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Motivation

Consider the induction principle in Peano Arithmetic:

For all formulae ¢(x) the formula
©(0) = Vn(p(n) = @(n+ 1)) = Vn ¢(n).

holds.

We can reify the quantification over ¢ in second order arithmetic:

Vgp(gp(O) — Vn(e(n) = p(n+1)) = Vn go(n)).
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Motivation

We want to formalize the process of reification of universal quantifiers.
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Motivation

Questions:

@ How to do this?

» When reifying quantifiers over formulae in Peano Arithmetic we could

obtain both second-order arithmetic and ACAy.

@ Is the reification conservative?

» ACA, is conservative over Peano Arithmetic.
» Second-order arithmetic is much stronger.
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Approach

By the Curry-Howard isomorphism:

Logic <=  Type Theory
universal quantification (V) <= (dependent) function type (I)
V proof rule <= \-abstraction

We will try to answer our questions using Pure Type Systems.
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Pure Type Systems

Pure Type Systems

@ are a generic framework of type theories.

@ only allow universal quantification/dependent function spaces.
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Pure Type Systems

A Pure Type Systems consists of

@ A set of sorts S
o A set of axioms AC S xS
@ Asetofrules RCS xS xS

That's it!
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Sorts

Informally, sorts s, *,[],... € S represent a class of objects.

Example

* may represent the class of propositions.

[0 may represent the class of types.
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Axioms

Informally, (s1,s2) € A means that s; is a member of the class s;.

Example

(x,0)e A
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Rules

Informally, (s1,s2,53) € R means:

You can quantify over an element of s, parametrized over an element of
s1, and the result lives in the class s3.

If A: s and B(x) : s whenever x : A, then lNx:A. B(x) : s3.
Example

If we have the rule (OJ, *, *) we have

FTA:x. A: *
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Pure Type Systems

Given a PTS, we have the following type system.

Sort formation
I+

axiom ﬁ (51~$2) cA

N=A:s M x:AFB:s

d
pro - Nx:A B:s3

(51,52753) ER
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Pure Type Systems

Term formation

M x:AAF
M x:AAFx:A

var

I x:AFt:B =MNx:A.B:s s
M= Xx:A t:Mx:A B °c

abs

app M=t:MNMx:A. B l~u: A
NEtu:B{x— u}
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Pure Type Systems

Conversion

Mt A FrEA:s
Fr=t: A

conv Ax~g A seS

Here ~3 is 3-conversion, generated by

(Ax:A. t)u ~g t{x — u}.

We omit the rules for creating contexts.
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Simply Typed Lambda Calculus

The STLC can be encoded as PTS using

S ={x0}
A={(x0)}
R = {(x,*,%)}

Example
In STLC

A:x,B:xFJXa:AXb:B.a:A— B — A

Note: A — B abbreviates Nx:A. B.
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Examples of PTSs

Name Sorts S | Axioms A Rules R
STLC x, O (x,0) (¢, *, %)
* 1ok * (, %) (¢, *, %)
LF/AP x, O (x,0) (x, %, %), (x,0,0)
System F x, O (x,0) (s, %, %), (O, *, *)
U- * O, A (x,0), (%, %, %), (O, %, %),
(O, (O0,0,0), (A,0,0)
x,0%, %), (x,,0),
c * U (0) ((D,*,*)), ((D,D,D))
ccw U; (0, 0)) (O, 0o, Oo),
(core of Coq) | (ieN) (i <Jj) (07,05, 0) (k> 1i,j)
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Normalization

A PTS is (weakly) normalizing iff
M=t: T =t has a §-normal form.

Normalization implies

o the decidability of type-checking.

@ the consistency of the system interpreted as a logic.
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Normalization

Normalization is hard to predict:

Name Axioms A Rules R Norm.
STLC (x,0) (¢, *, %) Yes
* ok (, ) (¢, *, %) No
LF/AP (x,0) (%, %, %), (x,0,00) Yes
System F (x,0) %, %), (O, %, %) Yes
U- (x,0), (, %, %), (O, *, %), No
(O,A (O0,0,0), (A,0,0)
x, %, ), (x,0,0),
CcC (x,0) ((D, N *)) ((D, 0, D)) Yes
cc (0, 0) (0, Do, Do), Ves
(core of Coq) (i <J) (0,0, 0k) (k>1i,j)
Structural Theory of PTSs July 15, 2014
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Proposal

Our proposal:

@ Conder the study of the class of PTSs as a whole rather than

individually.

@ Examine normalization preserving operations.

We call this the Structual Theory of PTSs.
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First observation

Given PTSs P and Q we can define the disjoint union P 4+ Q by taking the
disjoint union of the sorts, axioms and rules.

Theorem
If

Mpyqt: T
then
Mept: T or Meqt: T

for some " CT.

This implies that if P and Q are normalizing, then P + Q is normalizing.
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Second observation

We can add additional rules to P 4+ Q.
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Example

Let Terms be the PTS

STerms = {Set, Fun, Univ}
ATerms = {(Set, Uan)}
Rerms = {(Set, Set, Fun), (Set, Fun, Fun)}

This is a term language with only first-order terms.

