

The Structural Theory of Pure Type Systems

Cody Roux Floris van Doorn

Carnegie Mellon University

July 15, 2014

Motivation

Consider the **induction principle** in Peano Arithmetic:

For all formulae $\varphi(x)$ the formula

$$\varphi(0) \rightarrow \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n \varphi(n).$$

holds.

We can **reify** the quantification over φ in second order arithmetic:

$$\forall \varphi(\varphi(0) \rightarrow \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n \varphi(n)).$$

Motivation

We want to formalize the process of **reification** of universal quantifiers.

Motivation

Questions:

- How to do this?
 - ▶ When reifying quantifiers over formulae in Peano Arithmetic we could obtain both second-order arithmetic and ACA_0 .
- Is the reification conservative?
 - ▶ ACA_0 is conservative over Peano Arithmetic.
 - ▶ Second-order arithmetic is much stronger.

Approach

By the **Curry-Howard isomorphism**:

Logic	\iff	Type Theory
universal quantification (\forall)	\iff	(dependent) function type (Π)
\forall proof rule	\iff	λ -abstraction

We will try to answer our questions using **Pure Type Systems**.

Pure Type Systems

Pure Type Systems

- are a **generic framework** of type theories.
- only allow **universal quantification/dependent function spaces**.

Pure Type Systems

A Pure Type Systems consists of

- A set of **sorts** \mathcal{S}
- A set of **axioms** $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$
- A set of **rules** $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$

That's it!

Sorts

Informally, sorts $s, *, \square, \dots \in \mathcal{S}$ represent a **class** of objects.

Example

- * may represent the class of **propositions**.
- \square may represent the class of **types**.

Axioms

Informally, $(s_1, s_2) \in \mathcal{A}$ means that s_1 is a member of the class s_2 .

Example

$$(*, \square) \in \mathcal{A}$$

Rules

Informally, $(s_1, s_2, s_3) \in \mathcal{R}$ means:

You can quantify over an element of s_2 parametrized over an element of s_1 , and the result lives in the class s_3 .

If $A : s_1$ and $B(x) : s_2$ whenever $x : A$, then $\Pi x : A. B(x) : s_3$.

Example

If we have the rule $(\square, *, *)$ we have

$$\vdash \Pi A : *. A : *$$

Pure Type Systems

Given a PTS, we have the following **type system**.

Sort formation

$$\text{axiom } \frac{\Gamma \vdash}{\Gamma \vdash s_1 : s_2} (s_1, s_2) \in \mathcal{A}$$

$$\text{prod } \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A. B : s_3} (s_1, s_2, s_3) \in \mathcal{R}$$

Pure Type Systems

Term formation

$$\mathbf{var} \quad \frac{}{\Gamma, \ x : A, \Delta \vdash x : A}$$

$$\mathbf{abs} \quad \frac{\Gamma, \ x : A \vdash t : B \quad \Gamma \vdash \Pi x : A. \ B : s}{\Gamma \vdash \lambda x : A. \ t : \Pi x : A. \ B} \quad s \in \mathcal{S}$$

$$\mathbf{app} \quad \frac{\Gamma \vdash t : \Pi x : A. \ B \quad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B\{x \mapsto u\}}$$

Pure Type Systems

Conversion

$$\mathbf{conv} \frac{\Gamma \vdash t : A \quad \Gamma \vdash A' : s}{\Gamma \vdash t : A'} \quad A \simeq_{\beta} A', \quad s \in \mathcal{S}$$

Here \simeq_{β} is β -conversion, generated by

$$(\lambda x : A. \ t)u \rightsquigarrow_{\beta} t\{x \mapsto u\}.$$

We omit the rules for creating contexts.

Simply Typed Lambda Calculus

The STLC can be encoded as PTS using

$$\mathcal{S} = \{*, \square\}$$

$$\mathcal{A} = \{(*, \square)\}$$

$$\mathcal{R} = \{(*, *, *)\}$$

Example

In STLC

$$A : *, B : * \vdash \lambda a : A. \lambda b : B. a : A \rightarrow B \rightarrow A$$

Note: $A \rightarrow B$ abbreviates $\Pi x : A. B$.

