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Questions discussed

What is the logic of Lean?

How does Lean check a proof?

Can we trust proofs checked by Lean?
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Computer algebra systems and proof assistants

Floris van Doorn (Bonn) The internals of Lean 25 January 2024 3 / 20



Computer algebra systems and proof assistants

Floris van Doorn (Bonn) The internals of Lean 25 January 2024 3 / 20



Computer algebra systems and proof assistants

Floris van Doorn (Bonn) The internals of Lean 25 January 2024 4 / 20



Computer algebra systems and proof assistants

Floris van Doorn (Bonn) The internals of Lean 25 January 2024 4 / 20



Computer algebra systems and proof assistants

Computer Algebra System Perform efficient computations, that are
correct most of the time.

Proof Assistant User writes a statement and proof, the program will check
it.

Automated Theorem Prover User writes a statement, the program will
find a proof or fail.
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Logic of a proof assistant

A proof assistant implements a particular logic in which the proofs are
checked.

Set theory Mizar, Metamath∗

Simple type theory HOL Light, Isabelle∗

Dependent type theory Lean, Coq

You don’t need to know the logic to start doing mathematics with a proof
assistant
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Objective of a proof assistant

Check mathematical statements and definitions

Check proofs

Help with the proof

Mathematical statements often hide information.

We want to use + mean different things in different situations.

π + e is addition in R
a + b (for a, b in some ring R) means addition in R

ℵ1 + ℵ3 means addition of cardinal numbers

More complicated expressions:

ex =
∞

∑
k=0

xk

k!
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Type theory

In type theory, every term has an associated unique type.

3 ∶ N
π ∶ R
i ∶ C

sin ∶ R→ R

Type theory allows you to catch mistakes. If f ∶ R→ R then writing f(i)
will give a type error.
It will reject a statement like 3 ∈ π as nonsensical.
It can figure out the meaning of + depending on the type of the arguments.

In set theory this is harder, it’s “too flexible”.
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Warning

We have 3 ∶ N and 3 ∶ R.

In type theory, these two 3’s are not the same object.

(Of course, canonical inclusion N↪ R sends the former to the latter.)

In Lean, you can write (3 ∶ N) or (3 ∶ R) to force an expression to have
a particular type.
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Dependent type theory

Operations on types Z ×Q
Types can depend on values Rn

Type universes Type

Propositions Prop

(Dependent) Functions n↦ (1, 12 . . . , 1n)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
length n

∶ (n ∶ N) → Rn

Inductive types inductive N where
∣ zero ∶ N
∣ succ ∶ N → N

Definitional equality There is a notion of computation: 2 + 2 ≡ 4,
(x, y).1 ≡ x.
rfl can prove a = b precisely when a and b are definitionally
equal.
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Dependent type theory

There are some details in Lean’s type theory that are a bit complicated:

Useful to learn let-expressions, quotients, axiom of choice

A bit obscure universe levels, proof irrelevance, propositional extensionality

Very obscure impredicative Prop, subsingleton elimination,
αβδηζι-conversion
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Soundness

Is Lean’s logic sound?

Short answer: Yes
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Soundness

Is Lean’s logic sound?

Yes, modulo issues with Gödels incompleteness theorem
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Soundness

Is Lean’s logic sound?

It is weaker than ZFC + ω inaccessible cardinals
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Lean
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Processing a proof

What happens after writing a proof?

Parsing (interpreting notation)

Elaboration (figure out implicit information)

Tactic execution

Kernel checking
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Elaboration

theorem add_comm {G ∶ Type∗} [AddCommMagma G]
(a ∶ G) (b ∶ G) ∶
a + b = b + a

example (a b c ∶ R) ∶ a ∗ b + c = c + a ∗ b ∶= by
exact add_comm (a ∗ b) c

Lean figures out that (G ∶= R) from context (by looking at the type
of a, b and c)

Lean has a database of types where addition commutes, and looks up
to see that it is true for R (type-class inference)
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Tactic execution

Tactics can be any program that construct part of the proof.

Simple tactics that do 1 step in a proof: intro, apply, have, rw;
Domain-specific automation: ring, linarith
General automation: simp, aesop

Running a tactics can result in

Success: a finished proof

Progess: 1 or more new goals to prove

Failure: Raise an error

Tactics produce a proof term.
(usually giant, unreadable for humans)
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Kernel checking

The kernel takes a proof term;

Computes the type of this proof term;

Checks that the type is the same as the theorem statement.

The kernel is a (relatively) small part of Lean, and it is the trusted
codebase.

To trust that Lean only accepts true theorems, you only have to trust the
kernel. You do not have to trust tactics.
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Trust

To verify a formalization of non-malicious user:

check the theorem statement

check the definitions used in the statement

check that Lean accepts the proof

check that the authors didn’t add axioms
(#print axioms my_theorem)

If you are paranoid:

check the proof with an external type checker

check that the formalizers have not changed a notation or a definition

verify the implementation of the external type checker

If you are really paranoid:

trust consistency of ZFC + ω inaccessibles

trust the compiler that compiled the type checker down to machine
code

trust that your hardware follows specifications

trust that no cosmic rays interfered with your hard drive
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Extensibility

Demo You can declare your own notation

notation3 "∫ "(. . .)" in "a".."b",
"r∶60∶(scoped f ⇒ intervalIntegral f a b volume) ⇒ r

You can declare your own tactics:

elab "my_assumption" ∶ tactic ⇒ do
let target ← getMainTarget
for ldecl in ← getLCtx do

if ldecl.isImplementationDetail then continue
if ← isDefEq ldecl.type target then

closeMainGoal ldecl.toExpr
return

throwTacticEx ‵my_assumption (← getMainGoal)
m!"no matching hypothesis of type {indentExpr target}"

You can even declare your language, and write a parser for that language.

In fact, almost every part of Lean (parsing, elaboration, tactics,
compilation) are written in Lean
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Conclusions

Type theory is a useful logic for formalization;

You can trust Lean formalizations;

Lean is very extensible.
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