. For example, there
might be multiple proofs that (p · q) · r = p · (q · r).

Taking the set-truncation “kills off” this higher structure. Therefore,
π1(A) := ‖ΩA‖0 forms a group, the fundamental group.

The higher homotopy groups are πn(A) := ‖ΩnA‖0.
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Fundamental group

Traditionally, the definition of the fundamental group of (A, a0) consists of
continuous functions f : [0, 1]→ A such that f(0) = f(1) = a0 modulo
homotopy.

In HoTT, we don’t need to define real numbers, the interval, continuous
functions or homotopic of paths to define the fundamental group.
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Fundamental group

In HoTT, the fundamental group can be formalized in less than 100 lines
of code.

Contrast with [Bohua Zhan, ITP 2017], using powerful automation:

Starting from the axioms of set theory, we formalized the definition
of the fundamental group, as well as many other results in set
theory, group theory, point-set topology, and real analysis. The
entire development contains over 13,000 lines of theory files and
3,500 lines of ML code, taking the author about 5 months to
complete.
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Fundamental group

Traditionally, if you want to define an operation on the fundamental group,
you have to prove that the operation does the same on homotopic paths.

In HoTT all functions automatically respect homotopic paths, since they
are equal.
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Higher Inductive Types

In Type Theory there are inductive types, in which you specify its points.

Examples. N is generated by 0 and succ
A+B is generated by either a : A or b : B
a =A (−) is generated by refla : a =A a

In homotopy theory we can build cell complexes inductively.

In HoTT we can combine these into higher inductive types [Shulman,
Lumsdaine, 2012].
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The circle

Example. The circle S1

HIT S1 :=

base : S1

loop : base = base
•base

loop

Recursion Principle. To define f : S1 → A we need to define f(base) : A
and a path f(base) = f(base) which is the path showing
that f respects loop.

Using univalence, we can prove π1(S1) = Z.
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The suspension

Example. The suspension ΣA

HIT ΣA :=

north, south : ΣA

merid : A→ (north = south)

• north

• south

A•
••••••

Remark. S1 ' Σ2

Definition. The n-sphere is defined by Sn+1 := ΣSn and S0 := 2
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HoTT in proof assistants

There are various proof assistants supporting HoTT

Coq (UniMath and Coq-HoTT)

Agda

Lean

cubicaltt

RedPRL
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The Lean Theorem Prover

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

It was “announced” in the summer of 2015.

It is open source, released under a permissive license, Apache 2.0.

Lean has a standard and HoTT instantiation.
The HoTT instantiation doesn’t work in the newest version.
The HoTT library is developed in the stable version Lean 2.
Leo will tell you more about the new features in Lean 3 tomorrow.
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The Lean Theorem Prover

Notable features:

implements dependent type theory

written in C++, with multi-core support

small, trusted kernel and multiple independent type checkers

powerful elaborator

can use proof terms or tactics

Emacs mode with proof-checking on the fly

browser version runs in javascript
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Lean’s kernel

Lean’s kernel for HoTT implements dependent type theory with

a hierarchy of universes:
Type.{0} : Type.{1} : Type.{2} : Type.{3} : ...

universe polymorphism:
definition id.{u} {A : Type.{u}} : A → A := λa, a

dependent products: Πx : A, B

inductive types (à la Dybjer, constructors and recursors)
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Lean’s kernel

The kernel is very small for a dependent type theory.

There are multiple reference checkers with about 1500− 2000 lines of
code.

The kernel does not contain

a termination checker

fixpoint operators

Pattern matching

coinductive types

inductive-inductive or inductive-recursive types

universe cumulativity

the eta rule for records
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Lean’s elaborator

Lean has an elaborator which figures out all the information left implicit by
the user.

implicit universe levels

first-order and higher-order unification

computational reductions

overloading

coercions

type class inference

definitions by pattern matching

tactic proofs
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Pattern matching

Definitions like this are compiled down to recursors:

variables {A B : Type}

definition tail : Π{n}, vector A (succ n) → vector A n

| tail (h :: t) := t

definition zip : Π{n}, vector A n → vector B n → vector

(A × B) n

| zip nil nil := nil

| zip (a::va) (b::vb) := (a, b) :: zip va vb

definition diag : Π{n}, vector (vector A n) n → vector A n

| diag nil := nil

| diag ((a :: v) :: M) := a :: diag (map tail M)
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The HoTT library

The Lean 2 HoTT library is a large library of basics in HoTT and
specialized advanced formalizations.

In the HoTT library, we add

the univalence axiom

two higher inductive types: quotients and truncations (as a kernel
extension).

HIT quotient (A : Type) (R : A → A → Type) : Type :=

| i : A → quotient A R

| e : Π{x y : A}, R x y → i x = i y
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The HoTT library

The HoTT library (∼33k LOC) contains

A good library with the basics of homotopy type theory:
Path algebra, equivalences, truncation levels, consequences of the
univalence axiom, higher inductive types, pointed types.