Examples of PTSs

Name	Sorts \mathcal{S}	Axioms \mathcal{A}	Rules \mathcal{R}
STLC	$*, \square$	$(*, \square)$	$(*, *, *)$
$* : *$	$*$	$(*, *)$	$(*, *, *)$
LF/ λ P	$*, \square$	$(*, \square)$	$(*, *, *), (\square, \square, \square)$
System F	$*, \square$	$(*, \square)$	$(*, *, *), (\square, *, *)$
U^-	$*, \square, \triangle$	$(*, \square), (\square, \triangle)$	$(*, *, *), (\square, *, *), (\square, \square, \square), (\triangle, \square, \square)$
CC	$*, \square$	$(*, \square)$	$(*, *, *), (\square, \square, \square), (\square, *, *), (\square, \square, \square)$
CC^ω (core of Coq)	\square_i ($i \in \mathbb{N}$)	(\square_i, \square_j) ($i < j$)	$(\square_i, \square_0, \square_0), (\square_i, \square_j, \square_k)$ ($k \geq i, j$)

Normalization

A PTS is (weakly) **normalizing** iff

$$\Gamma \vdash t : T \Rightarrow t \text{ has a } \beta\text{-normal form.}$$

Normalization implies

- the **decidability** of type-checking.
- the **consistency** of the system interpreted as a logic.

Normalization

Normalization is **hard to predict**:

Name	Axioms \mathcal{A}	Rules \mathcal{R}	Norm.
STLC	$(*, \square)$	$(*, *, *)$	Yes
$* : *$	$(*, *)$	$(*, *, *)$	No
LF/ λ P	$(*, \square)$	$(*, *, *), (\square, \square, \square)$	Yes
System F	$(*, \square)$	$(*, *, *), (\square, *, *)$	Yes
U^-	$(*, \square), (\square, \triangle)$	$(*, *, *), (\square, *, *), (\square, \square, \square), (\triangle, \square, \square)$	No
CC	$(*, \square)$	$(*, *, *), (\square, \square, \square), (\square, *, *), (\square, \square, \square)$	Yes
CC^ω (core of Coq)	(\square_i, \square_j) $(i < j)$	$(\square_i, \square_0, \square_0), (\square_i, \square_j, \square_k)$ ($k \geq i, j$)	Yes

Proposal

Our proposal:

- Consider the study of the class of PTSs **as a whole** rather than individually.
- Examine **normalization preserving** operations.

We call this the **Structural Theory of PTSs**.

First observation

Given PTSs \mathbf{P} and \mathbf{Q} we can define the **disjoint union** $\mathbf{P} + \mathbf{Q}$ by taking the disjoint union of the sorts, axioms and rules.

Theorem

If

$$\Gamma \vdash_{\mathbf{P} + \mathbf{Q}} t : T$$

then

$$\Gamma' \vdash_{\mathbf{P}} t : T \quad \text{or} \quad \Gamma' \vdash_{\mathbf{Q}} t : T$$

for some $\Gamma' \subseteq \Gamma$.

This implies that if \mathbf{P} and \mathbf{Q} are normalizing, then $\mathbf{P} + \mathbf{Q}$ is normalizing.

Second observation

We can add additional rules to $\mathbf{P} + \mathbf{Q}$.

Example

Let Terms be the PTS

$$\mathcal{S}_{\text{Terms}} = \{\text{Set}, \text{Fun}, \text{Univ}\}$$

$$\mathcal{A}_{\text{Terms}} = \{(\text{Set}, \text{Univ})\}$$

$$\mathcal{R}_{\text{Terms}} = \{(\text{Set}, \text{Set}, \text{Fun}), (\text{Set}, \text{Fun}, \text{Fun})\}$$

This is a term language with only **first-order terms**.

Example

$$A : \text{Set} \vdash A \rightarrow A \rightarrow A : \text{Fun}$$

$$A : \text{Set} \vdash \lambda xy : A. \ x : A \rightarrow A \rightarrow A$$

Example

Step 1

We can build a new PTS **FOL** by

- Taking the direct sum **Terms** + **STLC**
- Adding the rules **(Set, *, *)** and **(Set, \Box , \Box)**
 - ▶ This allows for parametrized propositions

Example

$$A : \text{Set}, P : A \rightarrow * \vdash \Pi a : A. P(a) : *$$

This allows us to formulate the **induction principle** for a single formula:

$$\Gamma = \mathbb{N} : \text{Set}, 0 : \mathbb{N}, S : \mathbb{N} \rightarrow \mathbb{N}, \varphi : \mathbb{N} \rightarrow *$$

$$\Gamma \vdash \varphi(0) \rightarrow (\Pi n : \mathbb{N}. \varphi(n) \rightarrow \varphi(S n)) \rightarrow \Pi m : \mathbb{N}. \varphi(m) : *$$

Example

Step 2

We can create a new PTS **WSOL** by

- Taking **FOL**;
- Adding a new sort $*$ ’;
- Adding a new rule $(\Box, *, *)'$.

Now we can formulate the **induction principle for all formulae**:

$$\Gamma = \mathbb{N} : \text{Set}, 0 : \mathbb{N}, S : \mathbb{N} \rightarrow \mathbb{N}$$

$$\Gamma \vdash \Pi \varphi : \mathbb{N} \rightarrow *. \varphi(0) \rightarrow (\Pi n : \mathbb{N}. \varphi(n) \rightarrow \varphi(S n)) \rightarrow \Pi m : \mathbb{N}. \varphi(m) : *$$

Reification of quantification!