Example
A:Set-FA— A— A: Fun
A:Setk- Axy:A x:A—-A—= A
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Example

Step 1
We can build a new PTS FOL by

@ Taking the direct sum Terms 4+ STLC
e Adding the rules (Set, x,*) and (Set, [J, )
» This allows for parametrized propositions

Example
A:Set,P: A—xkTMa: A P(a): «

This allows us to formulate the induction principle for a single formula:
N=N:Set, 0:N, S:N—= N, o:N—x

' (0) = (Mn:N. ¢(n) — ©(S n)) = Mm:N. (m) : *
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Example

Step 2
We can create a new PTS WSOL by

e Taking FOL;
@ Adding a new sort *’;
e Adding a new rule ([, *, «').

Now we can formulate the induction principle for all formulae:
F=N:Set, 0:N, S:N—> N

FEMe:N — % ¢(0) = (Mn:N. p(n) = ¢(S n)) = Mm:N. p(m) : ¥

Reification of quantification!
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Example

Fact
The PTSs FOL and WSOL are normalizing

Our result shows this follows from the normalization STLC!
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Main result 1

We define VP.Q to be P + Q with added rules
(57k7k)> (SESP7 kGSQ)
Intuition
Q is a logic, and P are terms.
Then VP.Q is the logic Q where quantification over the terms

in P is allowed.

Example
FOL C VTerms.STLC

Cody Roux, Floris van Doorn (CMU) Structural Theory of PTSs July 15, 2014

25 / 32



Main result 1

Theorem
If P and Q are normalizing, then VP.Q is normalizing.

In fact, VP.Q is a conservative extension of Q.
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Main result 2

We define Py, to be P with added sorts

k®, (s, k € Sp)
and added rules

(s, k, k%), (s, k5, k) (s, k € Sp)

Intuition

This allows for quantification over any free variable in P.
k* is the sort of s-parametrized ks

Example
WSOL C  FOLpay
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Main result 2

Theorem
If P is normalizing, then P, is normalizing.

Moreover, P, is a conservative extension of P.
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Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of VP.Q we partition — 3 into three reductions:
@ P-reductions —p from abstractions from P;

@ Q-reductions —q from abstractions from Q;

@ l-reductions — from the new added rules.

We want to give a S-normal form for a term t with type in VP.Q:

VP.Q t

Cody Roux, Floris van Doorn (CMU) Structural Theory of PTSs July 15, 2014 29 /32



Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of VP.Q we partition — 3 into three reductions:

@ P-reductions —p from abstractions from P;
@ Q-reductions —q from abstractions from Q;

@ l-reductions —| from the new added rules.
We want to give a S-normal form for a term t with type in VP.Q:
VP.Q t

Q [t

Cody Roux, Floris van Doorn (CMU) Structural Theory of PTSs July 15, 2014

29 / 32



Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of VP.Q we partition — 3 into three reductions:

@ P-reductions —p from abstractions from P;
@ Q-reductions —q from abstractions from Q;

@ l-reductions — from the new added rules.

We want to give a S-normal form for a term t with type in VP.Q:

VP.Q t

Cody Roux, Floris van Doorn (CMU) Structural Theory of PTSs July 15, 2014

29 / 32



Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of VP.Q we partition — 3 into three reductions:

@ P-reductions —p from abstractions from P;
@ Q-reductions —q from abstractions from Q;

@ l-reductions — from the new added rules.

We want to give a S-normal form for a term t with type in VP.Q:

VP.Q t  ——q —/—=q U

3 3 1

Q | t] —Q cee —Q u

Cody Roux, Floris van Doorn (CMU)

Structural Theory of PTSs July 15, 2014

29 / 32



Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of VP.Q we partition — 3 into three reductions:

@ P-reductions —p from abstractions from P;
@ Q-reductions —q from abstractions from Q;

@ l-reductions — from the new added rules.

We want to give a S-normal form for a term t with type in VP.Q:
VP.Q t  ——q == U -y v
3 3 )
Q t]  —a@ -+ —q U
Cody Roux, Floris van Doorn (CMU)

Structural Theory of PTSs July 15, 2014

29 / 32



Proof sketch

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of VP.Q we partition — 3 into three reductions:

@ P-reductions —p from abstractions from P;
@ Q-reductions —q from abstractions from Q;

@ l-reductions — from the new added rules.

We want to give a S-normal form for a term t with type in VP.Q:

VP.Q t  ——q —=i—=q U = v =
3 3 1
Q t]  —a@ -+ —q U

Cody Roux, Floris van Doorn (CMU)

Structural Theory of PTSs July 15, 2014

29 / 32



Conclusions

@ Pure Type Systems can be used to answer questions about reification
of quantification

@ It is interesting to study normalization preserving extensions and
combinations of PTSs

@ We can build richer type systems with the same logical strength.
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Future Work

@ Which rules can be added using this method?
@ Can we simplify consistency proofs using this approach?

@ Extensions to “Impure Type Systems”
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Thank you
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