A category theory library

A large library for synthetic homotopy theory

There is a separate repository1 (∼11k LOC) for active formalization
projects, which will be moved to the main library if they become (mostly)
stable.

Contributors: vD, Jakob von Raumer, Ulrik Buchholtz, Jeremy Avigad,
Egbert Rijke, Steve Awodey, Mike Shulman and others.

1github.com/cmu-phil/Spectral/
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HITs in Lean

In Lean, the quotient and truncations are primitive HITs.

We define other HITs in terms of quotients and the truncation.

Not all HITs can be reduced to quotients. [Lumsdaine, Shulman, 2017]

It is not even clear what we mean by “all HITs.”

However, many HITs used in practice are constructible from quotients.

the homotopy pushout, which gives the suspension, the circle and
many other HITs;

HITs with 2-constructors, such as the torus and Eilenberg-MacLane
spaces K(G, 1).

the propositional truncation [vD];

(not formalized) n-truncations [Rijke]
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Synthetic homotopy theory

The library contains:

Freudenthal suspension theorem

Whitehead’s Theorem

Seifert-Van Kampen theorem

long exact sequence of homotopy groups

complex and quaternionic Hopf fibration

πk(Sn) for k ≤ n and π3(S2).

adjunction between the smash product and pointed maps.

cohomology theory

the Serre spectral sequence (almost!)

WIP: Spectrification, homology theory,
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Long exact sequence of homotopy groups

Given a pointed map f : X → Y . Then the following is a long exact
sequence:

π0(Y )π0(X)π0(F )

π1(Y )π1(X)π1(F )

π2(Y )π2(X)π2(F )

...

π0(f)

π0(p1)

π0(δ)

π1(f)

π1(p1)

π1(δ)

π2(f)

π2(p1)

Here F is the fiber of f , i.e. F := Σ(x : X), f(x) = y0.
p1 : F → X is the first projection.
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Towards Spectral Sequences

Ys

Ys−1

Ys−2

Ys−3

...

fs

fs−1

fs−2

fs−3

· · · πn(Fs) πn(Ys) πn(Ys−1) πn−1(Fs) · · ·

· · · πn(Fs−1) πn(Ys−1) πn(Ys−2) πn−1(Fs−1) · · ·

· · · πn(Fs−2) πn(Ys−2) πn(Ys−3) πn−1(Fs−2) · · ·

· · · πn(Fs−3) πn(Ys−3) πn(Ys−4) πn−1(Fs−3) · · ·
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Serre Spectral Sequence

Theorem

Given a type X, a family F : X → Type and an abelian group G. Then

Hp(X,λx.Hq(F (x);G)) =⇒ Hp+q(Σx:X , F (x);G).

This means that the cohomology group Hp+q(Σx:X , F (x);G) is “built up
from” Hp(X,λx.Hq(F (x);G)) in some technical way.

(slightly modified) formulation in Lean: (proof 97+% done)

variables {X : Type} (F : X → Type) (G : AbGroup)

definition serre_convergence :

(λn s, H^-(n-s)[X; λx, H^-s[F x; G]]) =⇒g

(λn, H^-n[Σ(x : X), F x; G])
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Homotopy groups of spheres

S0 S1 S2 S3 S4 S5 S6 S7 S8

π1 0 Z 0 0 0 0 0 0 0

π2 0 0 Z 0 0 0 0 0 0

π3 0 0 Z Z 0 0 0 0 0

π4 0 0 Z2 Z2 Z 0 0 0 0

π5 0 0 Z2 Z2 Z2 Z 0 0 0

π6 0 0 Z12 Z12 Z2 Z2 Z 0 0

π7 0 0 Z2 Z2 Z×Z12 Z2 Z2 Z 0

π8 0 0 Z2 Z2 Z2
2 Z24 Z2 Z2 Z

π9 0 0 Z3 Z3 Z2
2 Z2 Z24 Z2 Z2

π10 0 0 Z15 Z15 Z24×Z3 Z2 0 Z24 Z2

π11 0 0 Z2 Z2 Z15 Z2 Z 0 Z24

π12 0 0 Z2
2 Z2

2 Z2 Z30 Z2 0 0

π13 0 0 Z12×Z2 Z12×Z2 Z3
2 Z2 Z60 Z2 0
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Automation in HoTT

Automation is not used very much in Lean-HoTT (or other proof
assistants).

The only automation we use is type-class inference, for example to infer
that a type X is n-truncated.

It would be interesting to explore automation in HoTT.

Complications:

HoTT is proof-relevant; the given proof matters in general.

When using dependent types, computation matters a lot.

There are also many cases where the proof doesn’t matter. One option is
to focus on these cases.
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Conclusions

HoTT is a convenient language for homotopy theory
I It is more general than traditional homotopy theory
I The homotopy theoretic notions are primitives in type theory
I It gives novel ways of reasoning
I It is constructive (but not anti-classical)
I It is possible to verify formally in practice

Lean is a good proof assistant for HoTT
I We have formalized significant results in homotopy theory
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