Example

Fact

The PTSs **FOL** and **WSOL** are **normalizing**

Our result shows this follows from the normalization **STLC**!

Main result 1

We define $\forall P.Q$ to be $P + Q$ with added rules

$$(s, k, k), \quad (s \in \mathcal{S}_P, \quad k \in \mathcal{S}_Q)$$

Intuition

Q is a logic, and P are terms.

Then $\forall P.Q$ is the logic Q where quantification over the terms in P is allowed.

Example

$$\text{FOL} \quad \subseteq \quad \forall \text{Terms}. \text{STLC}$$

Main result 1

Theorem

If \mathbf{P} and \mathbf{Q} are normalizing, then $\forall \mathbf{P}.\mathbf{Q}$ is normalizing.

In fact, $\forall \mathbf{P}.\mathbf{Q}$ is a conservative extension of \mathbf{Q} .

Main result 2

We define \mathbf{P}_{poly} to be \mathbf{P} with added sorts

$$k^s, \quad (s, k \in \mathcal{S}_{\mathbf{P}})$$

and added rules

$$(s, k, k^s), (s, k^s, k^s) \quad (s, k \in \mathcal{S}_{\mathbf{P}})$$

Intuition

This allows for quantification over any free variable in \mathbf{P} .

k^s is the sort of s -parametrized ks

Example

$$\text{WSOL} \subseteq \text{FOL}_{\text{poly}}$$

Main result 2

Theorem

If \mathbf{P} is normalizing, then \mathbf{P}_{poly} is normalizing.

Moreover, \mathbf{P}_{poly} is a conservative extension of \mathbf{P} .

Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_β into three reductions:

- P -reductions \rightarrow_P from abstractions from P ;
- Q -reductions \rightarrow_Q from abstractions from Q ;
- I -reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

$$\forall P.Q \quad t$$

Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_β into three reductions:

- **P**-reductions \rightarrow_P from abstractions from **P**;
- **Q**-reductions \rightarrow_Q from abstractions from **Q**;
- **I**-reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

$$\begin{array}{ccc} \forall P.Q & & t \\ & \downarrow & \\ Q & & [t] \end{array}$$

Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_β into three reductions:

- **P**-reductions \rightarrow_P from abstractions from **P**;
- **Q**-reductions \rightarrow_Q from abstractions from **Q**;
- **I**-reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

$$\begin{array}{c} \forall P.Q \quad t \\ \downarrow \\ Q \quad [t] \quad \rightarrow_Q \quad \cdots \quad \rightarrow_Q \quad u \end{array}$$

Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_β into three reductions:

- **P**-reductions \rightarrow_P from abstractions from **P**;
- **Q**-reductions \rightarrow_Q from abstractions from **Q**;
- **I**-reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

$$\begin{array}{ccccccc} \forall P.Q & t & \rightarrow_I^* \rightarrow_Q & \cdots & \rightarrow_I^* \rightarrow_Q & u' \\ & \downarrow & & & \downarrow & & \downarrow \\ Q & \lfloor t \rfloor & \rightarrow_Q & \cdots & \rightarrow_Q & u \end{array}$$

Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_β into three reductions:

- **P**-reductions \rightarrow_P from abstractions from **P**;
- **Q**-reductions \rightarrow_Q from abstractions from **Q**;
- **I**-reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

$$\begin{array}{ccccccccc} \forall P.Q & t & \rightarrow_I^* \rightarrow_Q & \cdots & \rightarrow_I^* \rightarrow_Q & u' & \rightarrow_I^* & v \\ & \downarrow & & & \downarrow & & \downarrow & \\ Q & \lfloor t \rfloor & \rightarrow_Q & \cdots & \rightarrow_Q & u & & \end{array}$$

Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_β into three reductions:

- **P**-reductions \rightarrow_P from abstractions from **P**;
- **Q**-reductions \rightarrow_Q from abstractions from **Q**;
- **I**-reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

$$\begin{array}{ccccccccccccc} \forall P.Q & & t & \rightarrow_I^* \rightarrow_Q & \cdots & \rightarrow_I^* \rightarrow_Q & u' & \rightarrow_I^* & v & \rightarrow_P^* & w \\ & & \downarrow & & & \downarrow & & & \downarrow & & \\ Q & & \lfloor t \rfloor & \rightarrow_Q & \cdots & \rightarrow_Q & u & & & & \end{array}$$

Conclusions

- Pure Type Systems can be used to answer questions about reification of quantification
- It is interesting to study normalization preserving extensions and combinations of PTSs
- We can build richer type systems with the same logical strength.

Future Work

- Which rules can be added using this method?
- Can we simplify consistency proofs using this approach?
- Extensions to “Impure Type Systems”

Thank you